1
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Kor H, Karimian H, Khalaji AD. Experimental and computational study of removal of methyl green and eosin yellow from aqueous solutions using novel sulfamic and sulfanilic acid grafted chitosan-epichlorohydrin -Fe 2O 3 nanocomposites. Int J Biol Macromol 2024; 282:137036. [PMID: 39476911 DOI: 10.1016/j.ijbiomac.2024.137036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/18/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Two novel chitosan-based adsorbents, sulfamic acid-chitosan-epichlorohydrin-Fe2O3 (HK-1) and sulfanilic acid-chitosan-epichlorohydrin-Fe2O3 (HK-2), were successfully synthesized and characterized by XRD, TGA, DSC, BET, and SEM techniques. The ability of the synthesized adsorbents for removing cationic Methyl Green (MG) and anionic Eosin Yellow (EY) from aqueous solutions was investigated at different solution pHs, adsorbent dosages, and contact times. The results showed a removal efficiency of 93.5 % and 96.8 % for adsorbing cationic MG respectively by HK-1 and HK-2 at pH = 8. The removal efficiency for adsorbing anionic EY by HK-1 and HK-2 was respectively 90.8 % and 94.6 % at pH = 3. The results also showed that >50 % of MG was adsorbed within the first 30 min of contact with HK-1 and HK-2, but it took about 75 and 45 min to adsorb 50 % of EY respectively by HK-1 and HK-2. DFT calculations confirmed the spontaneous adsorption of EY and MG on the surface of HK-1 and HK-2. These promising results suggest that HK-1 and HK-2 can be used to remove other cationic and anionic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Hossein Kor
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran.
| | | |
Collapse
|
3
|
Sun X, Yin S, Zhao L, Yang W, You Y. Adsorption properties of methylene blue and Cu(II) on magnetically oxidized tannic acid cross-linked carboxymethyl chitosan gels. Int J Biol Macromol 2024; 278:134709. [PMID: 39159797 DOI: 10.1016/j.ijbiomac.2024.134709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In this work, tannic acid was selected as a green cross-linking agent to cross-link carboxymethyl chitosan to prepare a magnetic adsorbent (CC-OTA@Fe3O4), which was used to remove methylene blue (MB) and Cu2+. CC-OTA@Fe3O4 was characterized by FTIR, 13C NMR, XRD, VSM, TGA, BET and SEM. The adsorption behavior was studied using various parameters such as pH value, contact time, initial concentration of MB and Cu2+, and temperature. The results showed that adsorption of MB and Cu2+ followed the pseudo-second-order model and the Sips model. The maximum adsorption capacities were determined to be 560.92 and 104.25 mg/g MB and Cu2+ at 298 K, respectively. Thermodynamic analysis showed that the adsorption is spontaneous and endothermic in nature. According to the results of FTIR and XPS analyses, the electrostatic interaction was accompanied by π-π interaction and hydrogen bonding for MB adsorption, while complexation and electrostatic interaction were the predominant mechanism for Cu2+ adsorption. Furthermore, CC-OTA@Fe3O4 displayed remarkable stability in 0.1 M HNO3, exhibited promising recyclability, and could be easily separated from aqueous solutions in the magnetic field. This study demonstrates the potential of CC-OTA@Fe3O4 as an adsorbent for the removal of cationic dyes and heavy metals from wastewater.
Collapse
Affiliation(s)
- Xubing Sun
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China.
| | - Shiyu Yin
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| | - Li Zhao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China
| | - Wenhua Yang
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China; Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China; Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Provincial Higher Learning Institutes, Neijiang 641100, China
| | - Yaohui You
- Sichuan Science and Technology Resources Sharing Service Platform of Special Agricultural Resources in Tuojiang River Basin, Neijiang 641100, China
| |
Collapse
|
4
|
Xiao L, Shan H, Wu Y. Chitosan cross-linked and grafted with epichlorohydrin and 2,4-dichlorobenzaldehyde as an efficient adsorbent for removal of Pb(II) ions from aqueous solution. Int J Biol Macromol 2023; 247:125503. [PMID: 37348580 DOI: 10.1016/j.ijbiomac.2023.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Epichlorohydrin-modified chitosan-Schiff base composite (CS/24Cl/ECH) prepared via the one-pot reaction as characterized by Fourier transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). Its removal ability of Pb(II) ions from aqueous solution was investigated. The adsorption of Pb(II) ions carried out at different initial pH, dose of CS/24-Cl/ECH, contact time and co-existing ions. The maximum adsorption capacity of Pb(II) ions was 170 mg/g. Finally, based on the absorption results, the adsorption of Pb(II) ions was fitted by single-layer Langmuir isotherm model and the pseudo-second-order (PSO) kinetics model. The absorption mechanism of Pb(II) ions was controlled by chemical coordination Pb(II) ions with the active sites on the surface of CS/24Cl/ECH composite. Also, CS/24Cl/ECH showed excellent recyclable efficiency up to 5 cycle and potential sorbent for other heavy metal ions.
