1
|
Sun D, Mu M, Jiang Y, Wang B, Kong Z, Tan J, Hu Y. 1, 4-benzodioxan-substituted Thienyl chalcone derivatives as novel reversible inhibitors of human monoamine oxidase B with anti-neuroinflammatory activity. Sci Rep 2025; 15:8690. [PMID: 40082573 PMCID: PMC11906766 DOI: 10.1038/s41598-025-93076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
In this study, a series of 1, 4-benzodioxan-substituted thienyl chalcone derivatives were designed, synthesized and evaluated for their inhibitory activities against human MAO-B (hMAO-B). The structure-activity relationship was investigated and summarized. Among the 22 derivatives, compound 12 showed the most potent inhibitory activity, which exhibited an IC50 of 0.11 µM with a selectivity index greater than 333. Kinetics and reversibility studies confirmed that compound 12 acted as a competitive and reversible inhibitor of hMAO-B. Molecular docking studies revealed the enzyme-inhibitor interactions and the rationale was provided. Moreover, compound 12 could effectively inhibit the release of nitric oxide, tumor necrosis factor-alpha and interleukin-1 beta in both lipopolysaccharide and amyloid β-protein 1-42 (Aβ1-42)-stimulated BV2 cells and attenuate the cytotoxicity induced by Aβ1-42 in BV2 cells. As compound 12 exhibited low neurotoxicity, we believe the hit compound which combines the activities of MAO-B inhibiting and anti-neuroinflammation could be further investigated as a novel potential lead for future studies.
Collapse
Affiliation(s)
- Demeng Sun
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Mengxue Mu
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Yanmei Jiang
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Bo Wang
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Zuo Kong
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Jingbo Tan
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China
| | - Yun Hu
- School of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, China.
| |
Collapse
|
2
|
Sakarwal A, Sen K, Ram H, Chowdhury S, Kashyap P, Shukla SD, Panwar A. Neuroprotective Efficacy of Phytoconstituents of Methanolic Shoots Extract of Calligonum polygonoides L. in Hypercholesterolemia-associated Neurodegenerations. Endocr Metab Immune Disord Drug Targets 2025; 25:152-172. [PMID: 38571361 DOI: 10.2174/0118715303283666240319062925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Small molecule phytocompounds can potentially ameliorate degenerative changes in cerebral tissues. Thus, the current study aimed to evaluate the neuroprotective efficacy of phytocompounds of methanolic shoots extract of Calligonum polygonoides L. (MSECP) in hypercholesterolemia-associated neurodegenerations. METHODS Phytochemical screening of the extract was made by LCMS/MS and validated by a repository of the chemical library. The hypercholesterolemia was induced through the intraperitoneal administration of poloxamer-407 with a high-fat diet. The in silico assessments were accomplished by following the molecular docking, ADME and molecular dynamics. MMPBSA and PCA (Principal Component Analysis) analyzed the molecular dynamics simulations. Consequently, in-vivo studies were examined by lipid metabolism, free radical scavenging capabilities and histopathology of brain tissues (cortex and hippocampus). RESULTS 22 leading phytocompounds were exhibited in the test extract, as revealed by LCMS/ MS scrutiny. Molecular docking evaluated significant interactions of apigenin triacetate with target proteins (HMGCR (HMG-CoA reductase), (AChE-Acetylcholinesterase) and (BuChE- Butyrylcholinesterase). Molecular dynamics examined the interactions through assessments of the radius of gyration, RSMD, RSMF and SASA at 100 ns, which were further analyzed by MMPBSA (Molecular Mechanics Poisson-Boltzmann) and PCA (Principal Component Analysis). Accordingly, the treatment of test extract caused significant alterations in lipid profile, dyslipidemia indices, antioxidant levels and histopathology of brain tissues. CONCLUSION It can be concluded that apigenin triacetate is a potent phytoconstituent of MSEPC and can interact with HMGCR, AChE, and BuChE, which resulted in improved hypercholesterolemia along with neuroprotective ameliorations in the cortex and hippocampus.
Collapse
Affiliation(s)
- Anita Sakarwal
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Karishma Sen
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Suman Chowdhury
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | | | - Anil Panwar
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
3
|
Zhao X, Hu Q, Wang X, Li C, Chen X, Zhao D, Qiu Y, Xu H, Wang J, Ren L, Zhang N, Li S, Gong P, Hou Y. Dual-target inhibitors based on acetylcholinesterase: Novel agents for Alzheimer's disease. Eur J Med Chem 2024; 279:116810. [PMID: 39243456 DOI: 10.1016/j.ejmech.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, accounting for 60 %-70 % of cases. At present, the pathogenesis of this condition remains unclear, but the hydrolysis of acetylcholine (ACh) is thought to play a role. Acetylcholinesterase (AChE) can break down ACh transmission from the presynaptic membrane and stop neurotransmitters' excitatory effect on the postsynaptic membrane, which plays a key role in nerve conduction. Acetylcholinesterase inhibitors (AChEIs) can delay the hydrolysis of acetylcholine (ACh), which represents a key strategy for treating AD. Due to its complex etiology, AD has proven challenging to treat. Various inhibitors and antagonists targeting key enzymes and proteins implicated in the disease's pathogenesis have been explored as potential therapeutic agents. These include Glycogen Synthase Kinase 3β (GSK-3β) inhibitors, β-site APP Cleaving Enzyme (BACE-1) inhibitors, Monoamine Oxidase (MAO) inhibitors, Phosphodiesterase inhibitors (PDEs), N-methyl--aspartic Acid (NMDA) antagonists, Histamine 3 receptor antagonists (H3R), Serotonin receptor subtype 4 (5-HT4R) antagonists, Sigma1 receptor antagonists (S1R) and soluble Epoxide Hydrolase (sEH) inhibitors. The drug development strategy of multi-target-directed ligands (MTDLs) offers unique advantages in the treatment of complex diseases. On the one hand, it can synergistically enhance the therapeutic efficacy of single-target drugs. On the other hand, it can also reduce the side effects. In this review, we discuss the design strategy of dual inhibitors based on acetylcholinesterase and the structure-activity relationship of these drugs.
