1
|
Papazlatani C, Wagner A, Chen Z, Zweers H, de Boer W, Garbeva P. Enhancement of production of pathogen-suppressing volatiles using amino acids. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100385. [PMID: 40276016 PMCID: PMC12018582 DOI: 10.1016/j.crmicr.2025.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Bacterial volatile organic compounds can play a significant role in antagonistic interactions. Enhancing the production of bacterial volatiles that suppress the growth of soil-borne phytopathogenic fungi, has perspective as a sustainable disease control strategy. In the present study, we explored the potential of stimulating Burkholderia AD24 and Paenibacillus AD87 to produce volatiles that suppress the growth of the plant pathogenic fungi Fusarium culmorum PV and Rhizoctonia solani AG2.2IIIb. We provided the bacterial strains with a mixture of amino acids that can serve as precursor molecules in metabolic routes leading to emission of suppressive bacterial volatiles. Only Burkholderia AD24 was stimulated to produce a volatile blend that led to higher suppression of both pathogens. Subsequent analysis of the volatile composition emitted by Burkholderia AD24 in the presence of amino acids, showed higher abundance of antifungal compounds, including sulfur compounds (DMDS), pyrazines (2,5-dimethyl pyrazine) and carbohydrates (3-methyl-1-butanol). Follow-up trials with single amino acids revealed a pathogen specific response effect. When Burkholderia AD24 was cultivated in the presence of glutamine and asparagine, the emitted volatile blend suppressed the growth of F. culmorum, whereas when cultivated in the presence of glycine, glutamine, arginine and lysine the volatile blend suppressed the growth of R. solani. Analysis of the volatile blend composition showed differences between the amino acid treatments. Our findings show that amino acid precursor molecules can stimulate the production of fungistatic volatiles but the sensitivity of the fungal pathogens to these bacterial volatiles varies. This should be considered in future application strategies.
Collapse
Affiliation(s)
- Christina Papazlatani
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
| | - Annabell Wagner
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
| | - Zhijun Chen
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
- China Agriculture University, PR China
| | - Hans Zweers
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
| | - Wietse de Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
- Soil Biology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Paolina Garbeva
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, Netherlands
| |
Collapse
|
2
|
He L, Li C, Chen Z, Huo Y, Zhou B, Xie F. Combined metabolome and transcriptome analysis reveal the mechanism of water stress in Ophiocordyceps sinensis. BMC Genomics 2024; 25:1014. [PMID: 39472792 PMCID: PMC11523607 DOI: 10.1186/s12864-024-10785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ophiocordyceps sinensis (O. sinensis) is the dominant bacterium in the asexual stage of Chinese cordyceps, and its growth usually suffers from water stress. Thus, simulating its ecological growth environment is crucial for artificial cultivation. This study aimed to reveal the mechanism underlying the water stress tolerance of Ophiocordyceps sinensis (O. sinensis) by combining metabolomic and transcriptome analyses to identify crucial pathways related to differentially expressed genes (DEGs) and metabolites (DEMs) involved in the response to water stress. RESULTS Gene coexpression analysis revealed that many genes related to 'betalain biosynthesis', 'tyrosine metabolism', 'linoleic acid metabolism', 'fructose and mannose metabolism', and 'starch and sucrose metabolism' were highly upregulated after 20d-water stress. Metabolomic analysis revealed that many metabolites regulated by these genes in these metabolic pathways were markedly decreased. On the one hand, we surmised that carbohydrate metabolism and the β-oxidation pathway worked cooperatively to generate enough acyl-CoA and then entered the TCA cycle to provide energy when exposed to water stress. On the other hand, the betalain biosynthesis and tyrosine metabolism pathway might play crucial roles in response to water stress in O. sinensis by enhancing cell osmotic potential and producing osmoregulatory substances (betaine) and antioxidant pigments (eumelanin). CONCLUSIONS Overall, our findings provide important information for further exploration of the mechanism underlying the water stress tolerance of O. sinensis for the industrialization of artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ChuanYong Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ZhaoHe Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - YanLi Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
