1
|
Zheng F, Chen C, Rong S, Zhang H, Zhuang H, Basit A, Chen J. Expression and characterization of two acidophilic β-1,3-1,4-glucanases from Trichoderma asperellum ND-1 suitable for cello-oligosaccharides production. Int J Biol Macromol 2025; 308:142474. [PMID: 40154684 DOI: 10.1016/j.ijbiomac.2025.142474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Enzymatic transformation of plant biomass offers an desirable pathway to yield high-value macromolecules, e.g., cello-oligosaccharides. Two acidophilic GH16 family β-1,3-1,4-glucanases (TaGlu16A and TaGlu16B) from Trichoderma asperellum ND-1 were successfully expressed in Komagataella phaffii and estimated to be ∼30 and 50 kDa by SDS-PAGE. TaGlu16B was a glycoprotein with a carbohydrate content of ∼30 % (w/w). TaGlu16A and TaGlu16B exhibited maximum activities at pH 4.0 and 5.0, respectively. Both enzymes were ethanol-tolerant, retaining >70 % activities in the presence of 0-20 % ethanol. Substrate-specificity analysis suggested that TaGlu16A was exclusively active toward barley β-glucan (Vmax = 1041.5 μmol/min/mg, Km = 2.45 mg/mL), yielding tetrasaccharide and trisaccharide. Notably, TaGlu16B initially released tetrasaccharide and trisaccharide from barley β-glucan and further degraded into disaccharide and glucose, suggested a bifunctional enzyme with both endo-β-1,3-1,4-glucanase and exo-acting glucanase activities. Site-directed mutagenesis indicated that (Glu151 and Glu156) and (Glu134 and Glu139) were crucial catalytic residues for TaGlu16A and TaGlu16B activities, respectively. Moreover, the addition of TaGlu16A and TaGlu16B to saccharification process could remarkably reduce the viscosity by 6.21 and 8.69, and filtration time by 26.66 % and 39.25 %, respectively. These results provided insights into β-1,3-1,4-glucanase activities and paved the way for degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Chaoran Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sicheng Rong
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou 310051, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
2
|
Lin K, Shi Z, Zhang Z, Wei Y, Wan S, Gao H, Qin Z. Module architecture analysis and application of glycoside hydrolase family 148 thermostable β-1,3-1,4-glucanase. Int J Biol Macromol 2025; 307:142012. [PMID: 40081705 DOI: 10.1016/j.ijbiomac.2025.142012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
β-1,3-1,4-Glucanases have attracted significant interest because of their potential applications in various food industries. Glycoside hydrolase (GH) family 148 β-1,3-1,4-glucanases exhibit excellent thermal stability and a unique catalytic mechanism, making them particularly promising for certain food processing applications. This study investigated the module architecture enzymatic properties, catalytic mechanisms, and potential applications of a multi-domain β-1,3-1,4-glucanase (EngU) from GH family 148. The overall structure of EngU comprises three independently folding domains, namely the GH148 catalytic domain, CBM4, and the C-terminal domain. The insertion of CBM4 causes the catalytic domain of EngU to be non-contiguous in sequence. The optimum reaction conditions for EngU have been found to be pH 6.0 and 90 °C, demonstrating relatively high thermostability. EngU is an atypical β-1,3-1,4-glucanase, predominantly cleaves the β-1,3 glycosidic bonds in β-1,3-1,4-glucan. Malt saccharification experiments revealed that adding EngU (80 U/g malt) can decreased the viscosity of mash by 6.85 % and the filtration time by 28.83 %. Furthermore, EngU was found to effectively hydrolyze oat bran, producing β-glucooligosaccharides, with the main hydrolysis products being trisaccharide and disaccharide. These results demonstrate the unique module architecture and the application potential of GH family 148 β-1,3-1,4-glucanases, providing valuable insights and resources regarding this category of glycoside hydrolases.