Collapse
Affiliation(s)
- Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd. 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) CO., Ltd. NO.1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Jiaqi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 105 Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
4
|
Hashem O, Zaib S, Zaraei SO, Javed H, Kedia RA, Anbar HS, Khan I, Ravi A, El-Gamal MI, Khoder G. Design and discovery of urease and Helicobacter pylori inhibitors based on benzofuran/benzothiophene-sulfonate and sulfamate scaffolds for the treatment of ureolytic bacterial infections. Int J Biol Macromol 2024; 271:132502. [PMID: 38768915 DOI: 10.1016/j.ijbiomac.2024.132502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
A series of sulfonate and sulfamate derivatives bearing benzofuran or benzothiophene scaffold exhibited potent inhibitory effect on urease enzyme. Most of the derivatives exhibited significantly higher potency than thiourea, the standard inhibitor. Compound 1s was identified as the most potent urease inhibitor with an IC50 value of 0.42 ± 0.08 μM, which is 53-fold more potent than thiourea, positive control (IC50 = 22.3 ± 0.031 μM). The docking results further revealed the binding interactions towards the urease active site. Phenotypic screening revealed that compounds 1c, 1d, 1e, 1f, 1j, 1n, and 1t exhibit high potency against H. pylori with MIC values ranging from 0.00625 to 0.05 mM and IC50 values ranging from 0.0031 to 0.0095 mM, much more potent than the positive control, acetohydroxamic acid (MIC and IC50 values were 12.5 and 7.38 mM, respectively). Additional studies were performed to investigate the toxicity of these compounds against the gastric epithelial cell line (AGS) and their selectivity profile against E. coli, and five Lactobacillus species representative of the gut microflora. Permeability characteristics of the most promising derivatives were investigated in Caco-2 cell line. The results indicate that the compounds could be targeted in the GIT only without systemic side effects.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Reena A Kedia
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ghalia Khoder
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
5
|
Jose J, Varughese JK, Parvez MK, Mathew TV. Probing the inhibition of MAO-B by chalcones: an integrated approach combining molecular docking, ADME analysis, MD simulation, and MM-PBSA calculations. J Mol Model 2024; 30:103. [PMID: 38478122 DOI: 10.1007/s00894-024-05889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Jisna Jose
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Jibin K Varughese
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Thomas V Mathew
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| |
Collapse
|
6
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
7
|
Mateev E, Georgieva M, Mateeva A, Zlatkov A, Ahmad S, Raza K, Azevedo V, Barh D. Structure-Based Design of Novel MAO-B Inhibitors: A Review. Molecules 2023; 28:4814. [PMID: 37375370 DOI: 10.3390/molecules28124814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
With the significant growth of patients suffering from neurodegenerative diseases (NDs), novel classes of compounds targeting monoamine oxidase type B (MAO-B) are promptly emerging as distinguished structures for the treatment of the latter. As a promising function of computer-aided drug design (CADD), structure-based virtual screening (SBVS) is being heavily applied in processes of drug discovery and development. The utilization of molecular docking, as a helping tool for SBVS, is providing essential data about the poses and the occurring interactions between ligands and target molecules. The current work presents a brief discussion of the role of MAOs in the treatment of NDs, insight into the advantages and drawbacks of docking simulations and docking software, and a look into the active sites of MAO-A and MAO-B and their main characteristics. Thereafter, we report new chemical classes of MAO-B inhibitors and the essential fragments required for stable interactions focusing mainly on papers published in the last five years. The reviewed cases are separated into several chemically distinct groups. Moreover, a modest table for rapid revision of the revised works including the structures of the reported inhibitors together with the utilized docking software and the PDB codes of the crystal targets applied in each study is provided. Our work could be beneficial for further investigations in the search for novel, effective, and selective MAO-B inhibitors.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vasco Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Debmalya Barh
- Departamento de Genetica, Ecologia e Evolucao, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
| |
Collapse
|
8
|
Shahin AI, Zaib S, Zaraei SO, Kedia RA, Anbar HS, Younas MT, Al-Tel TH, Khoder G, El-Gamal MI. Design and synthesis of novel anti-urease imidazothiazole derivatives with promising antibacterial activity against Helicobacter pylori. PLoS One 2023; 18:e0286684. [PMID: 37267378 DOI: 10.1371/journal.pone.0286684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023] Open
Abstract
Urease enzyme is a known therapeutic drug target for treatment of Helicobacter pylori infection due to its role in settlement and growth in gastric mucosa. In this study, we designed a new series of sulfonates and sulfamates bearing imidazo[2,1-b]thiazole scaffold that exhibit a potent inhibitory activity of urease enzyme. The most potent compound 2c inhibited urease with an IC50 value of 2.94 ± 0.05 μM, which is 8-fold more potent than the thiourea positive control (IC50 = 22.3 ± 0.031 μM). Enzyme kinetics study showed that compound 2c is a competitive inhibitor of urease. Molecular modeling studies of the most potent inhibitors in the urease active site suggested multiple binding interactions with different amino acid residues. Phenotypic screening of the developed compounds against H. pylori delivered molecules of that possess high potency (1a, 1d, 1h, 2d, and 2f) in comparison to the positive control, acetohydroxamic acid. Additional studies to investigate the selectivity of these compounds against AGS gastric cell line and E. coli were performed. Permeability of the most promising derivatives (1a, 1d, 1h, 2d, and 2f) in Caco-2 cell line, was investigated. As a result, compound 1d presented itself as a lead drug candidate since it exhibited a promising inhibition against urease with an IC50 of 3.09 ± 0.07 μM, MIC value against H. pylori of 0.031 ± 0.011 mM, and SI against AGS of 6.05. Interestingly, compound 1d did not show activity against urease-negative E. coli and exhibited a low permeability in Caco-2 cells which supports the potential use of this compound for GIT infection without systemic effect.
Collapse
Affiliation(s)
- Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sumera Zaib
- Faculty of Science and Technology, Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Reena A Kedia
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Muhammad Tayyab Younas
- Faculty of Science and Technology, Department of Basic and Applied Chemistry, University of Central Punjab, Lahore, Pakistan
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghalia Khoder
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Department of Medicinal Chemistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
10
|
Evaluation of indole-picolinamide hybrid molecules as carbonic anhydrase-II inhibitors: Biological and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int J Mol Sci 2022; 23:4001. [PMID: 35409361 PMCID: PMC8999808 DOI: 10.3390/ijms23074001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years. Meanwhile, different designs and syntheses of novel anti-tubulin hybrids have been broadly studied, illustrated, and detailed in the literature. This review describes various molecular hybrids with their reported structural-activity relationships (SARs) where it is possible in an effort to generate efficacious tubulin polymerization inhibitors. The aim is to create a platform on which new active scaffolds can be modeled for improved tubulin polymerization inhibitory potency and hence, the development of new therapeutic agents against cancer.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
12
|
Zahra U, Zaib S, Saeed A, Rehman MU, Shabir G, Alsaab HO, Khan I. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. Int J Biol Macromol 2022; 198:157-167. [PMID: 34953808 DOI: 10.1016/j.ijbiomac.2021.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori urease remains a validated drug target for the eradication of pervasive chronic stomach infection that leads to severe human health diseases such as gastritis and stomach cancer. The increased failure of current treatment protocols because of resistance to broadband antibiotics, severe side effects and low compliance underscore the need for a targeted eradication therapy. Therefore, in the present research, we have developed a new series of acetylphenol-based acyl thioureas that can potentially provide a new template for drug candidates to inhibit urease enzyme. Newly synthesized compounds 7a-j were evaluated for urease inhibitory strength using thiourea as a positive control. In vitro inhibitory results revealed that all the tested compounds were significantly potent than the standard drug. The most active lead 7f competitively inhibited the enzyme and displayed an IC50 value of 0.054 ± 0.002 μM, a ~413-fold strong inhibitory potential than thiourea (IC50 = 22.3 ± 0.031 μM). Various insightful structure-activity relationships were developed showing the key structural requirements for potent inhibitory effects. Molecular docking analysis of 7f inside the active pocket of urease suggested several important interactions with amino acid residues such as ILE411, MET637, ARG439, GLN635, ALA636 and ALA440. Finally, pharmacokinetic properties suggested that the tested derivatives are safe to develop as low-molecular-weight drugs to treat ureolytic bacterial infections.