3
|
Hua L, Shi H, Lin Q, Wang H, Gao Y, Zeng J, Lou K, Huo X. Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in Inonotus obliquus. Microorganisms 2024; 12:1335. [PMID: 39065103 PMCID: PMC11278842 DOI: 10.3390/microorganisms12071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Inonotus obliquus, a medicinal fungus, has garnered significant attention in scientific research and medical applications. In this study, protoplasts of the I. obliquus HS819 strain were prepared using an enzymatic method and achieved a regeneration rate of 5.83%. To enhance polysaccharide production of I. obliquus HS819, atmospheric and room temperature plasma (ARTP) technology was employed for mutagenesis of the protoplasts. Through liquid fermentation, 32 mutant strains exhibiting diverse characteristics in morphology, color of the fermentation broth, mycelial pellet size, and biomass were screened. Secondary screening identified mutant strain A27, which showed a significant increase in polysaccharide production up to 1.67 g/L and a mycelial dry weight of 17.6 g/L, representing 137.67% and 15% increases compared to the HS819 strain, respectively. Furthermore, the fermentation period was reduced by 2 days, and subsequent subculture cultivation demonstrated stable polysaccharide production and mycelial dry weight. The genome resequencing analysis of the HS819 strain and mutant strain A27 revealed 3790 InDel sites and mutations affecting 612 functional genes associated with polysaccharide synthesis. We predict that our findings will be helpful for high polysaccharide production through genetic engineering of I. obliquus.
Collapse
Affiliation(s)
- Lanlan Hua
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Hongling Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Qing Lin
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Haozhong Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Gao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Xiangdong Huo
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| |
Collapse
|
4
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
5
|
Peng W, Guo X, Xu X, Zou D, Zou H, Yang X. Advances in Polysaccharide Production Based on the Co-Culture of Microbes. Polymers (Basel) 2023; 15:2847. [PMID: 37447493 DOI: 10.3390/polym15132847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Microbial polysaccharides are natural carbohydrates that can confer adhesion capacity to cells and protect them from harsh environments. Due to their various physiological activities, these macromolecules are widely used in food, medicine, environmental, cosmetic, and textile applications. Microbial co-culture is an important strategy that is used to increase the production of microbial polysaccharides or produce new polysaccharides (structural alterations). This is achieved by exploiting the symbiotic/antagonistic/chemo-sensitive interactions between microbes and stimulating the expression of relevant silent genes. In this article, we review the performance of polysaccharides produced using microbial co-culture in terms of yield, antioxidant activity, and antibacterial, antitumor, and anti-inflammatory properties, in addition to the advantages and application prospects of co-culture. Moreover, the potential for microbial polysaccharides to be used in various applications is discussed.
Collapse
Affiliation(s)
- Wanrong Peng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xueying Guo
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Dan Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hang Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
He L, Xie F, Zhou G, Chen ZH, Wang JY, Wang CG. Transcriptome and metabonomics combined analysis revealed the energy supply mechanism involved in fruiting body initiation in Chinese cordyceps. Sci Rep 2023; 13:9500. [PMID: 37308669 DOI: 10.1038/s41598-023-36261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Chinese cordyceps was one of most valuable traditional Chinese medicine fungi. To elucidate the molecular mechanisms related to energy supply mechanism involved in the initiation and formation of primordium in Chinese cordyceps, we performed the integrated metabolomic and transcriptomic analyses of it at pre-primordium period, primordium germination period and after-primordium period, respectively. Transcriptome analysis showed that many genes related to 'starch and sucrose metabolism', 'fructose and mannose metabolism', 'linoleic acid metabolism', 'fatty acids degradation' and 'glycerophospholipid metabolism' were highly up-regulated at primordium germination period. Metabolomic analysis showed many metabolites regulated by these genes in these metabolism pathways were also markedly accumulated at this period. Consequently, we inferred that carbohydrate metabolism and β-oxidation pathway of palmitic acid and linoleic acid worked cooperatively to generate enough acyl-CoA, and then entered TCA cycle to provide energy for fruiting body initiation. Overall, our finding provided important information for further exploring the energy metabolic mechanisms of realizing the industrialization of Chinese cordyceps artificial cultivation.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Gang Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
