1
|
Malik A, Khan JM, Sen P, Alamri A, Karan R, Emerson I A. Coomassie Brilliant Blue Induces Coiled-Coil Aggregation in Lysozyme at pH 7.4 by Hydrophobic and Electrostatic Forces. ACS OMEGA 2025; 10:1829-1838. [PMID: 39829483 PMCID: PMC11740825 DOI: 10.1021/acsomega.4c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.4. Various biophysical techniques have been used, such as turbidity, Rayleigh light scattering (RLS) kinetics, far-UV circular dichroism (CD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) imaging. The turbidity data indicated that CBB (≥0.1 mM) induces aggregation in HEWL at pH 7.4. The aggregation kinetics caused by CBB are quick without a lag phase and are dependent on the CBB concentration. The far-UV CD data revealed that the CBB-induced aggregated samples had lost their CD signals without exhibiting a shift in the spectrum position. Sodium chloride and ammonium sulfate show little effect on the CBB-induced aggregates, but alcohol such as methanol, ethanol, and 2-propanol could reverse the aggregation. Overall, this study aims to better understand the mechanism underlying CBB-induced aggregation and keep in mind that CBB employed in laboratories can alter the protein structure. We report the aggregation of a natural protein due to coiled-coil formation induced by a dye at physiological pH and temperature conditions. This finding has high value because several dyes are used for diagnostic and therapeutic purposes, and coiled-coil formation is closely related to infection mechanisms and nanoparticle-based drug deliveries.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, College of
Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Abdulaziz Alamri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rohit Karan
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| | - Arnold Emerson I
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
2
|
Xiao H, Huang L, Zhang W, Yin Z. Damage of proteins at the air/water interface: Surface tension characterizes globulin interface stability. Int J Pharm 2020; 584:119445. [PMID: 32450209 DOI: 10.1016/j.ijpharm.2020.119445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/17/2023]
Abstract
In the present study, we aimed to see what circumstances may cause protein damage at air/water interface and reveal the correlation between the surface properties of protein solution and the interface stability. The surface hydrophobicity and β-sheet of protein were determined by exogenous fluorescent probes, and the changes in the spatial structure of proteins were characterized by steady-state fluorescence spectroscopy. The surface tension was determined by the plate method, and such value was used to establish the correlation with the hydrophobicity and structure of the protein. Moreover, degree of aggregation in the presence or absence of Hofmeister salt in protein solution was investigated. There was a significant correlation between the surface tension and hydrophobicity of the protein solution (P < 0.05). The surface tension and structure of the protein also showed a significant correlation under the induction of pH (P < 0.05). Furthermore, when the protein was induced by the air/water interface, the surface tension, hydrophobicity, and structure of proteins were correlated, and protein aggregation was increased. When the additive induced a decrease in the surface tension of the protein solution, the protein aggregation was promoted. These findings provided valuable insights into the relationship between surface tension of the protein solution and interfacial stability and paved the way for future pre-formulation studies of therapeutic proteins.
Collapse
Affiliation(s)
- Huashuai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Wei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol 2019; 136:1237-1246. [DOI: 10.1016/j.ijbiomac.2019.06.180] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
|
4
|
Neelofar K, Arif Z, Ahmad J, Alam K. Inhibitory effect of silibinin on Amadori-albumin in diabetes mellitus: A multi-spectroscopic and biochemical approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:217-222. [PMID: 30399482 DOI: 10.1016/j.saa.2018.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Due to increased understanding of the damaging effects of glycation process, it is highly desirable to manage this process effectively either by prevention or by managing the consequences of glycation preferentially at early stage. The use of potential naturally occurring compounds as anti-glycating agents may provide an effective approach to control the development and progression of diabetic associated complications. In the present study, human serum albumin (albumin) was co-incubated with glucose and different concentrations of silibinin. Silibinin was demonstrated to possess anti-glycation activity. We found that silibinin inhibits glucoseinduced glycation at an early stage. We analyzed the effect of silibinin on albumin structure and its biochemical properties at early stage of glycation through various biophysical and biochemical techniques. Nitro blue tertazolium assay results showed that fructosamine formation was reduced in the presence of silibinin. UV-visible spectra results showed decrease in the absorbance with increasing concentrations of silibinin towards native albumin absorbance. Fluorescence results showed that the intensity was increased with increasing the silibinin concentrations as compared to Amadori-albumin. In addition, Far-UV CD spectra demonstrated some restoration of α-helicity when albumin was incubated with glucose in the presence of silibinin. Moreover, silibinin caused significant reduction in carbonyl contents with concomitant increase in free thiol, lysine and arginine residues. The anti-glycation activity of silibinin was concentration-dependent. From all the observations, we can conclude that silibinin might be acting as an obstacle in the binding of glucose with albumin and thus preventing the glycation induced changes in albumin. Silibinin may be effective in delaying glycation mediated pathologies in diabetic individuals.
