1
|
Liu J, Zhao HL, He L, Yu RL, Kang CM. Discovery and design of dual inhibitors targeting Sphk1 and Sirt1. J Mol Model 2023; 29:141. [PMID: 37059848 DOI: 10.1007/s00894-023-05551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
CONTEXT Leukaemia has become a serious threat to human health. Although tyrosine kinase inhibitors (TKIs) have been developed as targets for the remedy of leukaemia, drug resistance occurs. Research demonstrated that the simultaneous targeting of sphingosine kinase 1 (Sphk1) and Sirtuin 1 (Sirt1) can downregulate myeloid cell leukaemia-1 (MCL-1), overcome the resistance of tyrosine kinase inhibitors, and play a synergistic inhibitory impact on leukaemia treatment. METHODS In this study, virtual screening of 7.06 million small molecules was done by sphingosine kinase 1 and Sirtuin 1 pharmacophore models using Schrödinger version 2019; after that, ADME and Toxicity molecule properties were predicted using Discovery Studio. Molecular docking using Schrödinger selected five molecules, which have the best binding affinity with sphingosine kinase 1 and Sirtuin 1. The five molecules and reference inhibitors were constructed with a total of 12 systems with GROMACS that carried out 100 ns molecular dynamics simulation and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. Due to compound 3 has the lowest binding energy, its structure was modified. A series of compounds docked with sphingosine kinase 1 and Sirtuin 1, respectively. Among them, QST-LC03, QST-LD05, QST-LE03, and QST-LE04 have the better binding affinity than reference inhibitors. Moreover, the SwissADME and PASS platforms predict that 1, 3, QST-LC03, and QST-LE04 have further study value.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui-Lin Zhao
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lei He
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Cong-Min Kang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V. Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential a*ntibiofilm property. Int J Biol Macromol 2022; 211:741-753. [PMID: 35504418 DOI: 10.1016/j.ijbiomac.2022.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensued that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggests that temperature change did not affect overall structure of PCL, but it may alter temperature- dependent PCL structural changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function as they fluctuate much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Christian Bharathi
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Natwar Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Ponnuraj Karthe
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
3
|
Haloalkaline Lipase from Bacillus flexus PU2 Efficiently Inhibits Biofilm Formation of Aquatic Pathogen Vibrio parahaemolyticus. Probiotics Antimicrob Proteins 2022; 14:664-674. [DOI: 10.1007/s12602-022-09908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/18/2022]
|
4
|
Xu LJ, Yang T, Wang J, Huang FH, Zheng MM. Immobilized Lipase Based on Hollow Mesoporous Silicon Spheres for Efficient Enzymatic Synthesis of Resveratrol Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9067-9075. [PMID: 33560828 DOI: 10.1021/acs.jafc.0c07501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymatic esterification of resveratrol is crucial for its potential application in lipophilic foods and drugs. However, the poor activity of the free enzyme hinders the reaction. In this work, the highly efficient enzymatic synthesis of resveratrol ester derivatives was achieved by immobilized lipase on hydrophobic modified hollow mesoporous silicon spheres (HMSS-C8). We preliminarily explored the use of Candida sp. 99-125 lipase (CSL) for the acylation of resveratrol, with a regioselectivity toward 3-OH- over 4'-OH-acylation. HMSS-C8 provided ideal accommodation for CSL with a loading capacity of up to 652 mg/g. The catalytic efficiency of CSL@HMSS-C8 was 15 times higher than that of free CSL, and the conversion of resveratrol reached 98.7% within only 2 h, which is the fastest value recorded in the current literature. After 10 cycles, the conversion remained up to 86.3%. Benefiting from better lipid solubility, the relative oxidation stability index values of oil containing monoester derivatives were 43.1%-68.8% and 23.9%-33.2% higher than that of refined oil and oil containing resveratrol, respectively. This research provides a new pathway for efficient enzymatic synthesis of resveratrol ester derivatives and demonstrates the potential application of resveratrol monoester derivatives as a group of excellent lipid-soluble antioxidants.