Collapse
Affiliation(s)
- Keyu Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongyu Shi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zheyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yunfan Wei
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Sibao Wan
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haiyan Gao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Yao ZY, Yu MJ, Li QQ, Gong JS, Zhang P, Jiang JY, Su C, Xu G, Jia BY, Xu ZH, Shi JS. Unlocking Green Biomanufacturing Potential: Superior Heterologous Gene Expression with a T7 Integration Overexpression System in Bacillus subtilis. ACS Synth Biol 2024. [PMID: 39718905 DOI: 10.1021/acssynbio.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Industrial biotechnology employs cells for producing valuable products and serving as biocatalysts sustainably, addressing resource, energy, and environmental issues. Bacillus subtilis is a preferred host for creating microbial chassis cells and producing industrial enzymes and functional nutritional products. In this study, a dual-module T7 integration expression system in B. subtilis was established. The first module, driven by the T7 RNA polymerase, was integrated into the genome via the CRISPR/Cas9 system. Another module responsible for expression control was systematically integrated into 28 discrete chromosomal loci and the impact of different genomic positions on gene expression was explored, resulting in a high-intensity integrated expression system. Furthermore, by modifying the LacI repressor factor for biological regulation, we achieved a strong expression intensity without the inducer addition. This system was successfully used to express phospholipase D and hyaluronic acid lyase, resulting in extracellular enzyme activities of 339.12 U/mL and 2.60 × 104 U/mL, respectively. Additionally, by exclusively targeting the HA gene cluster for expression, a production yield of 6.86 g/L was achieved on a 5 L fermentation scale. The system eliminates the use of antibiotics and inducers, offering a controllable, efficient, and promising gene expression regulation tool in B. subtilis, enhancing its potential for biomanufacturing applications.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Min-Jun Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qu-Quan Li
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Guoqiang Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Bing-Yi Jia
- Shandong Engineering Laboratory of Sodium Hyaluronate and Its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| |
Collapse
|
4
|
Yin M, Wang N, Wang Q, Xia H, Cheng X, Hu H, Zhang Z, Liu H. Cloning and expression of recombinant human superoxide dismutase 1 (hSOD1) in Bacillus subtilis 1012. Biotechnol Lett 2023; 45:125-135. [PMID: 36469194 DOI: 10.1007/s10529-022-03319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE We aimed to clone and express the human Cu, Zn superoxide dismutase (hSOD1) in Bacillus subtilis 1012. Also, we investigated the expression level of hSOD1 under different induction conditions. RESULT As an essential member of the antioxidant defense system in vivo, hSOD1 has become a therapeutic agent against host diseases, such as oxygen toxicity, acute inflammation, and radiation injury. The recombinant hSOD1 was successfully secreted extracellularly into B. subtilis 1012. The expression conditions were optimized, including inoculum size, different media, temperatures, and inducer concentrations. Finally, the highest level of hSOD1 was produced as a soluble form in Super rich medium by 2% inoculum with 0.2 mM of IPTG at 37 °C after the induction for 24 h. Besides, 20 g/L of lactose also displayed the same inductive effect on hSOD1 expression as that of IPTG (0.2 mM). Finally, the specific activity of purified hSOD1 was determined to be 1625 U/mg in the presence of 800 μM of Cu2+ and 20 μM of Zn2+. CONCLUSIONS We propose that the B. subtilis 1012-hSOD1 strain system has great potential in future industrial applications.
Collapse
Affiliation(s)
- Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Nian Wang
- College of Basic Medical Sciences, Sun YAT-SEN University, No. 135, Xingang Xi Road, Guangzhou, 510275, People's Republic of China
| | - Qiqi Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Hui Xia
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
5
|
Niu C, Fu J, Zheng F, Liu C, Wang J, Li Q. Enhanced acidic stability of a Bacillus 1,3-1,4-β-glucanase through pH-based molecular dynamics simulation for efficient application in brewing industry. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Zhang W, Zhang Y, Lu Y, Herman RA, Zhang S, Hu Y, Zhao W, Wang J, You S. More efficient barley malting under catalyst: thermostability improvement of a β-1,3-1,4-glucanase through surface charge engineering with higher activity. Enzyme Microb Technol 2022; 162:110151. [DOI: 10.1016/j.enzmictec.2022.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022]
|
7
|
A 4-α-Glucanotransferase from Thermus thermophilus HB8: Secretory Expression and Characterization. Curr Microbiol 2022; 79:202. [PMID: 35604453 DOI: 10.1007/s00284-022-02856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
4-α-glucanotransferase (4GT, EC 2.4.1.25) catalyzes the breakdown of the α-1,4 glycosidic bonds of the starch main chain and forms new α-1,4 glycosidic bonds in the side chain, which is often used to optimize the physical and chemical properties of starch and to improve the quality of starch-based food. However, the low enzyme activity of 4GT limits its production and widespread application. Herein, the 4GT gene encoding 500 amino acids from Thermus thermophilus HB8 was cloned and expressed in Escherichia coli. The purified 4GT exhibited maximum activity at pH 7.0 and 60 °C and had a good stability at pH 6.0-8.0 and 30-60 °C. It was confirmed that 4GT possessed the catalytic function of extending the branch length of potato starch. Furthermore, the 4GT gene was successfully expressed extracellularly in Bacillus subtilis. Then, the enzyme yield of 4GT increased by 4.1 times through screening of different plasmids and hosts. Additionally, the fermentation conditions were optimized to enhance 4GT extracellular enzyme yield. Finally, a recombinant Bacillus subtilis with 299.9 U/mL enzyme yield of 4GT was obtained under the optimized fermentation process. In conclusion, this study provides a valuable reference for characterization and expression of food-grade enzymes.