Collapse
Affiliation(s)
- Urage Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mujeeb Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
13
|
Hassan M, Zahid S, Shahzadi S, Malik E, Zaib S, Iqbal J, Shamim S, Malik A. Mechanistic insight of DACH1 receptor in the development of carcinoma insurgence through MD simulation studies. J Biomol Struct Dyn 2022; 40:742-751. [PMID: 32924784 DOI: 10.1080/07391102.2020.1818624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Proteins are key player in the prognosis and therapeutics of carcinomas through the interactions of downstream signalling cascades. Current work insight the structural and mutational analysis of DACH1 in association with carcinogenesis. The homology modelling was employed to predict mutant and wild protein models and their reliability and accuracy was verified through multiple online approaches. Furthermore, MD simulation technique was employed to check the mutation effects on the stability of DACH1 through root mean square deviation and fluctuation graphs. Our results proposed that DACH1 mutation (C188Y) may cause lethal effects and can disturb the DACH1 structure. The observed mutational results showed that C188Y may cause some lethal effect in human body. Based on aforementioned computational assessments, it has concluded that DACH1 could be used as good therapeutic target in the prognosis and therapeutic of carcinoma insurgence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | - Erum Malik
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Zaib S, Ibrar A, Ramay M, Zahra S, Hökelek T, Simpson J, McAdam CJ, Awwad NS, Ibrahium HA, Frontera A, Khan I. Centroid⋯centroid and hydrogen bond interactions as robust supramolecular units for crystal engineering: X-ray crystallographic, computational and urease inhibitory investigations of 1,2,4-triazolo[3,4-a]phthalazines. CrystEngComm 2022. [DOI: 10.1039/d2ce00351a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antiparallel π-stacked dimer of compound 6 (left) presenting a large dimerization energy (ΔE5 = −11.2 kcal mol−1) and confirming its relevance in the solid state of compound 6. 3D binding mode of 6 (right) docked in the catalytic domain of urease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Life Science, The University of Haripur, KPK 22620, Pakistan
| | - Marriyam Ramay
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Shabab Zahra
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, Beytepe-Ankara, 06800, Turkey
| | - Jim Simpson
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | | | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca Baleares, Spain
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
15
|
Maliyakkal N, Saleem U, Anwar F, Shah MA, Ahmad B, Umer F, Almoyad MAA, Parambi DGT, Beeran AA, Nath LR, Aleya L, Mathew B. Ameliorative effect of ethoxylated chalcone-based MAO-B inhibitor on behavioural predictors of haloperidol-induced Parkinsonism in mice: evidence of its antioxidative role against Parkinson's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7271-7282. [PMID: 34476688 DOI: 10.1007/s11356-021-15955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that affects mostly elderly people above the age of 60. Previously, we have reported that the ethoxylated chalcone derivative (E)-1-(4-ethoxyphenyl)-3-(fluorophenyl)prop-2-en-1-one (E7) showed potent, reversible, and competitive MAO-B inhibition with an IC50 value of 0.053 μm. The present study aims to investigate the anti-Parkinson activity of compound E7 in a haloperidol-induced animal model of mice. The disease was induced with haloperidol (1 mg/kg, intraperitoneal route) once daily for 21 days. E7 was given at dose levels of 10, 20, and 30 mg/kg/day for 21 days, consecutively. Behavioural tests were carried out during and at the end of the study. Biochemical analyses such as oxidative stress biomarkers and neurotransmitters were quantified on the brain homogenate at the end of the study. Behavioural results showed that there is a marked improvement in locomotor activity and motor coordination in the treatment group. Oxidative stress biomarkers such as SOD, CAT, and GSH levels were increased dose-dependently with a maximum at 30 mg/kg, whereas the dose-dependent decrease (30 mg/kg) in the MDA and nitrite levels were observed in the treatment groups. Levels of neurotransmitters, such as dopamine, serotonin, and noradrenaline, were increased in the treatment groups while dopamine and noradrenaline levels were more than in the standard treated group. MAO-B level was also decreased dose dependently in the treatment group in comparison with the control group. Based on the findings, it was concluded that the E7 compound exhibited anti-Parkinson activity which was more evident at 30 mg/kg oral dose as evaluated by the haloperidol-induced animal model of mice.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushayt, King Khalid University, Abha, Saudi Arabia.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Filzah Umer
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushayt, King Khalid University, Abha, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
| | - Lotfi Aleya
- Laboratoire Chrono-Environnement, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
16
|
Zaib S, Tayyab Younas M, Zaraei SO, Khan I, Anbar HS, El-Gamal MI. Discovery of urease inhibitory effect of sulfamate derivatives: Biological and computational studies. Bioorg Chem 2021; 119:105545. [PMID: 34915286 DOI: 10.1016/j.bioorg.2021.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
The discovery of life-changing medicines continues to be the driving force for the rapid exploration and expansion of chemical space, enabling access to innovative small molecules of medicinal importance. These small molecules remain the backbone for modern drug discovery. In this context, the treatment of ureolytic bacterial infections inspires the identification of potent and effective inhibitors of urease, a promising and highly needed target for H. pylori eradication. The present study explores the evaluation of sulfamate derivatives for the inhibition of urease enzyme. The tested compounds showed remarkable inhibitory effect and high level of potency. Compound 1q emerged as the lead inhibitor with an IC50 value of 0.062 ± 0.001 µM, ∼360-fold more potent than thiourea (IC50 = 22.31 ± 0.031 µM). The assessment of various contributing factors towards the inhibition profile allowed for the establishment of diverse structure-activity relationships. Kinetics studies revealed the competitive mode of inhibition of compound 1q while molecular modeling analysis identified various crucial binding interactions with ARG609, ARG439, HIS519, HIS492, HIS593, ALA440, and ALA636 in the active pocket of the enzyme. Finally, the calculated pharmacokinetic properties suggest a promising profile of our potent sulfamate-based urease inhibitors.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan.