Collapse
Affiliation(s)
- Km Neelofar
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zarina Arif
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Jamal Ahmad
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Khursheed Alam
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
5
|
Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.). Food Chem 2019; 283:183-190. [PMID: 30722859 DOI: 10.1016/j.foodchem.2018.12.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 11/23/2022]
Abstract
Lectin was incubated in corresponding acidic buffers (pH 1.0-3.5) for a certain period (0.5, 1, 2, 4, 8, 12 and 24 h) at 25 °C. Low-pH induced changes in structure, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.) were investigated in the present study. Results indicated that the alteration in structure was a progressive unfolding process mainly depending on pH environment, and the treated lectin attained a stable state at 8 h. Electrophoretic, dynamic light scattering (DLS) and size exclusion chromatography (SEC) analyses suggested that lectin monomers appeared in the solutions of pH < 2.0. Differential scanning calorimetry (DSC) confirmed that thermal stability of lectin weakened in low pH environments. Furthermore, ELISA and in vitro digestion assay showed allergenicity and digestibility significantly decreased with the structural alterations. These results showed low-pH treatments have great potential to reduce the damage of legumes protein consumption.
Collapse
|
6
|
Biochemical characterization of a native group III trypsin ZT from Atlantic cod (Gadus morhua). Int J Biol Macromol 2018; 125:847-855. [PMID: 30550824 PMCID: PMC7112495 DOI: 10.1016/j.ijbiomac.2018.12.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
Atlantic cod trypsin ZT is biochemically characterized for the first time in this report in comparison to a group I trypsin (cod trypsin I). To our knowledge, trypsin ZT is the first thoroughly characterized group III trypsin. A more detailed understanding of trypsin ZT biochemistry may give insight into its physiological role as well as its potential use within the biotechnology sector. Stability is an important factor when it comes to practical applications of enzymes. Compared to trypsin I, trypsin ZT shows differences in pH and heat stability, sensitivity to inhibitors and sub-site substrate specificity as shown by multiplex substrate profiling analysis. Based on the analysis, trypsin ZT cleaved at arginine and lysine as other trypsins. Furthermore, trypsin ZT is better than trypsin I in cleaving peptides containing several consecutive positively charged residues. Lysine- and arginine-rich amino acid sequences are frequently found in human viral proteins. Thus, trypsin ZT may be effective in inactivating human and fish viruses implying a possible role for the enzyme in the natural defence of Atlantic cod. The results from this study can lead to multiple practical applications of trypsin ZT.
Collapse
|
7
|
Palayam M, Ganapathy J, Balu KE, Pennathur G, Krishnasamy G. Structural insights into a multifunctional inhibitor, 'AMTIN' from tubers of Alocasia macrorrhizos and its possible role in dengue protease (NS2B-NS3) inhibition. Int J Biol Macromol 2018; 113:681-691. [PMID: 29505868 DOI: 10.1016/j.ijbiomac.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 11/25/2022]
Abstract
Protease inhibitors from plants play major role in defensive mechanism against various pathogenic organisms. AMTIN from the tubers of Alocasia macrorrhiza has been purified and characterized as multi-functional Kunitz type protease inhibitor. AMTIN is varied from other KTIs by having three different loops specific for binding to trypsin/amylase and subtilisin that are located approximately 30Ǻ away from one another as evidenced from crystallographic efforts. Biochemical studies on AMTIN reveal simultaneous binding of protease/amylase and have been cross validated using in-silico tools to model Amylase - AMTIN - Trypsin complex without any steric clashes. Apart from multi functionality, the remarkable structural and functional stability of AMTIN at high temperature, presence of many phosphorylation, myristoylation and glycosylation sites and molecular docking studies with dengue viral protease (NS2B-NS3) makes this protein interesting. Hence AMTIN can be considered as a template to design effective antivirals against dengue virus.
Collapse
Affiliation(s)
- Malathy Palayam
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | | | - Kanal Elamparithi Balu
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | - Gautam Pennathur
- Center for Biotechnology, Anna University, Chennai 600025, India
| | - Gunasekaran Krishnasamy
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India.
| |
Collapse
|