1
|
Markovic MD, Panic VV, Pjanovic RV. Polymeric Nanosystems: A Breakthrough Approach to Treating Inflammation and Inflammation Related Diseases. Biopolymers 2025; 116:e70012. [PMID: 40104970 DOI: 10.1002/bip.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Inflammation processes can cause mild to severe damage in the human body and can lead to a large number of inflammation-related diseases (IRD) such as cancer, neural, vascular, and pulmonary diseases. Limitations of anti-inflammatory drugs (AID) application are reflected in high therapeutic doses, toxicity, low bioavailability and solubility, side effects, etc. Polymeric nanosystems (PS) have been recognized as a safe and effective technology that is able to overcome these limitations by AID encapsulation and is able to answer to the specific demands of the IRD treatment. PS are attracting great attention due to their versatility, biocompatibility, low toxicity, fine-tuned properties, functionality, and ability for precise delivery of anti-inflammatory drugs to the targeted sites in the human body. This article offers an overview of three classes of polymeric nanosystems: a) dendrimers, b) polymeric micelles and polymeric nanoparticles, and c) polymeric filomicelles, as well as their properties, preparation, and application in IRD treatment. In the future, the number of PS formulations in clinical practice will certainly increase.
Collapse
Affiliation(s)
- Maja D Markovic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna V Panic
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Rada V Pjanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
de Lima LRM, Silva MFS, Araújo GS, de Oliveira Silva Ribeiro F, Ribeiro IS, Pessoa C, Costa Filho RN, Marinho Filho JDB, Araújo AJ, da Silva DA, Andrade Feitosa JP, de Paula RCM. Doxorubicin-galactomannan nanoconjugates for potential cancer treatment. Carbohydr Polym 2024; 342:122356. [PMID: 39048219 DOI: 10.1016/j.carbpol.2024.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
In this study, we report the synthesis and characterization of pH-responsive nanoconjugates for targeted drug delivery. Galactomannan extracted from D. regia seeds was oxidized to form aldehyde groups, achieving a percentage of oxidation of 25.6 %. The resulting oxidized galactomannan (GMOX) was then copolymerized with PINIPAm-NH2, yielding a copolymer. The copolymer exhibited signals from both GMOX and PNIPAm-NH2 in its NMR spectrum, confirming successful copolymerization. Critical association concentration (CAC) studies revealed the formation of nanostructures, with lower CAC values observed at higher temperatures. The copolymer and GMOX reacted with doxorubicin (DOX), resulting in nanoconjugates with controlled drug release profiles, especially under acidic conditions similar to tumor microenvironments. Cytotoxicity assays demonstrated significant efficacy of the nanoconjugates against melanoma cells with reduced toxicity towards healthy cells. These findings underscore the potential of the pH-responsive nanoconjugates as promising candidates for targeted cancer therapy, offering improved therapeutic efficacy and reduced systemic side effects.
Collapse
Affiliation(s)
| | | | - Gisele S Araújo
- Research Center on Biodiversity and Biotechnology, Federal University of Delta of Parnaíba, Brazil
| | | | | | - Cláudia Pessoa
- Experimental Oncology Laboratory - Federal University of Ceará, Brazil
| | | | | | - Ana Jersia Araújo
- Research Center on Biodiversity and Biotechnology, Federal University of Delta of Parnaíba, Brazil
| | | | | | | |
Collapse
|
3
|
Fillaudeau A, Cuenot S, Makshakova O, Traboni S, Sinquin C, Hennetier M, Bedini E, Perez S, Colliec-Jouault S, Zykwinska A. Glycosaminoglycan-mimetic infernan grafted with poly(N-isopropylacrylamide): Toward a thermosensitive polysaccharide. Carbohydr Polym 2024; 326:121638. [PMID: 38142103 DOI: 10.1016/j.carbpol.2023.121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
Glycosaminoglycans (GAGs) are essential constituents of the cell surface and extracellular matrix, where they are involved in several cellular processes through their interactions with various proteins. For successful tissue regeneration, developing an appropriate matrix supporting biological activities of cells in a similar manner than GAGs remains still challenging. In this context, this study aims to design a thermosensitive polysaccharide that could further be used as hydrogel for tissue engineering applications. For this purpose, infernan, a marine bacterial exopolysaccharide (EPS) endowed with GAG-mimetic properties was grafted with a thermosensitive polymer, poly(N-isopropylacrylamide) (pNIPAM). Eight grafted polysaccharides were obtained by varying EPS/pNIPAM molar ratio and the molecular weight of pNIPAM. Their physicochemical characteristics and their thermosensitive properties were determined using a multi-technique, experimental approach. In parallel, molecular dynamics and Monte Carlo simulations were applied at two different scales to elucidate, respectively, the molecular conformation of grafted infernan chain and their ability to form an infinite network undergoing a sol-gel transition near the percolation, a necessary condition in hydrogel formation. It comes out from this study that thermosensitive infernan was successfully developed and its potential use in tissue regeneration as a hydrogel scaffold will further be assessed.