7
|
Effects of Oleic Acid Addition Methods on the Metabolic Flux Distribution of Ganoderic Acids R, S and T's Biosynthesis. J Fungi (Basel) 2022; 8:jof8060615. [PMID: 35736097 PMCID: PMC9225475 DOI: 10.3390/jof8060615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of oleic acid addition methods on the metabolic flux distribution of ganoderic acids R, S and T's biosynthesis from Ganoderma lucidum were investigated. The results showed that adding filter-sterilized oleic acid in the process of submerged fermentation and static culture is of benefit to the synthesis of ganoderic acids R, S and T. The metabolic fluxes were increased by 97.48%, 78.42% and 43.39%, respectively. The content of ganoderic acids R, S and T were 3.11 times, 5.19 times and 1.44 times higher, respectively, than they were in the control group, which was without additional oleic acid. Ganoderic acids R, S and T's synthesis pathways (GAP), tricarboxylic acid cycles (TCA), pentose phosphate pathways (PP) and glycolysis pathways (EMP) were all enhanced in the process. Therefore, additional oleic acid can strengthen the overall metabolic flux distribution of G. lucidum in a submerged fermentation-static culture and it can reduce the accumulation of the by-product mycosterol. This study has laid an important foundation for improving the production of triterpenes in the submerged fermentation of G. lucidum.
Collapse
|
8
|
Miao M, Yu WQ, Li Y, Sun YL, Guo SD. Structural Elucidation and Activities of Cordyceps militaris-Derived Polysaccharides: A Review. Front Nutr 2022; 9:898674. [PMID: 35711557 PMCID: PMC9193282 DOI: 10.3389/fnut.2022.898674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris is a parasitic edible fungus and has been used as tonics for centuries. Polysaccharides are a major water-soluble component of C. militaris. Recently, C. militaris-derived polysaccharides have been given much attention due to their various actions including antioxidant, anti-inflammatory, anti-tumor, anti-hyperlipidemic, anti-diabetic, anti-atherosclerotic, and immunomodulatory effects. These bioactivities are determined by the various structural characteristics of polysaccharides including monosaccharide composition, molecular weight, and glycosidic linkage. The widespread use of advanced analytical analysis tools has greatly improved the elucidation of the structural characteristics of C. militaris-derived polysaccharides. However, the methods for polysaccharide structural characterization and the latest findings related to C. militaris-derived polysaccharides, especially the potential structure-activity relationship, have not been well-summarized in recent reviews of the literature. This review will discuss the methods used in the elucidation of the structure of polysaccharides and structural characteristics as well as the signaling pathways modulated by C. militaris-derived polysaccharides. This article provides information useful for the development of C. militaris-derived polysaccharides as well as for investigating other medicinal polysaccharides.
Collapse
|
9
|
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S, Ruan H. New Insights Into the Biosynthesis of Typical Bioactive Components in the Traditional Chinese Medicinal Fungus Cordyceps militaris. Front Bioeng Biotechnol 2022; 9:801721. [PMID: 34976991 PMCID: PMC8719641 DOI: 10.3389/fbioe.2021.801721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Cordyceps militaris, a traditional medicinal ingredient with a long history of application in China, is regarded as a high-value fungus due to its production of various bioactive ingredients with a wide range of pharmacological effects in clinical treatment. Several typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective, antiviral and immunomodulatory activities. Here, we systematically sorted out the latest research progress on the chemical characteristics, biosynthetic gene clusters and pathways of these four typical bioactive ingredients. This summary will lay a foundation for obtaining low-cost and high-quality bioactive ingredients in large amounts using microbial cell factories in the future.