Collapse
Affiliation(s)
- Liu-Jia Xu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Tao Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Jing Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Feng-Hong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Ming-Ming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
5
|
Comba González NB, Montoya Castaño D, Montaña Lara JS. Genome sequence of the epiphytic bacteria Bacillus altitudinis strain 19_A, isolated from the marine macroalga Ulva lactuca. BIOTECHNOLOGY REPORTS 2021; 30:e00634. [PMID: 34113548 PMCID: PMC8170112 DOI: 10.1016/j.btre.2021.e00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
|
6
|
Martins PA, Pacheco TF, de Camargo BR, De Marco JL, Salum TFC. Solid-state fermentation production and characterization of an alkaline lipase from a newly isolated Burkholderia gladioli strain. Prep Biochem Biotechnol 2021; 52:70-79. [PMID: 33941018 DOI: 10.1080/10826068.2021.1910959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The newly isolated Burkholderia gladioli BRM58833 strain was shown to secrete an alkaline lipase highly active and stable in organic solvents. Lipase production was optimized through the cultivation of the strain by solid-state fermentation in wheat bran. The lipase extraction conditions were also optimized. The low-cost extract obtained has shown a high hydrolytic activity of 1096.7 ± 39.3 U·gds-1 (units per gram of dry solids) against pNPP and 374.2 ± 20.4 U·gds-1 against triolein. Proteomic analysis revealed the optimized extract is composed of two esterases and three true lipases, showing a preference for long-chain substrates. The highest activity was obtained at 50 °C and pH 9. However, the extract maintained more than 50% of its maximum activity between pH 8.0 and 10.0 and throughout the whole temperature range evaluated (32-70 °C). The enzymes were inhibited by SDS, EDTA, ZnSO4 and FeCl3 and activated by FeSO4, MgCl2 and BaCl2. The lipases conserved their activity when incubated in solvents as acetonitrile, diethyl ether, n-heptane n-hexane, toluene, methanol and t-butanol. The resistance of these lipases to solvents and expressive thermostability when compared to other lipases, reveal their potential both in hydrolysis reactions and in synthesis of esters.
Collapse
Affiliation(s)
- Pedro Alves Martins
- Embrapa Agroenergia, Parque Estação Biológica - PqEB, Brasília-DF, Brazil.,Instituto de Ciências Biológicas, Universidade de Brasília, Brasília-DF, Brazil
| | | | | | | | | |
Collapse
|
7
|
Xing S, Zhu R, Cheng K, Cai Y, Hu Y, Li C, Zeng X, Zhu Q, He L. Gene Expression, Biochemical Characterization of a sn-1, 3 Extracellular Lipase From Aspergillus niger GZUF36 and Its Model-Structure Analysis. Front Microbiol 2021; 12:633489. [PMID: 33776965 PMCID: PMC7994357 DOI: 10.3389/fmicb.2021.633489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a sn-1, 3 extracellular lipases from Aspergillus niger GZUF36 (PEXANL1) was expressed in Pichia pastoris, characterized, and the predicted structural model was analyzed. The optimized culture conditions of P. pastoris showed that the highest lipase activity of 66.5 ± 1.4 U/mL (P < 0.05) could be attained with 1% methanol and 96 h induction time. The purified PEXANL1 exhibited the highest activity at pH 4.0 and 40°C temperature, and its original activity remained unaltered in the majority of the organic solvents (20% v/v concentration). Triton X-100, Tween 20, Tween 80, and SDS at a concentration of 0.01% (w/v) enhanced, and all the metal ions tested inhibited activity of purified PEXANL. The results of ultrasound-assisted PEXANL1 catalyzed synthesis of 1,3-diaglycerides showed that the content of 1,3-diglycerides was rapidly increased to 36.90% with 25 min of ultrasound duration (P < 0.05) and later decreased to 19.93% with 35 min of ultrasound duration. The modeled structure of PEXANL1 by comparative modeling showed α/β hydrolase fold. Structural superposition and molecular docking results validated that Ser162, His274, and Asp217 residues of PEXANL1 were involved in the catalysis. Small-angle X-ray scattering analysis indicated the monomer properties of PEXANL1 in solution. The ab initio model of PEXANL1 overlapped with its modeling structure. This work presents a reliable structural model of A. niger lipase based on homology modeling and small-angle X-ray scattering. Besides, the data from this study will benefit the rational design of suitable crystalline lipase variants in the future.
Collapse
Affiliation(s)
- Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Ruonan Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Kai Cheng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yangyang Cai
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yuedan Hu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Qiujin Zhu
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guizhou University, Guiyang, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Zhao J, Liu S, Gao Y, Ma M, Yan X, Cheng D, Wan D, Zeng Z, Yu P, Gong D. Characterization of a novel lipase from Bacillus licheniformis NCU CS-5 for applications in detergent industry and biodegradation of 2,4-D butyl ester. Int J Biol Macromol 2021; 176:126-136. [PMID: 33548313 DOI: 10.1016/j.ijbiomac.2021.01.214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Enzymatic degradation has become the most promising approach to degrading organic ester compounds. In this study, Bacillus licheniformis NCU CS-5 was isolated from the spoilage of Cinnamomum camphora seed kernel, and its extracellular lipase was purified, with a specific activity of 192.98 U/mg. The lipase was found to be a trimeric protein as it showed a single band of 27 kDa in SDS-PAGE and 81 kDa in Native-PAGE. It was active in a wide range of temperatures (5-55 °C) and pH values (6.0-9.0), and the optimal temperature and pH value were 40 °C and 8.0, respectively. The enzyme was active in the presence of various organic solvents, metal ions, inhibitors and surfactants. Both crude and purified lipase retained more than 80% activity after 5 h in the presence of commercial detergents, suggesting its great application potential in detergent industry. The highest activity was found to be towards medium- and long-chain fatty acids (C6-C18). Peptide mass spectrometric analysis of the purified lipase showed similarity to the lipase family of B. licheniformis. Furthermore, it degraded more than 90% 2,4-D butyl ester to its hydrolysate 2,4-D within 24 h, indicating that the novel lipase may be applied to degrade organic ester pesticides.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Shichang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yifang Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ding Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Dongman Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China; New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| |