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Seyed-Omar Zaraei
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
17
|
Ebenezer O, Damoyi N, Shapi M. Predicting New Anti-Norovirus Inhibitor With the Help of Machine Learning Algorithms and Molecular Dynamics Simulation-Based Model. Front Chem 2021; 9:753427. [PMID: 34869204 PMCID: PMC8636098 DOI: 10.3389/fchem.2021.753427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatitis C virus (HCV) inhibitors are essential in the treatment of human norovirus (HuNoV). This study aimed to map out HCV NS5B RNA-dependent RNA polymerase inhibitors that could potentially be responsible for the inhibitory activity of HuNoV RdRp. It is necessary to develop robust machine learning and in silico methods to predict HuNoV RdRp compounds. In this study, Naïve Bayesian and random forest models were built to categorize norovirus RdRp inhibitors from the non-inhibitors using their molecular descriptors and PubChem fingerprints. The best model observed had accuracy, specificity, and sensitivity values of 98.40%, 97.62%, and 97.62%, respectively. Meanwhile, an external test set was used to validate model performance before applicability to the screened HCV compounds database. As a result, 775 compounds were predicted as NoV RdRp inhibitors. The pharmacokinetics calculations were used to filter out the inhibitors that lack drug-likeness properties. Molecular docking and molecular dynamics simulation investigated the inhibitors' binding modes and residues critical for the HuNoV RdRp receptor. The most active compound, CHEMBL167790, closely binds to the binding pocket of the RdRp enzyme and depicted stable binding with RMSD 0.8-3.2 Å, and the RMSF profile peak was between 1.0-4.0 Å, and the conformational fluctuations were at 450-460 residues. Moreover, the dynamic residue cross-correlation plot also showed the pairwise correlation between the binding residues 300-510 of the HuNoV RdRp receptor and CHEMBL167790. The principal component analysis depicted the enhanced movement of protein atoms. Moreover, additional residues such as Glu510 and Asn505 interacted with CHEMBL167790 via water bridge and established H-bond interactions after the simulation. http://zinc15.docking.org/substances/ZINC000013589565.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban, South Africa
| | | | | |
Collapse
|
18
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
19
|
Mathew B, Oh JM, Baty RS, Batiha GES, Parambi DGT, Gambacorta N, Nicolotti O, Kim H. Piperazine-substituted chalcones: a new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38855-38866. [PMID: 33743158 PMCID: PMC7980107 DOI: 10.1007/s11356-021-13320-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/03/2021] [Indexed: 06/01/2023]
Abstract
Eleven piperazine-containing 1,3-diphenylprop-2-en-1-one derivatives (PC1-PC11) were evaluated for their inhibitory activities against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with a view toward developing new treatments for neurological disorders. Compounds PC10 and PC11 remarkably inhibited MAO-B with IC50 values of 0.65 and 0.71 μM, respectively. Ten of the eleven compounds weakly inhibited AChE and BChE with > 50% of residual activities at 10 μM, although PC4 inhibited AChE by 56.6% (IC50 = 8.77 μM). Compound PC3 effectively inhibited BACE-1 (IC50 = 6.72 μM), and PC10 and PC11 moderately inhibited BACE-1 (IC50 =14.9 and 15.3 μM, respectively). Reversibility and kinetic studies showed that PC10 and PC11 were reversible and competitive inhibitors of MAO-B with Ki values of 0.63 ± 0.13 and 0.53 ± 0.068 μM, respectively. ADME predictions for lead compounds revealed that PC10 and PC11 have central nervous system (CNS) drug-likeness. Molecular docking simulations showed that fluorine atom and trifluoromethyl group on PC10 and PC11, respectively, interacted with the substrate cavity of the MAO-B active site. Our results suggested that PC10 and PC11 can be considered potential candidates for the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jouf University, Sakaka, Al Jo, uf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona, 4, I-70125, Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
20
|
Rehuman NA, Mathew B, Jat RK, Nicolotti O, Kim H. A Comprehensive Review of Monoamine Oxidase-A Inhibitors in their Syntheses and Potencies. Comb Chem High Throughput Screen 2021; 23:898-914. [PMID: 32342809 DOI: 10.2174/1386207323666200428091306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidases (MAOs) play a crucial role during the development of various neurodegenerative disorders. There are two MAO isozymes, MAO-A and MAO-B. MAO-A is a flavoenzyme, which binds to the outer mitochondrial membrane and catalyzes the oxidative transformations of neurotransmitters like serotonin, norepinephrine, and dopamine. MATERIALS AND METHODS Focus on synthetic studies has culminated in the preparation of many MAOA inhibitors, and advancements in combinatorial and parallel synthesis have accelerated the developments of synthetic schemes. Here, we provided an overview of the synthetic protocols employed to prepare different classes of MAO-A inhibitors. We classified these inhibitors according to their molecular scaffolds and the synthetic methods used. RESULTS Various synthetic and natural derivatives from a different class of MAO-A inhibitors were reported. CONCLUSION The review provides a valuable tool for the development of a new class of various selective MAO-A inhibitors for the treatment of depression and other anxiety disorders.
Collapse
Affiliation(s)
- Nisha A Rehuman
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682, India
| | - Rakesh K Jat
- Department of Pharmaceutical Chemistry, JJTU University, Jhunjhunu, India
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Universita degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
21
|
Mathew B. Privileged Pharmacophore of FDA Approved Drugs in Combination with Chalcone Framework: A New Hope for Alzheimer's Treatment. Comb Chem High Throughput Screen 2021; 23:842-846. [PMID: 32723232 DOI: 10.2174/1386207323999200728122627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
Multi-functional design of ligands emerged as a new drug design paradigm of Alzheimer's disease (AD). Given the complexity of AD, the molecules showing dual inhibition of monoamine oxidase (MAO) and acetylcholinesterase (AChE) with neuroprotective properties could prevent the progressive neural degeneration effectively. Numerous studies documented that chalcone is a privileged structural framework for the inhibition of both MAO and AChE. The recent studies suggested that the development of chalcone candidates endowed with pharmacophores of FDA approved drugs may become an active molecules in the field of current AD research. The current perspective described the recent updates of chalcone moiety linked with the pharmacophores of flurbiprofen and rivastigmine hybrids as selective ChE/MAO-B inhibitors for the prophylactic agents for AD.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, India
| |
Collapse
|
22
|
Sharma P, Singh M, Mathew B. An Update of Synthetic Approaches and Structure‐Activity Relationships of Various Classes of Human MAO‐B Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Manjinder Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
23
|
Mathew B, Carradori S, Guglielmi P, Uddin MS, Kim H. New Aspects of Monoamine Oxidase B Inhibitors: The Key Role of Halogens to Open the Golden Door. Curr Med Chem 2021; 28:266-283. [PMID: 31965939 DOI: 10.2174/0929867327666200121165931] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