Collapse
Affiliation(s)
- Li Xiao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Hanbin Shan
- Division of Chemical Pharmaceuticals, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, PR China
| |
Collapse
|
5
|
Yang F, Yang X, Su K, He Y, Lin Q. Synthesis and characterization of pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) as a new sorbent for removal of Pb(II) ions from aqueous media. Int J Biol Macromol 2023:124642. [PMID: 37119917 DOI: 10.1016/j.ijbiomac.2023.124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
In this work, new pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) was prepared from the simple and convenient condensation reaction between chitosan (CS) and N,N-dimethylaminobenzaldehyde (MABA) in ethanol-glacial acetic acid (1:1 v/v) and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). The as-prepared composite CS@MABA was applied for the removal of Pb(II) ions, due to the presence of imine, hydroxyl and phenyl groups, and the effects of important parameters such as solution pH, contact time and sorbent dosage on the removal percentage and adsorption capacity were investigated and discussed. The optimum conditions were found to be at pH 5, adsorbent dosage of 0.1 g, Pb(II) concentration of 50 mg/L and contact time of 60 min. The maximum Pb(II) removal percentage was found to be 94.28 % with the high adsorption capacity of 165 mg/g. The adsorption capacity of CS@MABA is remain 87 % after 5 adsorption-desorption cycles. The adsorption kinetic and isotherm studies indicated that the Pb(II) removal by CS@MABA follows a pseudo-first order and Langmuir models, respectively. Compared to similar compounds, the synthesized CS@MABA composite has shown a relatively high yield for removing Pb(II) ions. According to these results, the CS@MABA suggested for the sorption of other heavy metals.
Collapse
Affiliation(s)
- Fang Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Xingxing Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; Department of Civil Engineering, Jiangxi Water Resources Institute, Nanchang 330013, China
| | - Kaimin Su
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yun He
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Qing Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Khalil TE, Abdel-Salam AH, Mohamed LA, El-Meligy E, El-Dissouky A. Crosslinked modified chitosan biopolymer for enhanced removal of toxic Cr(VI) from aqueous solution. Int J Biol Macromol 2023; 234:123719. [PMID: 36801217 DOI: 10.1016/j.ijbiomac.2023.123719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Two new crosslinked modified chitosan biopolymers, namely (CTS-VAN) and (Fe3O4@CTS-VAN) bioadsorbents were prepared starting from chitosan and 4-hydroxy-3-methoxybenzaldehyde (VAN) in presence of epichlorohydrin. The analytical techniques FT-IR, EDS, XRD, SEM and XPS besides BET surface analysis were utilized for full characterization of the bioadsorbents. Batch experiments were conducted to study the effect of various influencing parameters in Cr (VI) removal such as initial pH, contact time, adsorbent amount and initial Cr (VI) concentration. The adsorption of Cr (VI) was found out to be maximum at pH = 3 for both bioadsorbents. Langmuir isotherm fit well the adsorption process with a maximum adsorption capacity of 188.68 and 98.04 mg/g for CTS-VAN and Fe3O4@CTS-VAN, respectively. The adsorption process followed pseudo second-order kinetics with R2 values of 1 and 0.9938 for CTS-VAN and Fe3O4@CTS-VAN, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(III) accounted for 83 % of the total Cr bound to bioadsorbents surface, which indicated reductive adsorption was responsible for Cr(VI) removal by the bioadsorbents. Cr(VI) was initially adsorbed on the positively charged surface of the bioadsorbents and reduced to Cr(III) by electrons provided by oxygen-comprising functional groups (e.g., CO), and consequently part of the converted Cr(III) stayed on the surface and the rest released into solution.