Collapse
Affiliation(s)
- Xiuyun Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Ailin Huang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuanyuan Shen
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuanyu Zhang
- New College, University of Toronto, Toronto, ON, Canada
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
10
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
11
|
Piacenza E, Presentato A, Di Salvo F, Alduina R, Ferrara V, Minore V, Giannusa A, Sancataldo G, Chillura Martino DF. A combined physical-chemical and microbiological approach to unveil the fabrication, provenance, and state of conservation of the Kinkarakawa-gami art. Sci Rep 2020; 10:16072. [PMID: 33009430 PMCID: PMC7532529 DOI: 10.1038/s41598-020-73226-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Kinkarakawa-gami wallpapers are unique works of art produced in Japan between 1870 and 1905 and exported in European countries, although only few examples are nowadays present in Europe. So far, neither the wallpapers nor the composing materials have been characterised, limiting the effective conservation-restoration of these artefacts accounting also for the potential deteriogen effects of microorganisms populating them. In the present study, four Kinkarakawa-gami wallpapers were analysed combining physical-chemical and microbiological approaches to obtain information regarding the artefacts' manufacture, composition, dating, and their microbial community. The validity of these methodologies was verified through a fine in blind statistical analysis, which allowed to identify trends and similarities within these important artefacts. The evidence gathered indicated that these wallpapers were generated between 1885 and 1889, during the so-called industrial production period. A wide range of organic (proteinaceous binders, natural waxes, pigments, and vegetable lacquers) and inorganic (tin foil and pigments) substances were used for the artefacts' manufacture, contributing to their overall complexity, which also reflects on the identification of a heterogeneous microbiota, often found in Eastern environmental matrices. Nevertheless, whether microorganisms inhabiting these wallpapers determined a detrimental or protective effect is not fully elucidated yet, thus constituting an aspect worth to be explored to deepen the knowledge needed for the conservation of Kinkarakawa-gami over time.
Collapse
Affiliation(s)
- Elena Piacenza
- National Interuniversity Consortium of Materials Science and Technology (INSTM), UdR of Palermo, 50121, Florence, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| | - Francesca Di Salvo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Vittorio Ferrara
- National Interuniversity Consortium of Materials Science and Technology (INSTM), UdR of Palermo, 50121, Florence, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Valeria Minore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Antonio Giannusa
- Vincenzo Ragusa and O'Tama Kiyohara Museum, Liceo Artistico Statale Vincenzo Ragusa e O'Tama Kiyohara, 90129, Palermo, Italy
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry (DIFC) Emilio Segrè, University of Palermo, 90128, Palermo, Italy
| | - Delia Francesca Chillura Martino
- National Interuniversity Consortium of Materials Science and Technology (INSTM), UdR of Palermo, 50121, Florence, Italy.
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
12
|
Abstract
Cordyceps is a parasitic edible fungus with a variety of metabolically active ingredients. The main active ingredient, extracellular polysaccharide (EPS), shows favourable application prospects in prevention and treatment of certain diseases. EPS extracted from different parts of various Cordyceps species can be used in health foods or medicinal preparations because of the structural diversity and multiple bioactivities. In terms of the complexity of composition and structure, researchers have speculated on the anabolic pathways of EPSs and the genes involved in the synthesis process. Studies to increase the yield of polysaccharides are limited because the synthesis pathways and anabolic regulation mechanisms of Cordyceps exopolysaccharide remain unknown. This review summarises the current researches in the yield of Cordyceps polysaccharides. A mechanism for the biosynthesis of Cordyceps polysaccharides was proposed by referring to the polysaccharide synthesis in other species. Furthermore, we also discuss the future perspective and ongoing challenges of EPS in uses of health foods and pharmaceutics.