A large plethora of drugs and promising lead compounds contain halogens in their structures. The introduction of such moieties strongly modulates their physical-chemical features as well as pharmacokinetic and pharmacodynamic profile. The most important outcome was shown to be the ability of these halogens to favourably influence the drug-target interaction and energetic stability within the active site by the establishment of halogen bonds. This review attempted to demonstrate the key role exerted by these versatile moieties when correctly located in an organic scaffold to display Monoamine Oxidase (MAO) inhibition and selectivity towards the B isoform of this important enzyme. Human MAOs are well-recognized as therapeutic targets for mood disorders and neurodegenerative diseases and medicinal chemists were prompted to discover the structural requirements crucial to discriminate the slight differences between the active sits of the two isoforms (MAO-A and MAOB). The analysis of the structure-activity relationships of the most important scaffolds (hydrazothiazoles, coumarins, chromones, chalcones, pyrazolines) and the impact of halogen (F, Cl, Br and I) insertion on this biological activity and isozyme selectivity have been reported being a source of inspiration for the medicinal chemists.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti 66100, Italy
| | - Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
24
|
Singh N, Chandra R. Probing the binding interaction of ortho-vanillin derived chalcone with lysozyme: A biophysical studies aided by in silico calculations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Mathew GE, Oh JM, Mohan K, Kumudhavalli M, Jayanthi S, Kim H, Mathew B. Inhibitions of monoamine oxidases and acetylcholinesterase by 1-methyl, 5-phenyl substituted thiosemicarbazones: Synthesis, biochemical, and computational investigations. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Palakkathondi A, Oh JM, Dev S, Rangarajan TM, Kaipakasseri S, Kavully FS, Gambacorta N, Nicolotti O, Kim H, Mathew B. (Hetero-)(arylidene)arylhydrazides as Multitarget-Directed Monoamine Oxidase Inhibitors. ACS COMBINATORIAL SCIENCE 2020; 22:592-599. [PMID: 33047950 DOI: 10.1021/acscombsci.0c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fourteen (hetero-)(arylidene)arylhydrazide derivatives (ABH1-ABH14) were synthesized, and their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE) were evaluated. Compound ABH5 most potently inhibited MAO-B with an IC50 value of 0.025 ± 0.0019 μM; ABH2 and ABH3 exhibited high IC50 values as well. Most of the compounds weakly inhibited MAO-A, except ABH5 (IC50 = 3.31 ± 0.41 μM). Among the active compounds, ABH2 showed the highest selectivity index (SI) of 174 for MAO-B, followed by ABH5 (SI = 132). ABH3 and ABH5 effectively inhibited AChE with IC50 values of 15.7 ± 6.52 and 16.5 ± 7.29 μM, respectively, whereas the other compounds were weak inhibitors of AChE. ABH5 was shown to be a reversible competitive inhibitor for MAO-A and MAO-B with Ki values of 0.96 ± 0.19 and 0.024 ± 0.0077 μM, respectively, suggesting that this molecule can be considered as an interesting candidate for further development as a multitarget inhibitor relating to neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - T. M. Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna-679322, Kerala, India
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, India
| |
Collapse
|
27
|
Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GES, Dev S, Palakkathondi A, Kavully FS, Gambacorta N, Nicolotti O, Mathew B, Kim H. Selected 1,3-Benzodioxine-Containing Chalcones as Multipotent Oxidase and Acetylcholinesterase Inhibitors. ChemMedChem 2020; 15:2257-2263. [PMID: 32924264 DOI: 10.1002/cmdc.202000491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Chalcones are considered effective templates for the development of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors. The present work describes the syntheses of selected 1,3-benzodioxine-containing chalcones (CD3, CD8 and CD10), and their inhibitory activities against MAO-A, MAO-B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compound CD8 most potently inhibited MAO-B with an IC50 value of 0.026 μM, followed by CD10 and CD3 (1.54 and 1.68 μM, respectively). CD8 potently and non-selectively inhibited MAO-A (IC50 value of 0.023 μM). On the other hand, CD10 and CD8 inhibited AChE with IC50 values of 5.40 and 9.57 μM, respectively. Kinetics and reversibility experiments showed that all synthesized molecules were competitive and reversible inhibitors, and the Ki values of CD8 for MAO-A and MAO-B were 0.018 and 0.0019 μM, respectively. By in vitro and in silico analyses, all compounds were found to have high passive human gastrointestinal absorptions, blood-brain barrier permeabilities, and non-toxicities. Molecular docking simulations revealed that docking affinity of each compound for MAO-B was higher than that for MAO-A. The results indicate that CD8 is a potent non-selective MAO inhibitor, and CD10 is an effective selective MAO-B inhibitor, and both possess AChE inhibitory activity. Therefore, we suggest that CD8 and CD10 be considered potential dual-targeting inhibitors of MAO and AChE for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Geum Seok Jeong
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Sang Ryong Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al-Beheira, Egypt
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| |
Collapse
|
28
|
Reeta, Baek SC, Lee JP, Rangarajan TM, Ayushee, Singh RP, Singh M, Mangiatordi GF, Nicolotti O, Kim H, Mathew B. Ethyl Acetohydroxamate Incorporated Chalcones: Unveiling a Novel Class of Chalcones for Multitarget Monoamine Oxidase-B Inhibitors Against Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:643-654. [PMID: 31550216 DOI: 10.2174/1871527318666190906101326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chalcones are considered as the selective scaffold for the inhibition of MAO-B. OBJECTIVES A previously synthesized ethyl acetohydroxamate-chalcones (L1-L22) were studied for their inhibitory activities against human recombinant monoamine oxidase A and B (hMAO-A and hMAO-B, respectively) and acetylcholinesterase (AChE) as multi-target directed ligands for the treatment of Alzheimer's Disease (AD). METHODS Enzyme inhibition studies of MAO-A, MAO-B and AChE is carried out. Computational studies such as Molecular docking, Molecular Mechanics/Generalized Born Surface Area calculations, ADMET prediction, and protein target prediction are also performed. RESULTS Among the screened compounds, compound L3 has most potent hMAO-B inhibition with an IC50 value of 0.028 ± 0.0016 µM, and other compounds, L1, L2, L4, L8, L12, and L21 showed significant potent hMAO-B inhibition with IC50 values of 0.051 ± 0.0014, 0.086 ± 0.0035, 0.036 ± 0.0011, 0.096 ± 0.0061, 0.083 ± 0.0016, and 0.038 ± 0.0021 µM, respectively. On the other hand, among the tested compounds, compound L13 showed highest hMAO-A inhibition with an IC50 value of 0.51± 0.051 µM and L9 has a significant value of 1.85 ± 0.045 µM. However, the compounds L3 and L4 only showed high selectivities for hMAO-B with Selectivity Index (SI) values of 621.4 and 416.7, respectively. Among the substituents in ring A of ethyl acetohydroxamate-chalcones (L1-L9), F atom at p-position (L3) showed highest inhibitory effect against hMAO-B. This result supports the uniqness and bizarre behavior of fluorine. Moreover, chalcones L3, L4, L9, L11, and L12 showed potential AChE inhibitory effect with IC50 values of 0.67, 0.85, 0.39, 0.30, and 0.45 µM, respectively. Inhibitions of hMAO-B by L3 or L4 were recovered to the level of the reversible reference (lazabemide), and were competitive with Ki values of 0.0030 ± 0.0002 and 0.0046 ± 0.0005 µM, respectively. Inhibitions of AChE by L3 and L11 were of the competitive and mixed types with Ki values of 0.30 ± 0.044 and 0.14 ± 0.0054 µM, respectively. CONCLUSION The studies indicated that L3 and L4 are considered to be promising multitarget drug molecules with potent, selective, and reversible competitive inhibitors of hMAO-B and with highly potent AChE inhibitory effect.