Collapse
Affiliation(s)
- Tarek E Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Ahmed H Abdel-Salam
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Chemistry Department, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Laila A Mohamed
- National Institute of Oceanography and Fisheries(NIOF), Egypt
| | - Esraa El-Meligy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Choudhary S, Sharma K, Sharma V, Kumar V. Performance Evaluation of Gum Gellan-Based Hydrogel as a Novel Adsorbent for the Removal of Cationic Dyes: Linear Regression Models. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5942-5953. [PMID: 36691299 DOI: 10.1021/acsami.2c20710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the suitability and efficacy of the previously reported biodegradable gellan gum (GG)-based hydrogel have been thoroughly investigated with respect to the adsorption mechanisms of malachite green (MG) and methylene blue (MB) dyes. The dyes' removal from aqueous solutions using GG-cl-poly(AA) as an adsorbent material has been studied in a discontinuous system with respect to contact time, dose, pH, and temperature. The synthesized hydrogel was characterized by FT-IR, TGA, XRD, 1H NMR, and FE-SEM. The adsorption capacity of GG-cl-poly(AA) hydrogel was investigated at different pH solutions (3, 7, and 10), and it was found that neutralized charge plays a crucial role in the enhancement of dye removal. To better understand the behavior of the GG-cl-poly(AA) hydrogel in adsorbing model dyes, adsorption kinetics, isotherms, and thermodynamics were also investigated. The values of qmax for MG and MB were obtained to be 552.48 and 531.9 mg g-1. In addition, the influence of NaCl concentration on adsorption efficiency was investigated, and it was found that as the ion concentration increased, the effectiveness of the adsorption process dropped. Moreover, the synthesized hydrogel's potential application in the adsorption and separation of dyes from wastewater is enhanced by the reusability investigations conducted in convenient conditions. As a result, it is possible to conclude that reusing GG-cl-poly(AA) hydrogel as a low-cost, easy-to-handle, nontoxic material in an industrial wastewater treatment plant's adsorption process can provide a number of advantages, including high efficiency for MG and MB removal and cost savings on overall treatment plant operations.
Collapse
Affiliation(s)
- Sonal Choudhary
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh160014, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh160011, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh160014, India
| | - Vijay Kumar
- Department of Physics, National Institute of Technology, Hazratbal, Srinagar, Jammu and Kashmir190006, India
- Department of Physics, University of the Free State, P.O. Box 339, BloemfonteinZA9300, South Africa
| |
Collapse
|
8
|
Lei P, Wang L, Yan Y, Deng W, Gao J, Zhu J, Liang M, Wen J, Lv J, Zhou J. Improved solid-phase microextraction extraction procedure to detect trace-level epichlorohydrin in municipal water systems by HS-SPME-GC/MS. Front Chem 2022; 10:1004269. [PMID: 36238102 PMCID: PMC9553001 DOI: 10.3389/fchem.2022.1004269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Epichlorohydrin (ECH) is toxic to humans via multiple routes and is a potential carcinogen. The accurate measurement of ECH at trace level (<0.1 μg/L) is still an obstacle hindering the monitoring and regulation of municipal water systems. In this study, an improved headspace solid-phase microextraction (HS-SPME) procedure is developed and optimized to extract and enrich ECH with high sensitivity, accuracy, and precision. A total 17.4-time enhancement in extraction efficiency is achieved compared with the default condition. Specifically, the AC/PDMS/DVB fiber offered a 4.4-time enhancement comparing with the PDMS/DVB fiber. The effects of different mineral salts in SPME were studied and it was found that an addition of 3 g Na₂SO₄ in the SPME head achieved an additional 3.3-time increase. The pattern how sodium sulfate enhanced ECH extraction by salting out is discussed. The optimization of extraction conditions (pH = 7, 35°C, and 20 min extraction duration) brought another 1.2 times further. Combined with gas chromatography with mass spectrometry, the optimized method exhibits curve linearity in the range of 0.02–1.00 μg/L with an R2 of 0.998. The limit of detection, precision, and accuracy of the method are 0.006 μg/L, 2.6%–5.3%, and −3.5% to −2.0%, respectively. The recovery of ECH spiking in tap water and surface water was investigated, with recovery rates of 88.0%–116% and 72.5%–108%, respectively. Adhering to the requirements of existing water quality regulations, our method shows a high potential to be applied in drinking water quality monitoring and water treatment process assessment.
Collapse
Affiliation(s)
- Ping Lei
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Lu Wang
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Yun Yan
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Wubin Deng
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Jingsi Gao
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
- *Correspondence: Jingsi Gao, ; Jianfeng Zhou,
| | - Jia Zhu
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | | | - Jiaheng Wen
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianfeng Lv
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianfeng Zhou
- Georgia Tech Shenzhen Institute, Tianjin University (GTSI), Shenzhen, Guangdong, China
- *Correspondence: Jingsi Gao, ; Jianfeng Zhou,
| |
Collapse
|
9
|
Synthesis, characterization, and biological activities of new conjugates of Guanosine grafted on polyvinyl alcohol, carbohydrate chitosan, and cellulose. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractGuanosine (GU) is a purine nucleoside that has different biological applications. This study aimed to synthesize, characterize, and enhance the biological activities of GU through its covalently grafting on polyvinyl alcohol (PVA), chitosan (CS), and cellulose (CL). In this regard, the conjugation was constructed by different linkers such as chloroacetyl chloride, 2-bromopropionyl bromide, and epichlorohydrin (EPCH). The resulted novel conjugates were characterized by FT-IR, 1H-NMR, GPC, and TGA techniques. FT-IR spectra revealed the main characteristic groups, O–H, N–H, C=O and C=N of GU moieties. Furthermore, 1H-NMR spectra showed the aromatic C–H, O–H, and N–H protons of the grafted GU moieties. Two decomposition stages of grated polymers with high thermal stability are illustrated by TGA. GU showed no antifungal activity against Aspergillus fumigatus and Candida albicans. However, its conjugates: P-1A, P-1B, P-2A, P-2B, P-3A, and P-3B displayed significant antifungal effect with inhibitory zones in the range 8–11 mm. As compared to GU group, most of GU-polymer conjugates showed significant in vivo antitumor activity against EAC-bearing mice via the reduction in total tumor volume. In summary, these conjugates are biologically active macromolecules and may act as candidate carrier systems for other applications such as drug delivery.