Collapse
Affiliation(s)
- Shengli Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xi Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
13
|
Enhancement of protoplast preparation and regeneration of Hirsutella sinensis based on process optimization. Biotechnol Lett 2020; 42:2357-2366. [PMID: 32638189 DOI: 10.1007/s10529-020-02958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the optimal methods for the protoplast preparation and regeneration of Hirsutella sinensis by optimizing the limiting factors. RESULTS During the treatment of enzymatic protoplast preparation, mycelium cultured for 7 days was the optimal start material. The maximum protoplast preparation rate of 4.3 × 107 protoplasts/g fresh weight (FW) was obtained after 0.5 h treatment of 1 mg/ml mixed lytic enzymes in KH2PO4-K2HPO4 buffer (pH 5.5) with 0.6 M KCl at 18 °C. As for the protoplast regeneration, the maximum protoplast regeneration rate reached 12.32% through 5 × 103 protoplasts mL-1 cultivated for 20 days in the regeneration medium with 0.6 M mannitol and 1.5% agar. CONCLUSIONS The preparation and regeneration of H. sinensis protoplasts was firstly established based on process optimization and it provided a foundation for the study of H. sinensis mutagenesis.
Collapse
|
14
|
Transcriptome analysis of polysaccharide-based microbial flocculant MBFA9 biosynthesis regulated by nitrogen source. Sci Rep 2020; 10:2918. [PMID: 32075995 PMCID: PMC7031244 DOI: 10.1038/s41598-020-59114-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial flocculant (MBF), an environmentally friendly water treatment agent, can be widely used in various water treatments. However, its use is limited by low yield and high cost. This problem can be solved by clarifying its biosynthesis mechanism and regulating it. Paenibacillus shenyangensis A9, a flocculant-producing bacterium, was used to produce polysaccharide-type MBFA9 by regulating the nitrogen source (nitrogen adequacy/nitrogen deficiency). In this study, RNA-Seq high-throughput sequencing technology and bioinformatic approaches were used to investigate the fermentation and biosynthesis of polysaccharide-type MBFA9 by regulating the nitrogen source (high nitrogen/low nitrogen) in the flocculant-producing bacteria Paenibacillus shenyangensis A9. Differentially expressed genes, functional clustering, and functional annotation of key genes were assessed. Then the MBFA9 biosynthesis and metabolic pathway were reconstructed. Our results showed that when cultured under different nitrogen conditions, bacterial strain A9 had a greater ability to synthesize polysaccharide-type MBFA9 under low nitrogen compared to high nitrogen conditions, with the yield of MBFA9 reaching 4.2 g/L at 36 h of cultivation. The quality of transcriptome sequencing data was reliable, with a matching rate of 85.38% and 85.48% when L36/H36 was mapped to the reference genome. The total expressed genes detected were 4719 and 4730, with 265 differentially expressed genes. The differentially expressed genes were classified into 3 categories: molecular function (MF), cell component (CC), and biological process (BP), and can be further divided into 22 subcategories. There were 192 upregulated genes and 73 downregulated genes, with upregulation being predominant under low nitrogen. UDP-Gal, UDP-Glc, UDP-GlcA, and UDP-GlcNAc, which are in the polysaccharide metabolic pathway, could all be used as precursors for MBFA9 biosynthesis, and murA, wecB, pgm, galU/galF, fcl, gmd, and glgC were the main functional genes capable of affecting the growth of bacteria and the biosynthesis of MBF. Results from this study provide evidence that high-level expression of key genes in MBFA9 biosynthesis, regulation, and control can achieve MBFA9 directional synthesis for large-scale applications.
Collapse
|
15
|
Transcriptome Analysis Reveals the Molecular Mechanisms Underlying Adenosine Biosynthesis in Anamorph Strain of Caterpillar Fungus. BIOMED RESEARCH INTERNATIONAL 2020; 2019:1864168. [PMID: 31915684 PMCID: PMC6935459 DOI: 10.1155/2019/1864168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/28/2019] [Indexed: 01/19/2023]
Abstract
Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially expressed genes (DEGs) were identified (p ≤ 0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. Gene expression profiling on 4–10 d revealed a distinct shift in expression of the purine metabolism pathway. Differential expression of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and APRT genes combined with up-regulation of AK gene. This study will be valuable for understanding the molecular mechanisms of the adenosine biosynthesis in caterpillar fungus.