Collapse
Affiliation(s)
- Arnaud Fillaudeau
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Stéphane Cuenot
- Nantes Université, CNRS, Institut des Matériaux Jean Rouxel, IMN, Nantes, France.
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russian Federation
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France
| | - Marie Hennetier
- Plateforme Toulouse Field-Flow Fractionation Center, TFFFC, Ecole d'Ingénieurs de Purpan, Toulouse, France
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serge Perez
- Centre de Recherches sur les Macromolécules Végétales, Université de Grenoble Alpes, Centre National de la Recherche Scientifique, Grenoble, France
| | | | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France.
| |
Collapse
|
4
|
Carvalho LT, Teixeira AJR, Moraes RM, Barbosa RF, Queiroz RC, Tada DB, Mulinari DR, Rosa DS, Ré MI, Medeiros SF. Preparation and characterization of cationic pullulan-based polymers with hydrophilic or amphiphilic characteristics for drug delivery. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Morimoto N, Segui F, Qiu XP, Akiyoshi K, Winnik FM. Heat-Induced Flower Nanogels of Both Cholesterol End-Capped Poly( N-isopropylacrylamide)s in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5218-5225. [PMID: 34730981 DOI: 10.1021/acs.langmuir.1c02394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermoresponsive self-assembled nanogels were conveniently prepared by cholesterol end-capped poly(N-isopropylacrylamide) (PNIPAM) in water. Both cholesterol end-capped PNIPAMs (telelchelic cholesterol PNIPAM, tCH-PNIPAM) formed flower-like nanogels by the self-assembling of four to five polymer chains with multiple domains of cholesterol in water at 20 °C. Meanwhile, one end-group cholesterol-capped PNIPAM (semitelechelic cholesterol PNIPAM, stCH-PNIPAM) was also formed as a nanogel by the self-assembling of 15-20 polymer chains with 3 to 4 cholesterol domains. The hydrophobic cholesterol domains of tCH-PNIPAM nanogels were maintained above the lower critical solution temperature (LCST) of PNIPAM (>32 °C). Differently, the hydrophobic domains of stCH-PNIPAM were disrupted by cholesterol-free PNIPAM chain ends and formed large mesoglobules above the LCST. These transition controls of hydrophilic end-capped smart polymers may open new methodologies to design thermoresponsive nanosystems.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Florence Segui
- Department of Chemistry and Faculty of Pharmacy, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC H3C 3J7, Canada
| | - Xing-Ping Qiu
- Department of Chemistry and Faculty of Pharmacy, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC H3C 3J7, Canada
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Françoise M Winnik
- Department of Chemistry and Faculty of Pharmacy, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, PB 55, Helsinki FI-00014, Finland
- National Institute for Materials Science, WPI International Center for Materials Nanoarchitectonics (MANA), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
7
|
Carvalho LT, Moraes RM, Teixeira AJRM, Tada DB, Alves GM, Lacerda TM, Santos JC, Santos AM, Medeiros SF. Development of pullulan‐based carriers for controlled release of hydrophobic ingredients. J Appl Polym Sci 2021. [DOI: 10.1002/app.51344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Layde T. Carvalho
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Rodolfo M. Moraes
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Ana Julia R. M. Teixeira
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Dayane B. Tada