Collapse
|
10
|
Rahmi R, Lelifajri L, Iqbal M, Fathurrahmi F, Jalaluddin J, Sembiring R, Farida M, Iqhrammullah M. Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06786-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Sheth Y, Dharaskar S, Khalid M, Walvekar R. Investigating chromium Cr(VI) removal using imidazolium based ionic liquid-chitosan composite adsorptive film. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Abdalla TH, Nasr AS, Bassioni G, Harding DR, Kandile NG. Fabrication of sustainable hydrogels-based chitosan Schiff base and their potential applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Bilgic A. Novel BODIPY-based fluorescent Lycopodium clavatum sporopollenin microcapsules for detection and removal of Cu(II) ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Kandil H, Abdelhamid AE, Moghazy RM, Amin A. Functionalized
PVA
film with good adsorption capacity for anionic dye. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Heba Kandil
- Polymers and Pigments Department National Research Centre Cairo Egypt
| | | | - Reda M. Moghazy
- Water Pollution Research Department National Research Centre Cairo Egypt
| | - Amal Amin
- Polymers and Pigments Department National Research Centre Cairo Egypt
| |
Collapse
|
15
|
Guo H, Lei B, Yu J, Chen Y, Qian J. Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. Int J Biol Macromol 2021; 185:287-296. [PMID: 34153359 DOI: 10.1016/j.ijbiomac.2021.06.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023]
Abstract
Cellulose microcrystalline (MCC) was widely used in pharmaceutical and chemical industries because of its low degree of polymerization and large specific surface area. As its modified form, dialdehyde cellulose (DAC) was used for cross-linking and immobilizing Rhizopus lipase together with magnetic nanoparticles (MNPs) due to its active aldehyde groups. In this study, in order to maintain the original enzyme activity as much as possible and improve the stability of lipase, the Rhizopus lipase was successfully immobilized on the magnetic dialdehyde cellulose nanoparticles (MDC). Specifically, the immobilization conditions including dosage of DAC, concentration of enzyme, immobilization time and temperature together with pH value of the reaction medium were optimized. Maximum immobilization yield (60.03 ± 0.49%) and recovery activity (88.88 ± 0.61%) can be obtained under the optimal process conditions. The changes in secondary structures of immobilized enzyme revealed the increment in conformational rigidity, which can be reflected in temperature and pH stability as well as tolerance of organic reagents. Additionally, the recovery activity of immobilized enzyme still reached 50.60 ± 0.59% after 30 d of storage and 52.10 ± 0.57% retained after 6 cycles. These results indicated the ideal application prospect of MDC in immobilized enzymes.
Collapse
Affiliation(s)
- Hui Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Bingshuang Lei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jianwei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yunfei Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Junqing Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
16
|
Hosseini S, Daneshvar e Asl S, Vossoughi M, Simchi A, Sadrzadeh M. Green Electrospun Membranes Based on Chitosan/Amino-Functionalized Nanoclay Composite Fibers for Cationic Dye Removal: Synthesis and Kinetic Studies. ACS OMEGA 2021; 6:10816-10827. [PMID: 34056236 PMCID: PMC8153774 DOI: 10.1021/acsomega.1c00480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 05/13/2023]
Abstract
Chitosan/poly(vinyl alcohol)/amino-functionalized montmorillonite nanocomposite electrospun membranes with enhanced adsorption capacity and thermomechanical properties were fabricated and utilized for the removal of a model cationic dye (Basic Blue 41). Effects of nanofiller concentrations (up to 3.0 wt %) on the morphology and size of the nanofibers as well as the porosity and thermomechanical properties of the nanocomposite membranes are studied. It is shown that the incorporation of the nanoclay particles with ∼10 nm lateral sizes into the polymer increases the size of the pores by about 80%. To demonstrate the efficiency of the adsorbents, the dye removal rate is investigated as a function of pH, adsorbent dosage, dye concentration, and nanofiller loading. The highest and fastest dye removal occurs for the nanofibrous membranes containing 2 wt % nanofiller, where about 80% of the cationic dye is removed after 15 min. This performance is at least 20% better than the pristine chitosan/poly(vinyl alcohol) membrane. The thermal stability and compression resistance of the nanocomposite membranes are found to be higher than those of the pristine membrane. In addition, reusability studies show that the dye removal performance of this nanocomposite membrane reduces by only about 5% over four cycles. The adsorption kinetics is explained by the Langmuir isotherm model and is expressed by a pseudo-second-order kinetic mechanism that determines a spontaneous chemisorption process. The results of this study provide a valuable perspective on the fabrication of high-performance, reusable, and efficient electrospun fibrous nanocomposite adsorbents.