Collapse
Affiliation(s)
- Reeta
- Centre for Fire, Explosive and Environment Saftey, DRDO, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Ayushee
- Department of Chemistry, University of Delhi, Delhi, India
| | - Rishi Pal Singh
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Manjula Singh
- Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia- Scienze del Farmaco, Universitá degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
29
|
Mathew B, Parambi DGT, Sivasankarapillai VS, Uddin MS, Suresh J, Mathew GE, Joy M, Marathakam A, Gupta SV. Perspective Design of Chalcones for the Management of CNS Disorders: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:432-445. [PMID: 31187716 DOI: 10.2174/1871527318666190610111246] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer's agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| | | | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Jerad Suresh
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600004, India
| | | | - Monu Joy
- School of Pure & Applied Physics, M.G. University, Kottayam 686560, India
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut 673602, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
30
|
Exploring the Therapeutic Potentials of Highly Selective Oxygenated Chalcone Based MAO-B Inhibitors in a Haloperidol-Induced Murine Model of Parkinson's Disease. Neurochem Res 2020; 45:2786-2799. [PMID: 32939670 DOI: 10.1007/s11064-020-03130-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of dopaminergic, noradrenergic, and serotonergic systems, in which dopamine, noradrenaline, and serotonin levels are depleted and lead to the development of motor and non-motor symptoms such as tremor, bradykinesia, weight changes, fatigue, depression, and visual hallucinations. Therapeutic strategies place much focus on dopamine replacement and the inhibition of dopamine metabolism. The present study was based on the known abilities of chalcones to act as molecular scaffolds that selectively inhibit MAO-B with the added advantage of binding reversibly. Recently, we synthesized a series of 26 chalcone compounds, amongst which (2E)-1-(2H-1,3-benzodioxol-5-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O10) and (2E)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)-3-(4-fluorophenyl)prop-2-en-1-one (O23) most inhibited MAO-B. Hence, the present study was performed to explore the molecular mechanisms responsible for the neuroprotective effect of O10 and O23 at varying doses such as 10, 20, and 30 mg/kg each in a haloperidol-induced murine model of PD. Both compounds were effective (though O23 was the more effective) at ameliorating extrapyramidal and non-motor symptoms in the model and improved locomotory and exploratory behaviors, reduced oxidative stress markers, and enhanced antioxidant marker and neurotransmitter levels. Furthermore, histopathological studies showed O10 and O23 both reduced neurofibrillary tangles and plaques to almost normal control levels.
Collapse
|
31
|
Synthesis, characterization, in vitro tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP) inhibition studies and computational evaluation of novel thiazole derivatives. Bioorg Chem 2020; 102:104088. [DOI: 10.1016/j.bioorg.2020.104088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
|
32
|
Aziz H, Mahmood A, Zaib S, Saeed A, El-Seedi HR, Pelletier J, Sévigny J, Iqbal J. Synthesis, characterization, alkaline phosphatase inhibition assay and molecular modeling studies of 1-benzylidene-2-(4-tert- butylthiazol-2-yl) hydrazines. J Biomol Struct Dyn 2020; 39:6140-6153. [DOI: 10.1080/07391102.2020.1802336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hamid Aziz
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina, Saudi Arabia
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
33
|
Olotu FA, Joy M, Abdelgawad MA, Narayanan SE, Soliman ME, Mathew B. Revealing the role of fluorine pharmacophore in chalcone scaffold for shifting the MAO-B selectivity: investigation of a detailed molecular dynamics and quantum chemical study. J Biomol Struct Dyn 2020; 39:6126-6139. [PMID: 32705963 DOI: 10.1080/07391102.2020.1796803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly selective monoamine oxidase-B (MAO-B) inhibitors has great therapeutic benefit in treatment of various neurodegenerative disorders. Recent study documented that shifting of fluorine atom from para to ortho position on the phenyl B ring of heteroaryl chalcones shown a remarkable shift in the selectivity and potency between MAO-A and MAO-B isoforms. Despite the large plethora of the design of new selective MAO-B inhibitors, the current paper illustrates the role and orientation of fluorine atom with remarkable MAO-B selectivity of three compounds (O23, O24 and O25), which differ from all other substituents encountered in the chalcone scaffolds is recently reported by our group. Conformational analyses of differential inhibitory effects of O23, O24 and O25 on MAO-A and MAO-B, differential analyses of complementary interactions at MAO-A/-B active sites and differential analysis of affinity binding and per-residue energy contributions are calculated by molecular dynamics study. Density functional theory based electronic structure calculations were employed with special emphasis to electrostatic potential and frontier molecular orbitals. Results of the current study can be used for lead modification and a new insight for the development of novel fluorinated chalcones for the treatment of various neurodegenerative disorders. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monu Joy
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Mohamed A Abdelgawad
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef university, Beni Suef, Egypt
| | - Siju E Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Government Medical College, Kannur, India
| | - Mahmoud E Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala, India
| |
Collapse
|
34
|
Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur J Med Chem 2020; 205:112650. [PMID: 32920430 DOI: 10.1016/j.ejmech.2020.112650] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
In the last years the continuous efforts in the development of novel and effective inhibitors of human monoamine oxidases (hMAOs) promoted the discovery of new agents able to effectively and selectively bound one of the two isoforms (hMAO-A and hMAO-B). However, the parent chalcone scaffold still covers an important role in hMAOs inhibition. In the present work, we focused our attention on the researches performed in the last five years, involving chalcones or compounds that can be correlated to them. We classified the chalcones into different groups depending on their structural characteristics or common molecular properties. In this regard, we also considered chalcones based on heterocycles and compounds endowed with scaffolds containing a masked chalcone motif. When structural attributes could not be used, we took advantage of enzymatic activity to arrange compounds in a group. We followed this approach for the multitarget agents. Finally, we also analysed the naturally occurring chalcones. All the sections were discussed exhaustively and the structure-activity relationship (SAR) analyses were sustained by means of detailed images describing the effects related to the substituents or structural changes.