- Laboratory of Nanomaterials and Nanotoxicology Federal University of São Paulo São José dos Campos São Paulo Brazil
| | - Gizelda M. Alves
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Talita M. Lacerda
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Julio C. Santos
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Amilton M. Santos
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| | - Simone F. Medeiros
- Department of Biotechnology Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
- Department of Chemical Engineering Engineering School of Lorena, University of São Paulo Lorena São Paulo Brazil
| |
Collapse
|
8
|
Dual responsive dextran-graft-poly (N-isopropylacrylamide)/doxorubicin prodrug via Schiff base reaction. Int J Biol Macromol 2021; 185:390-402. [PMID: 34153357 DOI: 10.1016/j.ijbiomac.2021.06.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
Stimulus-responsive nanoparticles stand out in studies for cancer treatment since these systems can promote a selective release of the drug in tumor tissues and cells, minimizing the effects caused by conventional chemotherapy. Dextran-graft-poly (N-isopropylacrylamide) copolymers were synthesized via Schiff base formation. The synthesis of copolymers was confirmed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (NMR) and the analyses of dynamic light scattering (DLS) showed that the copolymers were thermal and pH dual-responsive. The chemotherapy drug doxorubicin (DOX) was conjugated to the copolymers via Schiff base formation, obtaining nanoparticles by self-assembling with size smaller than 130 nm. A higher percentage of doxorubicin was released at pH 5.0 (59.1 ± 2.1%) compared to physiological pH (34.9 ± 4.8%), confirming a pH-sensitive release profile. The in vitro cytotoxicity assay demonstrated that DOX-loaded nanoparticles can inhibit cancer cell proliferation and promote reduced cytotoxicity in non-tumor cells. The D45kP30k-DOX nanoparticles induced morphological changes in HCT-116 cells suggesting cell death and the cell uptake assay indicated that the nanoparticles can be internalized by endocytosis. Therefore, DOX-loaded nanoparticles exhibited potential as smart systems for cancer treatment.
Collapse
|
9
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
10
|
Dextran based amphiphilic self-assembled biopolymeric macromolecule synthesized via RAFT polymerization as indomethacin carrier. Int J Biol Macromol 2021; 183:718-726. [PMID: 33930447 DOI: 10.1016/j.ijbiomac.2021.04.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
This work demonstrates a facile pathway to develop a biopolymer based amphiphilic macromolecule through reversible addition-fragmentation chain transfer (RAFT) polymerization, using dextran (a biopolymer) as starting material. Also, a new hydrophobic monomer [2-methyl-acrylic acid 1-benzyl-1H-[1,2,3] triazol-4-ylmethyl ester (MABTE)] has been synthesized using methacrylic acid via "click" approach. The resultant copolymer displays controlled radical polymerization characteristics: narrow polydispersity (Ð) and controlled molecular weight as obtained through advanced polymer chromatography (APC) analysis. In aqueous solution, the copolymer can proficiently be self-assembled to provide micellar structure, which has been evidenced from field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses. The in-vitro cytotoxicity study illustrates the nontoxic nature of the copolymer up to 100 μg/mL polymer concentration. The copolymer has been found to be worthy as an efficient carrier for the sustained release of hydrophobic drug: Indomethacin (IND).