Collapse
Affiliation(s)
- Seyed
Abolhassan Hosseini
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, AB, Canada T6G 1H9
- Department
of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Shervin Daneshvar e Asl
- Department
of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Manouchehr Vossoughi
- Department
of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Abdolreza Simchi
- Department
of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran 1458889694
| | - Mohtada Sadrzadeh
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, AB, Canada T6G 1H9
- . Tel: +1 780 492
8745
| |
Collapse
|
17
|
Akaji SR, Dewez D. Functionalized Glutathione on Chitosan-Genipin Cross-Linked Beads Used for the Removal of Trace Metals from Water. Int J Biomater 2020; 2020:4158086. [PMID: 33005192 PMCID: PMC7509577 DOI: 10.1155/2020/4158086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Functionalized glutathione on chitosan-genipin cross-linked beads (CS-GG) was synthesized and tested as an adsorbent for the removal of Fe(II) and Cu(II) from aqueous solution. The beads were characterized by several techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), CNS elementary analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The effect of several parameters such as the pH, the temperature, and the contact time was tested to optimize the condition for the adsorption reaction. The beads were incubated in aqueous solutions contaminated with different concentrations of Fe(II) and Cu(II) (under the range concentration from 10 to 400 mg·L-1), and the adsorption capacity was evaluated by inductively coupled plasma optical emission spectrometry (ICP-OES). The adsorption equilibrium was reached after 120 min of incubation under optimal pH 5 for Fe(II) and after 180 min under optimal pH 6 for Cu(II). According to the Langmuir isotherm, the maximum adsorption capacities (q max) for Fe(II) and Cu(II) were 208 mg·g-1 and 217 mg·g-1, respectively. Our results showed that the adsorption efficiency of both metals on CS-GG beads was correlated with the degree of temperature. In addition, the adsorption reaction was spontaneous and endothermic, indicated by the positive values of ΔG 0 and ΔH 0. Therefore, the present study demonstrated that the new synthesized CS-GG beads had a strong adsorption capacity for Fe(II) and Cu(II) and were efficient to remove these trace metals from aqueous solution.
Collapse
Affiliation(s)
- Samira R Akaji
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec in Montreal, Montréal, C.P. 8888 Succursale Centre-Ville, Canada
| | - David Dewez
- Laboratory of Environmental & Analytical Biochemistry of Contaminants, Department of Chemistry, University of Quebec in Montreal, Montréal, C.P. 8888 Succursale Centre-Ville, Canada
| |
Collapse
|
18
|
Freire TM, Fechine LMUD, Queiroz DC, Freire RM, Denardin JC, Ricardo NMPS, Rodrigues TNB, Gondim DR, Junior IJS, Fechine PBA. Magnetic Porous Controlled Fe 3O 4-Chitosan Nanostructure: An Ecofriendly Adsorbent for Efficient Removal of Azo Dyes. NANOMATERIALS 2020; 10:nano10061194. [PMID: 32575349 PMCID: PMC7353100 DOI: 10.3390/nano10061194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022]
Abstract
In this work, chitosan/magnetite nanoparticles (ChM) were quickly synthesized according to our previous report based on co-precipitation reaction under ultrasound (US) irradiation. Besides ChM was in-depth structurally characterized, showing a crystalline phase corresponding to magnetite and presenting a spheric morphology, a "nanorod"-type morphology was also obtained after increasing reaction time for eight minutes. Successfully, both morphologies presented a nanoscale range with an average particle size of approximately 5-30 nm, providing a superparamagnetic behavior with saturation magnetization ranging from 44 to 57 emu·g-1. As ChM nanocomposites have shown great versatility considering their properties, we proposed a comparative study using three different amine-based nanoparticles, non-surface-modified and surface-modified, for removal of azo dyes from aqueous solutions. From nitrogen adsorption-desorption isotherm results, the surface-modified ChMs increased the specific surface area and pore size. Additionally, the adsorption of anionic azo dyes (reactive black 5 (RB5) and methyl orange (MO)) on nanocomposites surface was pH-dependent, where surface-modified samples presented a better response under pH 4 and non-modified one under pH 8. Indeed, adsorption capacity results also showed different adsorption mechanisms, molecular size effect and electrostatic attraction, for unmodified and modified ChMs, respectively. Herein, considering all results and nanocomposite-type structure, ChM nanoparticles seem to be a suitable potential alternative for conventional anionic dyes adsorbents, as well as both primary materials source, chitosan and magnetite, are costless and easily supplied.