Collapse
|
35
|
Maliyakkal N, Eom BH, Heo JH, Abdullah Almoyad MA, Thomas Parambi DG, Gambacorta N, Nicolotti O, Beeran AA, Kim H, Mathew B. A New Potent and Selective Monoamine Oxidase-B Inhibitor with Extended Conjugation in a Chalcone Framework: 1-[4-(Morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem 2020; 15:1629-1633. [PMID: 32583952 DOI: 10.1002/cmdc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The general blueprint for the design of monoamine oxidase-B (MAO-B) inhibitors has been based on two phenyl or heteronuclei linked via a spacer of appropriate length. In this study, 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one (MO10) was prepared by the condensation of 4'-morpholinoacetophenone and cinnamaldehyde in basic alcoholic medium. MO10 was assessed for inhibitory activity against two human MAO isoforms, MAO-A and MAO-B. Interestingly, MO10 showed a remarkable inhibition against MAO-B with an IC50 value of 0.044 μM along with a selectivity index of 366.13. The IC50 value was better than that of lazabemide (IC50 value of 0.063 μM), which was used as a reference. Kinetics studies revealed that MO10 acted as a competitive inhibitor of MAO-B, with a Ki value of 0.0080 μM. The observation of recovery of MAO-B inhibition, compared to reference levels showed MO10 to be a reversible inhibitor. MTT assays showed that MO10 was nontoxic to normal VERO cells with an IC50 value of 195.44 μg/mL. SwissADME predicted that MO10 provided advantageous pharmacokinetics profiles for developing agents acting on the central nervous system, that is, high passive human gastrointestinal absorption and blood-brain barrier permeability. Molecular docking simulations showed that MO10 properly entered the aromatic cage formed by Y435, Y398, and FAD of the active site of MAO-B. On the basis of these results, MO10 can be considered a promising starting compound in development of agents for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Bo Hyun Eom
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Jeong Hyun Heo
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
36
|
Synthesis, biological evaluation, and docking studies of new pyrazole-based thiourea and sulfonamide derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Bioorg Chem 2020; 99:103783. [DOI: 10.1016/j.bioorg.2020.103783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
|
37
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
38
|
Kavully FS, Oh JM, Dev S, Kaipakasseri S, Palakkathondi A, Vengamthodi A, Abdul Azeez RF, Tondo AR, Nicolotti O, Kim H, Bijo Mathew. Design of enamides as new selective monoamine oxidase-B inhibitors. J Pharm Pharmacol 2020; 72:916-926. [PMID: 32246471 DOI: 10.1111/jphp.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/08/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop of new class of selective and reversible MAO-B inhibitors from enamides. METHODS Syntheses of the titled derivatives (AD1-AD11) were achieved by reacting cinnamoyl chloride and various primary and secondary amines in basic medium. All eleven compounds were investigated for in vitro inhibitory activities against recombinant human MAO-A and MAO-B. The reversibilities of lead compound inhibitions were analysed by dialysis. MTT assays of lead compounds were performed using normal VERO cell lines. KEY FINDINGS Compounds AD3 and AD9 exhibited the greatest inhibitory activity against MAO-B with IC50 values of 0.11 and 0.10 µm, respectively, and were followed by AD2 and AD1 (0.51 and 0.71 µm, respectively). Most of the compounds weakly inhibited MAO-A, with the exceptions AD9 and AD7, which had IC50 values of 4.21 and 5.95 µm, respectively. AD3 had the highest selectivity index (SI) value for MAO-B (>363.6) and was followed by AD9 (SI 42.1). AD3 and AD9 were found to be competitive inhibitors of MAO-B with Ki values of 0.044 ± 0.0036 and 0.039 ± 0.0047 µm, respectively. Reversibility experiments showed AD3 and AD9 were reversible inhibitors of MAO-B; dialysis restored the activity of MAO-B to the reference level. MTT assays revealed AD3 and AD9 were non-toxic to normal VERO cell lines with IC50 values of 153.96 and 194.04 µg/ml, respectively. Computational studies provided hypothetical binding modes for AD3 and AD9 in the binding cavities of MAO-A and MAO-B. CONCLUSIONS These results encourage further studies on the enamide scaffold as potential drug candidates for the treatment of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ajeesh Vengamthodi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | | | - Anna Rita Tondo
- Instituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| |
Collapse
|
39
|
Parambi DGT, Oh JM, Baek SC, Lee JP, Tondo AR, Nicolotti O, Kim H, Mathew B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg Chem 2019; 93:103335. [PMID: 31606547 DOI: 10.1016/j.bioorg.2019.103335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
The present study documents the synthesis of oxygenated chalcone (O1-O26) derivatives and their abilities to inhibit monoamine oxidases. All 26 derivatives examined showed potent inhibitory activity against MAO-B. Compound O23 showed the greatest inhibitory activity against MAO-B with an IC50 value of 0.0021 µM, followed by compounds O10 and O17 (IC50 = 0.0030 and 0.0034 µM, respectively). In addition, most of the derivatives potently inhibited MAO-A and O6 was the most potent inhibitor with an IC50 value of 0.029 µM, followed by O3, O4, O9, and O2 (IC50 = 0.035, 0.053, 0.072, and 0.082 µM, respectively). O23 had a high selectivity index (SI) value for MAO-B of 138.1, and O20 (IC50 value for MAO-B = 0.010 µM) had an extremely high SI of >4000. In dialysis experiments, inhibitions of MAO-A and MAO-B by O6 and O23, respectively, were recovered to their respective reversible reference levels, demonstrating both are reversible inhibitors. Kinetic studies revealed that O6 and O23 competitively inhibited MAO-A and MAO-B, respectively, with respective Ki values of 0.016 ± 0.0007 and 0.00050 ± 0.00003 µM. Lead compound are also non-toxic at 200 µg/mL in normal rat spleen cells. Molecular docking simulations and subsequent Molecular Mechanics/Generalized Born Surface Area calculations provided a rationale that explained experimental data.
Collapse
Affiliation(s)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Anna Rita Tondo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156 Milano, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India.
| |
Collapse
|
40
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
41
|
Design, Synthesis and Docking Calculations of Prenylated Chalcones as Selective Monoamine Oxidase B Inhibitors with Antioxidant Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201901282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
43
|
Oh JM, Kang MG, Hong A, Park JE, Kim SH, Lee JP, Baek SC, Park D, Nam SJ, Cho ML, Kim H. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int J Biol Macromol 2019; 137:426-432. [PMID: 31271801 DOI: 10.1016/j.ijbiomac.2019.06.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
Six synthetic (1-6) and six natural (7-12) chalcones were tested for human monoamine oxidases (hMAOs) and acetylcholinesterase (AChE) inhibitory activities. Compounds 4-dimethylaminochalcone (2), 4'-chloro-4-dimethylaminochalcone (5), and 2,4'-dichloro-4-dimethylaminochalcone (1) potently inhibited hMAO-B with IC50 values of 0.029, 0.061, and 0.075 μM, respectively. 4-Nitrochalcone (4) and 4-chlorochalcone (3) also potently inhibited hMAO-B with IC50 values of 0.066 and 0.082 μM, respectively (2.3- and 2.6-fold less than compound 2). Compound 2 had a high selectivity index (113.1) for hMAO-B over hMAO-A (IC50 = 3.28 μM). Compounds 1 and 2,2'-dihydroxy-4',6'-dimethoxychalcone (12) potently inhibited hMAO-A with IC50 values of 0.18 and 0.39 μM, respectively. In addition, compounds 4 and 2 also effectively inhibited AChE with IC50 values of 1.25 and 6.07 μM, respectively, and thus, exhibited dual-targeting. Compound 2 reversibly and competitively inhibited hMAO-B with a Ki value of 0.0066 μM. Docking simulations showed binding affinities of compounds 1 to 5 for hMAO-B were higher than those for hMAO-A or AChE and suggested these five chalcones form hydrogen bonds with MAO-B at Cys172 but that they do not form hydrogen bonds with hMAO-A or AChE. These findings suggest compound 2 be considered a promising and dual-targeting lead compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji-Eun Park
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Soo Hyun Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sang-Jip Nam
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
44
|
Lakshminarayanan B, Baek SC, Lee JP, Kannappan N, Mangiatordi GF, Nicolotti O, Subburaju T, Kim H, Mathew B. Ethoxylated Head of Chalcones as a New Class of Multi‐Targeted MAO Inhibitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Balasubramanian Lakshminarayanan
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | - Seung Cheol Baek
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Jae Pil Lee