Collapse
|
11
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
12
|
Mert H, Özkahraman B, Damar H. A novel wound dressing material: Pullulan grafted copolymer hydrogel via UV copolymerization and crosslinking. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2020; 166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Pullulan is an imperative microbial exo-polymer commercially produced by yeast like fungus Aureobasidium pullulans. Its structure contains maltosyl repeating units which comprises two α-(1 → 4) linked glucopyranose rings attached to one glucopyranose ring through α-(1 → 6) glycosidic bond. The co-existence of α-(1 → 6) and α-(1 → 4) glycosidic linkages endows distinctive physico-chemical properties to pullulan. It is highly biocompatible, non-toxic and non-carcinogenic in nature. It is extremely resistant to any mutagenicity or immunogenicity. The unique properties of pullulan make it a potent candidate for biomedical applications viz. drug delivery, gene delivery, tissue engineering, molecular chaperon, plasma expander, vaccination, etc. This review highlights the potential of pullulan in biomedical research and development.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Muhammad Hassan
- US-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
14
|
Influence of galactomannan molar mass on particle size galactomannan-grafted-poly-N-isopropylacrylamide copolymers. Int J Biol Macromol 2020; 156:446-453. [DOI: 10.1016/j.ijbiomac.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023]
|
15
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
16
|
Chen S, Hori N, Kajiyama M, Takemura A. Thermal responsive poly(N-isopropylacrylamide) grafted chicken feather keratin prepared via surface initiated aqueous Cu(0)-mediated RDRP: Synthesis and properties. Int J Biol Macromol 2020; 153:364-372. [PMID: 32109472 DOI: 10.1016/j.ijbiomac.2020.02.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Poultry chicken feather keratin was extracted and then modified for the fabrication of keratin-graft-PNIPAM copolymers. The keratin was well extracted from feather fiber and powdered. Subsequently, it underwent the surficial functionalization process with initiator groups. After the study conducted full disproportionation of Cu(I)Br/Me6Tren into Cu(0) and Cu(II)Br2 in the solvent, surface initiated aqueous Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) of N-isopropylacrylamide (NIPAM) was performed in a methanol/water mixture solvent. The reaction was performed rapidly and efficiently, during which over 100% graft rate was achieved at 60 min. After 6 h reaction, 200% graft rate could be achieved. High graft rate (up to 287%) was achieved, and graft rate could be regulated by controlling the reaction time and the addition of monomer. The fabricated keratin-g-PNIPAM exhibited a rough surface. As revealed from the results of thermal analysis, the thermal stability of keratin-g-PNIPAM was enhanced noticeably compared with the original keratin. Besides, grafted PNIPAM chains exhibited a higher glass transition temperature. The grafted keratin particles displayed enhanced hydrophilicity. Keratin-g-PNIPAMs exhibit a lower LCST comparing to homopolymer and the flocculation in hot water behavior could be controlled by regulating graft rate.
Collapse
Affiliation(s)
- Sikai Chen
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naruhito Hori
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikio Kajiyama
- Graduate School of life and environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akio Takemura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
17
|
Self-organized thermo-responsive poly (lactic-co-glycolic acid)-graft-pullulan nanoparticles for synergistic thermo-chemotherapy of tumor. Carbohydr Polym 2020; 237:116104. [DOI: 10.1016/j.carbpol.2020.116104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/29/2020] [Indexed: 01/18/2023]
|
18
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
19
|
Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. Int J Biol Macromol 2020; 154:446-455. [PMID: 32194104 DOI: 10.1016/j.ijbiomac.2020.03.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 01/08/2023]
Abstract
In this work, we report the synthesis of graft copolymers based on casein and N-isopropylacrylamide, which can self-assemble into biodegradable micelles of approximately 80 nm at physiological conditions. The obtained copolymers were degraded by trypsin, an enzyme that is overexpressed in several malignant tumors. Moreover, graft copolymers were able to load doxorubicin (Dox) by ionic interaction with the casein component. In vitro release experiments showed that the in situ assembled micelles can maintain the cargo at plasma conditions but release Dox immediately after their exposition at pH 5.0 and trypsin. Cellular uptake and cytotoxicity assays revealed the efficient delivery to the nucleus and antiproliferative efficacy of Dox in the breast cancer cell line MDA231. Both delivery and therapeutic activity were enhanced in presence of trypsin. Overall, the prepared micelles hold a great potential for their utilization as dual responsive trypsin/pH drug delivery system.
Collapse
|
20
|
Grigoras AG. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. ENVIRONMENTAL CHEMISTRY LETTERS 2019; 17:1209-1223. [DOI: 10.1007/s10311-019-00862-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2025]
|
21
|
Chung Y, Bae JC, Choi JW, Chun BC. Preparation and characterization of hydrophilic temperature‐dependent polyurethane containing the grafted poly(N‐isopropylacrylamide). POLYM ENG SCI 2019. [DOI: 10.1002/pen.25172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong‐Chan Chung
- Department of ChemistryThe University of Suwon Hwaseong South Korea
| | - Jin Cheol Bae
- School of Nano EngineeringInje University Gimhae South Korea
| | - Jae Won Choi
- School of Nano EngineeringInje University Gimhae South Korea
| | | |
Collapse
|
22
|
Lima Cardial MR, Paula HC, da Silva RBC, da Silva Barros JF, Richter AR, Sombra FM, de Paula RC. Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier. Int J Biol Macromol 2019; 132:534-540. [DOI: 10.1016/j.ijbiomac.2019.03.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023]
|
23
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Adv Colloid Interface Sci 2019; 269:296-308. [PMID: 31128461 DOI: 10.1016/j.cis.2019.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.