Collapse
Affiliation(s)
- Tiago M. Freire
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
| | - Danilo C. Queiroz
- Department of Organic and Inorganic Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (D.C.Q.); (N.M.P.S.R.)
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juliano C. Denardin
- Department of Physical/CEDENNA, University of Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170020, Chile;
| | - Nágila M. P. S. Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (D.C.Q.); (N.M.P.S.R.)
| | - Thaina N. B. Rodrigues
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Diego R. Gondim
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Ivanildo J. S. Junior
- Department of Chemical Engineering, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.N.B.R.); (D.R.G.); (I.J.S.J.)
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)—Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará—UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, Brazil; (T.M.F.); (L.M.U.D.F.)
- Correspondence: ; Tel.: +55-(85)-3366-9047
| |
Collapse
|
19
|
Elshaarawy RF, El-Azim HA, Hegazy WH, Mustafa FH, Talkhan TA. Poly(ammonium/ pyridinium)-chitosan Schiff base as a smart biosorbent for scavenging of Cu2+ ions from aqueous effluents. POLYMER TESTING 2020; 83:106244. [DOI: 10.1016/j.polymertesting.2019.106244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
20
|
Hussain MS, Musharraf SG, Bhanger MI, Malik MI. Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int J Biol Macromol 2020; 147:643-652. [DOI: 10.1016/j.ijbiomac.2020.01.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
|
21
|
Superabsorbent magnetic Fe3O4-based starch-poly (acrylic acid) nanocomposite hydrogel for efficient removal of dyes and heavy metal ions from water. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1917-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Xu P, Zheng M, Chen N, Wu Z, Xu N, Tang J, Teng Z. Uniform magnetic chitosan microspheres with radially oriented channels by electrostatic droplets method for efficient removal of Acid Blue. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Anush S, Chandan H, Vishalakshi B. Synthesis and metal ion adsorption characteristics of graphene oxide incorporated chitosan Schiff base. Int J Biol Macromol 2019; 126:908-916. [DOI: 10.1016/j.ijbiomac.2018.12.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
25
|
Taha RH, El-Shafiey ZA, Salman AA, El-Fakharany EM, Mansour MM. Synthesis and characterization of newly synthesized Schiff base ligand and its metal complexes as potent anticancer. J Mol Struct 2019; 1181:536-545. [DOI: 10.1016/j.molstruc.2018.12.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Ilan Y. Generating randomness: making the most out of disordering a false order into a real one. J Transl Med 2019; 17:49. [PMID: 30777074 PMCID: PMC6379992 DOI: 10.1186/s12967-019-1798-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 01/31/2023] Open
Abstract
Randomness is far from a disturbing disorder in nature. Rather, it underlies many processes and functions. Randomness can be used to improve the efficacy of development and of systems under certain conditions. Moreover, valid unpredictable random-number generators are needed for secure communication, rendering predictable pseudorandom strings unsuitable. This paper reviews methods of generating randomness in various fields. The potential use of these methods is also discussed. It is suggested that by disordering a "false order," an effective disorder can be generated to improve the function of systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 1200, 91120, Jerusalem, Israel.
| |
Collapse
|
27
|
Antony R, Arun T, Manickam STD. A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 2019; 129:615-633. [PMID: 30753877 DOI: 10.1016/j.ijbiomac.2019.02.047] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Biopolymers have become very attractive as they are degradable, biocompatible, non-toxic and renewable. Due to the intrinsic reactive amino groups, chitosan is vibrant in the midst of other biopolymers. Using the versatility of these amino groups, various structural modifications have been accomplished on chitosan through certain chemical reactions. Chemical modification of chitosan via imine functionalization (RR'CNR″; R: alkyl/aryl, R': H/alkyl/aryl and R″: chitosan ring) is significant as it recommends the resultant chitosan-based Schiff bases (CSBs) for the important applications in the fields like biology, catalysis, sensors, water treatment, etc. CSBs are usually synthesized by the Schiff condensation reaction between chitosan's amino groups and carbonyl compounds with the removal of water molecules. In this review, we first introduce the available synthetic approaches for the preparation of CSBs. Then, we discuss the biological applications of CSBs including antimicrobial activity, anticancer activity, drug carrier ability, antioxidant activity and tissue engineering capacity. Successively, the applications of CSBs in other fields such as catalysis, adsorption and sensors are demonstrated.