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Nagappan Kannappan
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del FarmacoUniversita degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4 I-70125 Bari Italy
| | - Thillainayagam Subburaju
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| | - Hoon Kim
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| |
Collapse
|
45
|
Chaves OA, Sasidharan R, dos Santos de Oliveira CHC, Manju SL, Joy M, Mathew B, Netto-Ferreira JC. In Vitro
Study of the Interaction Between HSA and 4-Bromoindolylchalcone, a Potent Human MAO-B Inhibitor: Spectroscopic and Molecular Modeling Studies. ChemistrySelect 2019. [DOI: 10.1002/slct.201802665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Otávio Augusto Chaves
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | - Rani Sasidharan
- College of Pharmaceutical Science; Government T.D. Medical College, Alappuzha; Kerala India
- Department of Chemistry, SAS; VIT University, Vellore; 632014 Tamil Nadu India
| | - Cosme H. C. dos Santos de Oliveira
- Institute of Chemistry; Department of Organic Chemistry; Universidade Federal Rural do Rio de Janeiro; BR-465 Km 7 23970-000 Seropédica-RJ Brazil
| | | | - Monu Joy
- School of Pure & Applied Physics; M.G. University; 686560 Kottayam India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab; Department of Pharmaceutical Chemistry; Ahalia School of Pharmacy, Palakkad; 678557 Kerala India
| | - José Carlos Netto-Ferreira
- SENAI Innovation Institute for Green Chemistry.; Rua Morais e Silva N° 53, Maracanã 20271030 Rio de Janeiro-RJ Brazil
- Divisão de Metrologia Química; Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO); 25250-020 Duque de Caxias-RJ Brazil
| |
Collapse
|
46
|
Mathew B, Baek SC, Thomas Parambi DG, Lee JP, Mathew GE, Jayanthi S, Vinod D, Rapheal C, Devikrishna V, Kondarath SS, Uddin MS, Kim H. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352:e1800309. [PMID: 30663112 DOI: 10.1002/ardp.201800309] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 11/07/2022]
Abstract
Two series of fluorinated chalcones containing morpholine and imidazole-based compounds (f1-f8) were synthesized and evaluated for recombinant human monoamine oxidase (MAO)-A and -B as well as acetylcholinesterase inhibitory activities. Our results indicate that morpholine containing chalcones are highly selective MAO-B inhibitors having reversibility properties. All the imidazole-based fluorinated chalcones showed weak MAO inhibitions in both isoforms. Among the tested compounds, (2E)-3-(3-fluorophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (f2) showed potent inhibitory activity for recombinant human MAO-B (IC50 = 0.087 μM) with a high selectivity index (SI) of 517.2. In the recovery experiments using dialysis, the residual activity of MAO-B inhibited by f2 was close to that with the reversible reference inhibitor. Inhibition assays revealed that the Ki values of f1 and f2 for MAO-B were 0.027 and 0.020 μM, respectively, with competitive patterns. All the morpholine-based compounds (f1-f4) showed moderate inhibition toward acetylcholinesterase with IC50 values ranging between 24 and 54 μM. All morpholine-containing compounds exhibit good blood-brain barrier permeation in the PAMPA method. The rational approach regarding the highly selective MAO-B inhibitor f2 was further ascertained by induced fit docking and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Seung C Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Jae P Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Devaraji Vinod
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Clariya Rapheal
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Vinod Devikrishna
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Shahin Shad Kondarath
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
47
|
Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med Res Rev 2019; 39:1603-1706. [PMID: 30604512 DOI: 10.1002/med.21561] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidase (MAO) inhibitors have made significant contributions and remain an indispensable approach of molecular and mechanistic diversity for the discovery of antineurodegenerative drugs. However, their usage has been hampered by nonselective and/or irreversible action which resulted in drawbacks like liver toxicity, cheese effect, and so forth. Hence, the search for selective MAO inhibitors (MAOIs) has become a substantial focus in current drug discovery. This review summarizes our current understanding on MAO-A/MAO-B including their structure, catalytic mechanism, and biological functions with emphases on the role of MAO-B as a potential therapeutic target for the development of medications treating neurodegenerative disorders. It also highlights the recent developments in the discovery of potential MAO-B inhibitors (MAO-BIs) belonging to diverse chemical scaffolds, arising from intensive chemical-mechanistic and computational studies documented during past 3 years (2015-2018), with emphases on their potency and selectivity. Importantly, readers will gain knowledge of various newly established MAO-BI scaffolds and their development potentials. The comprehensive information provided herein will hopefully accelerate ideas for designing novel selective MAO-BIs with superior activity profiles and critical discussions will inflict more caution in the decision-making process in the MAOIs discovery.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
Mathew B. Unraveling the Structural Requirements of Chalcone Chemistry Towards Monoamine Oxidase Inhibition. Cent Nerv Syst Agents Med Chem 2019; 19:6-7. [PMID: 30706795 DOI: 10.2174/1871524919666190131160122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
49
|
Hong R, Li X. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. MEDCHEMCOMM 2019; 10:10-25. [PMID: 30774851 PMCID: PMC6350766 DOI: 10.1039/c8md00446c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
Abstract
Neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and depression, have seriously inconvenienced the lives of patients. Growing evidence indicates that these diseases are closely related to the monoamine oxidase (MAO) enzyme, making it an attractive target for the exploitation of potent MAO inhibitors (MAOIs) with high selectivity and low side effects. Although various MAOIs have been discovered, the discovery of an ideal MAOI is not an easy task. In this review, we discuss the currently available rational design strategies for obtaining ideal MAOIs, including ligand-based and receptor-based design strategies, and these strategies were further illustrated with the aid of specific examples from the recent literature. To better understanding the biological activity of MAO, we also highlight the binding modes of typical inhibitors against MAO. Besides, advanced strategies for finding upcoming potent MAOIs were prospected.
Collapse
Affiliation(s)
- Renyuan Hong
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 , Jinan , Shandong , P. R. China . ; ; Tel: 86 531 88382005
| | - Xun Li
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 , Jinan , Shandong , P. R. China . ; ; Tel: 86 531 88382005
| |
Collapse
|
50
|
Goksen US, Sarigul S, Bultinck P, Herrebout W, Dogan I, Yelekci K, Ucar G, Gokhan Kelekci N. Absolute configuration and biological profile of pyrazoline enantiomers as MAO inhibitory activity. Chirality 2018; 31:21-33. [PMID: 30468523 DOI: 10.1002/chir.23027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023]
Abstract
A new racemic pyrazoline derivative was synthesized and resolved to its enantiomers using analytic and semipreparative high-pressure liquid chromatography. The absolute configuration of both fractions was established using vibrational circular dichroism. The in vitro monoamine oxidase (MAO) inhibitory profiles were evaluated for the racemate and both enantiomers separately for the two isoforms of the enzyme. The racemic compound and both enantiomers were found to inhibit hMAO-A selectively and competitively. In particular, the R enantiomer was detected as an exceptionally potent and a selective MAO-A inhibitor (Ki = 0.85 × 10-3 ± 0.05 × 10-3 μM and SI: 2.35 × 10-5 ), whereas S was determined as poorer compound than R in terms of Ki and SI (0.184 ± 0.007 and 0.001). The selectivity of the enantiomers was explained by molecular modeling docking studies based on the PDB enzymatic models of MAO isoforms.
Collapse
Affiliation(s)
- Umut Salgin Goksen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Analyses and Control Laboratories, Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Sevgi Sarigul
- Chemistry Department, Boğaziçi University, Istanbul, Turkey
| | | | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Ilknur Dogan
- Chemistry Department, Boğaziçi University, Istanbul, Turkey
| | - Kemal Yelekci
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Gulberk Ucar
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nesrin Gokhan Kelekci
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|