Collapse
|
24
|
Picos-Corrales LA, Garcia-Carrasco M, Licea-Claverie A, Chavez-Santoscoy RA, Serna-Saldívar SO. NIPAAm-containing amphiphilic block copolymers with tailored LCST: Aggregation behavior, cytotoxicity and evaluation as carriers of indomethacin, tetracycline and doxorubicin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1586440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Melissa Garcia-Carrasco
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, México
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, México
| | - Rocio A. Chavez-Santoscoy
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California-Campus Tijuana, Tijuana, México
| | - Sergio O. Serna-Saldívar
- Escuela de Biotecnología y Alimentos, Centro de Biotecnología FEMSA, Tecnológico de Monterrey-Campus Monterrey, Monterrey, México
| |
Collapse
|
25
|
Quérette T, Fleury E, Sintes-Zydowicz N. Non-isocyanate polyurethane nanoparticles prepared by nanoprecipitation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Hezarkhani M, Yilmaz E. Pullulan modification via poly(N-vinylimidazole) grafting. Int J Biol Macromol 2019; 123:149-156. [DOI: 10.1016/j.ijbiomac.2018.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
|
27
|
Drug Delivery Systems Based on Pullulan Polysaccharides and Their Derivatives. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [DOI: 10.1007/978-3-030-01881-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Tabasum S, Noreen A, Maqsood MF, Umar H, Akram N, Nazli ZIH, Chatha SAS, Zia KM. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. Int J Biol Macromol 2018; 120:603-632. [DOI: 10.1016/j.ijbiomac.2018.07.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
|
29
|
Chung YC, Kim DE, Choi JW, Chun BC. The temperature-sensitive water vapor permeation control of polyurethane membrane using the graft-polymerized poly(N-isopropylacrylamide) and the impact on the tensile strength and shape recovery effect. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1520247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yong-Chan Chung
- Department of Chemistry, the University of Suwon, Hwaseong, Korea
| | - Dong Eui Kim
- School of Nano Engineering, Inje University, Gimhae, Korea
| | - Jae Won Choi
- School of Nano Engineering, Inje University, Gimhae, Korea
| | | |
Collapse
|
30
|
Marques NDN, Balaban RDC, Halila S, Borsali R. Synthesis and characterization of carboxymethylcellulose grafted with thermoresponsive side chains of high LCST: The high temperature and high salinity self-assembly dependence. Carbohydr Polym 2018; 184:108-117. [DOI: 10.1016/j.carbpol.2017.12.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022]
|
31
|
|
32
|
Andreu V, Arruebo M. Current progress and challenges of nanoparticle-based therapeutics in pain management. J Control Release 2017; 269:189-213. [PMID: 29146243 DOI: 10.1016/j.jconrel.2017.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Pain is a widespread and growing health problem worldwide that exerts a considerable social and economic impact on both patients and healthcare systems and, therefore, on society in general. Although current treatment modalities include a wide variety of pharmacological and non-pharmacological approaches, due to the complexity of pain and individual differences in clinical response these options are not always effective in mitigating and relieving pain. In addition, some pain drugs such as non-steroidal anti-inflammatory drugs (NSAIDs), local anesthetics and opioids show several unfavorable side effects. Therefore, current research advances in this medical field are based on the development of potential treatments to address many of the unmet needs and to overcome the existing limitations in pain management. Nanoparticle drug delivery systems present an exciting opportunity as alternative platforms to improve efficacy and safety of medications currently in use. Herein, we review a broad range of nanoparticle formulations (organic nanostructures and inorganic nanoparticles), which have been developed to encapsulate an array of painkillers, paying special attention to the key advantages that these systems offer, (compared to the use of the free drug), as well as to the more relevant results of preclinical studies in animal models. Additionally, we will briefly discuss the impact of some of these nanoformulations in clinical trials.
Collapse
Affiliation(s)
- Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS), Aragón, 50009 Zaragoza, Spain.
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Aragon Health Research Institute (IIS), Aragón, 50009 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|