Collapse
|
9
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
11
|
He MY, Li WK, Meiler J, Zheng QC, Zhang HX. Insight on mutation-induced resistance to anaplastic lymphoma kinase inhibitor ceritinib from molecular dynamics simulations. Biopolymers 2019; 110:e23257. [PMID: 30664251 DOI: 10.1002/bip.23257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 11/09/2022]
Abstract
Ceritinib, an advanced anaplastic lymphoma kinase (ALK) next-generation inhibitor, has been proved excellent antitumor activity in the treatment of ALK-associated cancers. However, the accumulation of acquired resistance mutations compromise the therapeutic efficacy of ceritinib. Despite abundant mutagenesis data, the structural determinants for reduced ceritinib binding in mutants remains elusive. Focusing on the G1123S and F1174C mutations, we applied molecular dynamics (MD) simulations to study possible reasons for drug resistance caused by these mutations. The MD simulations predict that the studied mutations allosterically impact the configurations of the ATP-binding pocket. An important hydrophobic cluster is identified that connects P-loop and the αC-helix, which has effects on stabilizing the conformation of ATP-binding pocket. It is suggested, in this study, that the G1123S and F1174C mutations can induce the conformational change of P-loop thereby causing the reduced ceritinib affinity and causing drug resistance.
Collapse
Affiliation(s)
- Mu-Yang He
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, People's Republic of China
| | - Wei-Kang Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, People's Republic of China
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Structure-function studies of the asparaginyl-tRNA synthetase from Fasciola gigantica: understanding the role of catalytic and non-catalytic domains. Biochem J 2018; 475:3377-3391. [DOI: 10.1042/bcj20180700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
The asparaginyl-tRNA synthetase (NRS) catalyzes the attachment of asparagine to its cognate tRNA during translation. NRS first catalyzes the binding of Asn and ATP to form the NRS-asparaginyl adenylate complex, followed by the esterification of Asn to its tRNA. We investigated the role of constituent domains in regulating the structure and activity of Fasciola gigantica NRS (FgNRS). We cloned the full-length FgNRS, along with its various truncated forms, expressed, and purified the corresponding proteins. Size exclusion chromatography indicated a role of the anticodon-binding domain (ABD) of FgNRS in protein dimerization. The N-terminal domain (NTD) was not essential for cognate tRNA binding, and the hinge region between the ABD and the C-terminal domain (CTD) was crucial for regulating the enzymatic activity. Molecular docking and fluorescence quenching experiments elucidated the binding affinities of the substrates to various domains. The molecular dynamics simulation of the modeled protein showed the presence of an unstructured region between the NTD and ABD that exhibited a large number of conformations over time, and further analysis indicated this region to be intrinsically disordered. The present study provides information on the structural and functional regulation, protein-substrate(s) interactions and dynamics, and the role of non-catalytic domains in regulating the activity of FgNRS.
Collapse
|
13
|
Purification and Characterization of Lipase Produced by Leuconostoc mesenteroides Subsp. mesenteroides ATCC 8293 Using an Aqueous Two-Phase System (ATPS) Composed of Triton X-100 and Maltitol. Molecules 2018; 23:molecules23071800. [PMID: 30037038 PMCID: PMC6099660 DOI: 10.3390/molecules23071800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
Purification of lipase produced by L. mesenteroides subsp. mesenteroides ATCC 8293 was conducted for the first time using a novel aqueous two-phase system (ATPS) composed of Triton X-100 and maltitol. The partitioning of lipase was optimized according to several parameters including pH, temperature, and crude load. Results showed that lipase preferentially migrated to the Triton X-100 rich phase and optimum lipase partitioning was achieved in ATPS at TLL of 46.4% and crude load of 20% at 30 °C and pH 8, resulting in high lipase purification factor of 17.28 and yield of 94.7%. The purified lipase showed a prominent band on SDS-PAGE with an estimated molecular weight of 50 kDa. The lipase was stable at the temperature range of 30–60 °C and pH range of 6–11, however, it revealed its optimum activity at the temperature of 37 °C and pH 8. Moreover, lipase exhibited enhanced activity in the presence of non-ionic surfactants with increased activity up to 40%. Furthermore, results exhibited that metals ions such as Na+, Mg2+, K+ and Ca2+ stimulated lipase activity. This study demonstrated that this novel system could be potentially used as an alternative to traditional ATPS for the purification and recovery of enzymes since the purified lipase still possesses good process characteristics after undergoing the purification process.
Collapse
|
14
|
Impact of signal peptide and transmembrane segments on expression and biochemical properties of a lipase from Bacillus sphaericus 205y. J Biotechnol 2017; 264:51-62. [PMID: 29107669 DOI: 10.1016/j.jbiotec.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022]
Abstract
A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein.
Collapse
|