Collapse
|
16
|
Lin S, Zhou C, Zhang H, Cai Z. Expression, purification and characterization of 5'-nucleotidase from caterpillar fungus by efficient genome-mining. Protein Expr Purif 2020; 168:105566. [PMID: 31899296 DOI: 10.1016/j.pep.2019.105566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
5'- nucleotidase (5'-NT) is a key enzyme in nucleoside/nucleotide metabolic pathway, it plays an important role in the biosynthesis of cordycepin in caterpillar fungus. In this study, a 5'-NT gene was identified and mined from genomic DNA of caterpillar fungus, which was 1968 bp in length and encoded 656 amino acid residues. The recombinant 5'-NT was first time heterologously expressed in Pichia pastoris GS115, subsequently purified and functionally characterized. The optimal reaction temperature for 5'-NT was 35 °C, and it retained 52.8% of its residual activity after incubation at 50 °C for 1 h. The optimal reaction pH was 6.0 and it exhibited high activity over a neutral pH range. Furthermore, 5'-NT exhibited excellent Km (1.107 mM), Vmax (0.113 μmol/mg·min) and kcat (4.521 S-1) values compared with other typical 5'-nucleotidase. Moreover, substrate specificity analyses indicated that 5'-NT exhibited different phosphatase activity towards the substrates containing different basic groups. The work presented here could be useful to 5'-NT applications and provide more scientific basis and new ideas for the biosynthesis of artificial control cordycepin.
Collapse
Affiliation(s)
- Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518100, Guangdong, China; Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Cuibing Zhou
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Hancheng Zhang
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zhiming Cai
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| |
Collapse
|
17
|
Cen YK, Lin JG, Wang JY, Liu ZQ, Zheng YG. Colorimetric assay for active biomass quantification of Fusarium fujikuroi. J Microbiol Methods 2018; 155:37-41. [DOI: 10.1016/j.mimet.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022]
|
18
|
Jiang LX, Han LL, Wang HP, Xu JW, Xiao JH. Improved production of jiangxienone in submerged fermentation of Cordyceps jiangxiensis under nitrogen deficiency. Bioprocess Biosyst Eng 2018; 41:1417-1423. [PMID: 29948214 DOI: 10.1007/s00449-018-1970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
Abstract
Jiangxienone produced by Cordyceps jiangxiensis exhibits significant cytotoxicity and good selectivity against various human cancer cells, especially gastric cancer cells. In this work, the effect of nitrogen deficiency on the accumulation of jiangxienone and the transcription levels of jiangxienone biosynthesis genes was studied in submerged fermentation of C. jiangxiensis. Results showed that accumulation of jiangxienone was improved under nitrogen deficiency condition. A maximal jiangxienone content of 3.2 µg/g cell dry weight was reached at 5 mM glutamine, and it was about 8.9-fold higher than that obtained at 60 mM glutamine (control). The transcription levels of the biosynthetic pathway genes hmgr and sqs and the nitrogen regulatory gene areA were upregulated by 7-, 14-, and 28-fold, respectively, in culture with 5 mM glutamine compared to the control. It was hypothesized that the jiangxienone biosynthesis may involve the mevalonate pathway in C. jiangxiensis. Taken together, our study indicated that nitrogen deficiency is an efficient strategy for enhancing jiangxienone accumulation in submerged fermentation of C. jiangxiensis, which is useful for further understanding the regulation of jiangxienone biosynthesis.