Collapse
Affiliation(s)
- R Antony
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| | - T Arun
- Department of Chemistry, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India
| | - S Theodore David Manickam
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| |
Collapse
|
28
|
Fang H, Chen L, Zeng L, Yang Z, Zhang J. Stability, Stimuli-Responsiveness, and Versatile Sorption Properties of a Dynamic Covalent Acylhydrazone Gel. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800073. [PMID: 31565362 PMCID: PMC6607176 DOI: 10.1002/gch2.201800073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Indexed: 06/10/2023]
Abstract
Gel adsorbents are promising for pollutant removal from the wastewater. Herein, an acylhydrazone gel is developed from acylhydrazide-terminated pentaerythritol (PAT) and 2,4,6-triformylphloroglucinol (TFP) based on dynamic covalent acylhydrazone chemistry. PAT-TFP gel is stable under various conditions, while it shows reversible Cu2+ adsorption and desorption. PAT-TFP gel is studied as a versatile adsorbent for the capture of a range of (bulky) organic contaminants and heavy metal ions from aqueous solutions. Fast and good adsorption capacities are achieved for various dyes (rhodamine B and methyl orange), amines (aniline, p-chloroaniline, 4-methylaniline, and p-aminobenzoic acid), phenols (phenol, 1-naphthol, p-methylphenol, and bisphenol A), and metal ions (Cu2+, Cr3+, and Hg2+). The maximum adsorption capacity is 107.5 mg g-1 for Cu2+ and the equilibrium adsorption time is 30 min. PAT-TFP gel can be regenerated efficiently and used repeatedly.
Collapse
Affiliation(s)
- Haobin Fang
- MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐Sen UniversityGuangzhou510275China
| | - Lingyu Chen
- MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐Sen UniversityGuangzhou510275China
| | - Lihua Zeng
- MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐Sen UniversityGuangzhou510275China
| | - Zujin Yang
- MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐Sen UniversityGuangzhou510275China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐Sen UniversityGuangzhou510275China
| |
Collapse
|
29
|
Zheng W, Chen S, Liu H, Ma Y, Xu W. Study of the modification mechanism of heavy metal ions adsorbed by biomass-activated carbon doped with a solid nitrogen source. RSC Adv 2019; 9:37440-37449. [PMID: 35542258 PMCID: PMC9075526 DOI: 10.1039/c9ra07191a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the N-doping of biomass-activated carbon with dicyandiamide was performed via an ultrasonic method and a redox method. BET, SEM, EDS, FT-IR and XPS were used to determine the pore structures, morphologies and surface chemistry of the adsorbents obtained. The N-doping effect of the two modification methods on the same solid nitrogen source was evaluated and the simulated adsorption experiments of heavy metal ions in wastewater were conducted. The results showed that the N-doped biomass-activated carbon having the higher doping content was obtained by a redox method with nitric acid at 25 °C, a solid nitrogen source ratio of 1 : 1 and charring at 800 °C for 2 hours. The adsorption efficiency for the divalent copper ion of the sample obtained by the redox method was 41.15% higher than that of the ultrasonic method sample, and proved that pyridinium nitrogens and amino groups play important roles in adsorption and complexation processes. The isothermal adsorption experiments of N-doped activated carbon conformed to the Freundlich model, which mainly depended on chemical adsorption. The kinetics for copper ion adsorption followed a pseudo-second-order kinetic model. Thermodynamic experiments showed that a higher temperature was advantageous to adsorption. Simultaneously, this study further analyzed the N-doping process of the redox method sample and suggested that improvements can be implemented in the N-doping of activated carbon with solid nitrogen sources. In this study, the N-doping of biomass-activated carbon with dicyandiamide was performed via an ultrasonic method and a redox method.![]()
Collapse
Affiliation(s)
- Wanlan Zheng
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Shuang Chen
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Huie Liu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yudi Ma
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| | - Wenlong Xu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
30
|
Hosseinzadeh H, Pashaei S, Hosseinzadeh S, Khodaparast Z, Ramin S, Saadat Y. Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:303-314. [PMID: 29860005 DOI: 10.1016/j.scitotenv.2018.05.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In the present work, polymer-coated multiwalled carbon nanotube (MWCNT) was prepared via RAFT method. First, a novel trithiocarbonate-based RAFT agent was prepared attached chemically into the surface of MWCNT. In addition, the RAFT co-polymerization of acrylic acid and acrylamide monomers was conducted through the prepared RAFT agent. In the next age, the surface morphology and chemical properties of the prepared components were fully examined by using FTIR, 1HNMR, SEM, TEM, XRD and TGA/DTG techniques. Finally, the modified MWCNT composite was employed as an excellent adsorbent for the adsorption of copper (II) ions. The results indicated that ion adsorption basically relies on adsorbing time, solution pH, initial copper concentration, and adsorbent dosage. Further, the adsorption kinetics and isotherm analysis demonstrated that the adsorption mode was fitted with the pseudo-second-order and Langmuir isotherm models, respectively. Based on the results of thermodynamic study, the ion adsorption process was endothermic and spontaneous. Finally, based on the experimental results, the surface functionalized MWCNT with hydrophilic groups could be successfully used as a promising selective adsorbent material in wastewater treatment.
Collapse
Affiliation(s)
| | - Shahryar Pashaei
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | | | - Zahra Khodaparast
- Chemical Engineering Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Sonia Ramin
- Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran
| | - Younes Saadat
- Polymer Engineering Department, Mahshahr Branch, Islamic Azad University, College of Polymer Engineering, Mahshahr, Iran
| |
Collapse
|
31
|
Yan Y, Yuvaraja G, Liu C, Kong L, Guo K, Reddy GM, Zyryanov GV. Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff's base@Fe3O4 (ECCSB@Fe3O4). Int J Biol Macromol 2018; 117:1305-1313. [DOI: 10.1016/j.ijbiomac.2018.05.204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022]
|
32
|
Xu B, Zheng H, Wang Y, An Y, Luo K, Zhao C, Xiang W. Poly(2-acrylamido-2-methylpropane sulfonic acid) grafted magnetic chitosan microspheres: Preparation, characterization and dye adsorption. Int J Biol Macromol 2018; 112:648-655. [DOI: 10.1016/j.ijbiomac.2018.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
|
33
|
Banaei A, Farokhi Yaychi M, Karimi S, Vojoudi H, Namazi H, Badiei A, Pourbasheer E. 2,2’-(butane-1,4-diylbis(oxy))dibenzaldehyde cross-linked magnetic chitosan nanoparticles as a new adsorbent for the removal of reactive red 239 from aqueous solutions. MATERIALS CHEMISTRY AND PHYSICS 2018; 212:1-11. [DOI: 10.1016/j.matchemphys.2018.02.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
34
|
Wang K, Tian Z, Yin N. Significantly Enhancing Cu(II) Adsorption onto Zr-MOFs through Novel Cross-Flow Disturbance of Ceramic Membrane. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ke Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China
- College of Material & Chemical Engineering, Bengbu University, Bengbu 233030, China
| | - Zhaobin Tian
- College of Material & Chemical Engineering, Bengbu University, Bengbu 233030, China
| | - Na Yin
- College of Material & Chemical Engineering, Bengbu University, Bengbu 233030, China
| |
Collapse
|
35
|
Sun Y, Li D, Yang H, Guo X. Fabrication of Fe3O4@polydopamine@polyamidoamine core–shell nanocomposites and their application for Cu(ii) adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj01815d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe3O4@PDA@PAMAM nanocomposites were fabricated with a polydopamine assisted method, possessing excellent magnetic properties and high adsorption capacity for Cu(ii).
Collapse
Affiliation(s)
- Yukun Sun
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Dongyun Li
- College of Materials Science and Engineering
- China Jiliang University
- Hangzhou
- China
| | - Hui Yang
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xingzhong Guo
- College of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
36
|
Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff’s base@Fe 3 O 4 (CSB@Fe 3 O 4 ) as an adsorbent; kinetics, isotherm and thermodynamic studies. Int J Biol Macromol 2017; 105:422-430. [DOI: 10.1016/j.ijbiomac.2017.07.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/05/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
|
37
|
Lu T, Zhu Y, Qi Y, Wang W, Wang A. Magnetic chitosan-based adsorbent prepared via Pickering high internal phase emulsion for high-efficient removal of antibiotics. Int J Biol Macromol 2017; 106:870-877. [PMID: 28834703 DOI: 10.1016/j.ijbiomac.2017.08.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 12/07/2022]
Abstract
A novel magnetic chitosan-g-poly(2-acrylamide-2-methylpropanesulfonic acid) (CTS-g-AMPS) porous adsorbent was prepared by grafting the AMPS onto the CTS in the Fe3O4 stabilized Pickering high internal phase emulsions (Pickering-HIPEs) and used for the adsorptive removal of the antibiotics tetracycline (TC) and chlorotetracycline (CTC). The results of the structure characterization showed that porous structure of the adsorbent can be tuned easily by altering amount of Fe3O4-MNPs-M and the electrostatic attraction of between SO3- and CTC, TC was the main adsorption driving force. The adsorption capacities of the adsorbent for TC and CTC can be reached to 806.60 and 876.60mg/g in a wide pH ranged from 3.0 to 11.0, respectively. And the adsorption equilibrium can be reached within 90min for TC and 50min for CTC. The magnetic porous adsorbent had good reusability, which can still attain a high adsorption capacity of 759.82 and 842.99mg/g for TC and CTC after five consecutive adsorption cycles, respectively. Therefore, the as-prepared CTS-g-AMPS magnetic adsorbent is potential to be used for adsorption removal of antibiotics from water.
Collapse
Affiliation(s)
- Taotao Lu
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China; Graduate University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongfeng Zhu
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China
| | - Yanxing Qi
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China.
| | - Wenbo Wang
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China
| | - Aiqin Wang
- Center of Eco-material and Green Chemistry, Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Middle Road 18, Lanzhou, 730000, PR China.
| |
Collapse
|