Collapse
Affiliation(s)
- Lu-Xi Jiang
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Li-Liang Han
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hui-Ping Wang
- Department of Neurology, Kunming Children's Hospital, Kunming Medical University, Kunming, 650228, People's Republic of China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Jian-Hui Xiao
- Division of Applied Mycology and Biochemical Pharmacy, Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| |
Collapse
|
19
|
Chen LH, Wu Y, Guan YM, Jin C, Zhu WF, Yang M. Analysis of the High-Performance Liquid Chromatography Fingerprints and Quantitative Analysis of Multicomponents by Single Marker of Products of Fermented Cordyceps sinensis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5943914. [PMID: 29850373 PMCID: PMC5914105 DOI: 10.1155/2018/5943914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 05/09/2023]
Abstract
Fermented Cordyceps sinensis, the succedaneum of Cordyceps sinensis which is extracted and separated from Cordyceps sinensis by artificial fermentation, is commonly used in eastern Asia in clinical treatments due to its health benefit. In this paper, a new strategy for differentiating and comprehensively evaluating the quality of products of fermented Cordyceps sinensis has been established, based on high-performance liquid chromatography (HPLC) fingerprint analysis combined with similar analysis (SA), hierarchical cluster analysis (HCA), and the quantitative analysis of multicomponents by single marker (QAMS). Ten common peaks were collected and analysed using SA, HCA, and QAMS. These methods indicated that 30 fermented Cordyceps sinensis samples could be categorized into two groups by HCA. Five peaks were identified as uracil, uridine, adenine, guanosine, and adenosine, and according to the results from the diode array detector, which can be used to confirm peak purity, the purities of these compounds were greater than 990. Adenosine was chosen as the internal reference substance. The relative correction factors (RCF) between adenosine and the other four nucleosides were calculated and investigated using the QAMS method. Meanwhile, the accuracy of the QAMS method was confirmed by comparing the results of that method with those of an external standard method with cosines of the angles between the groups. No significant difference between the two methods was observed. In conclusion, the method established herein was efficient, successful in identifying the products of fermented Cordyceps sinensis, and scientifically valid to be applicable in the systematic quality control of fermented Cordyceps sinensis products.
Collapse
Affiliation(s)
- Li-hua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 18 Yun Wan Road, Nanchang 330004, China
| | - Yao Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 18 Yun Wan Road, Nanchang 330004, China
| | - Yong-mei Guan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 18 Yun Wan Road, Nanchang 330004, China
| | - Chen Jin
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 18 Yun Wan Road, Nanchang 330004, China
| | - Wei-feng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 18 Yun Wan Road, Nanchang 330004, China
| | - Ming Yang
- Jiangxi Sinopharm Co. Ltd., No. 888 National Medicine Road, Nanchang 330004, China
| |
Collapse
|
20
|
Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2520347. [PMID: 29333435 PMCID: PMC5733210 DOI: 10.1155/2017/2520347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022]
Abstract
To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis.
Collapse
|
21
|
Mining and characterization of two novel chitinases from Hirsutella sinensis using an efficient transcriptome-mining approach. Protein Expr Purif 2017; 133:81-89. [PMID: 28279819 DOI: 10.1016/j.pep.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/28/2017] [Accepted: 03/04/2017] [Indexed: 02/04/2023]
Abstract
Two novel family 18 chitinases, chiA and chiH, were identified and cloned from the transcriptome of H. sinensis based on the transcriptome sequence data. The recombinant chitinases were overexpressed in Escherichia coli BL21, subsequently purified and functionally characterized. The optimal temperature and pH for chiA were 55 °C and 5.0, respectively, and those for chiH were 50 °C and 5.0, respectively. The highest enzyme activities of 11.5 U/mg and 8.1 U/mg were obtained for chiA and chiH, respectively, when colloidal chitin was used as the substrate with Ba2+. chiA exhibited higher Vmax of 1.94 μmol/μg/h and kcat of 1.443 S-1 than those of chiH with Vmax of 1.63 μmol/μg/h and kcat of 1.175 S-1, and both were efficient towards colloidal chitin compared with other typical family 18 chitinases. Substrate specificity and gene expression analyses indicated that chiA and chiH preferred substrates containing N-acetyl groups, such as colloidal chitin and glycol chitin, while no activity was detected toward laminarin, cellobiose, carboxymethyl cellulose and starch. The work presented here would aid in the understanding and performance of future studies on the infection mechanism of H. sinensis.
Collapse
|