Collapse
|
8
|
Ye J, Li Y, Bai Y, Zhang T, Jiang W, Shi T, Wu Z, Zhang YHPJ. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. BIORESOUR BIOPROCESS 2022; 9:56. [PMID: 38647747 PMCID: PMC10991129 DOI: 10.1186/s40643-022-00540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
To mimic the Escherichia coli T7 protein expression system, we developed a facile T7 promoter-based protein expression system in an industrial microorganism Bacillus subtilis. This system has two parts: a new B. subtilis strain SCK22 and a plasmid pHT7. To construct strain SCK22, the T7 RNA polymerase gene was inserted into the chromosome, and several genes, such as two major protease genes, a spore generation-related gene, and a fermentation foam generation-related gene, were knocked out to facilitate good expression in high-density cell fermentation. The gene of a target protein can be subcloned into plasmid pHT7, where the gene of the target protein was under tight control of the T7 promoter with a ribosome binding site (RBS) sequence of B. subtilis (i.e., AAGGAGG). A few recombinant proteins (i.e., green fluorescent protein, α-glucan phosphorylase, inositol monophosphatase, phosphoglucomutase, and 4-α-glucanotransferase) were expressed with approximately 25-40% expression levels relative to the cellular total proteins estimated by SDS-PAGE by using B. subtilis SCK22/pHT7-derived plasmid. A fed-batch high-cell density fermentation was conducted in a 5-L fermenter, producing up to 4.78 g/L inositol monophosphatase. This expression system has a few advantageous features, such as, wide applicability for recombinant proteins, high protein expression level, easy genetic operation, high transformation efficiency, good genetic stability, and suitability for high-cell density fermentation.
Collapse
Affiliation(s)
- Jing Ye
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yuqing Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Wei Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
9
|
Huang Z, Ni G, Wang F, Zhao X, Chen Y, Zhang L, Qu M. Characterization of a Thermostable Lichenase from Bacillus subtilis B110 and Its Effects on β-Glucan Hydrolysis. J Microbiol Biotechnol 2022; 32:484-492. [PMID: 34949743 PMCID: PMC9628817 DOI: 10.4014/jmb.2111.11017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Lichenase is an enzyme mainly implicated in the degradation of polysaccharides in the cell walls of grains. Emerging evidence shows that a highly efficient expression of a thermostable recombinant lichenase holds considerable promise for application in the beer-brewing and animal feed industries. Herein, we cloned a lichenase gene (CelA203) from Bacillus subtilis B110 and expressed it in E. coli. This gene contains an ORF of 729 bp, encoding a protein with 242 amino acids and a calculated molecular mass of 27.3 kDa. According to the zymogram results, purified CelA203 existed in two forms, a monomer, and a tetramer, but only the tetramer had potent enzymatic activity. CelA203 remained stable over a broad pH and temperature range and retained 40% activity at 70°C for 1 h. The Km and Vmax of CelA203 towards barley β-glucan and lichenan were 3.98 mg/ml, 1017.17 U/mg, and 2.78 mg/ml, 198.24 U/mg, respectively. Furthermore, trisaccharide and tetrasaccharide were the main products obtained from CelA203-mediated hydrolysis of deactivated oat bran. These findings demonstrate a promising role for CelA203 in the production of oligosaccharides in animal feed and brewing industries.
Collapse
Affiliation(s)
- Zhen Huang
- Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China,Corresponding authors F. Wang E-mail:
| | - Xiaoyan Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Yunda Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Lixia Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Mingren Qu
- Key Laboratory of Animal Nutrition of Jiangxi Province, Nutritional Feed Development Engineering Research Center, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China,
M. Qu Phone/Fax: +86 791 83813459 E-mail:
| |
Collapse
|
10
|
Enhanced acidic resistance ability and catalytic properties of Bacillus 1,3-1,4-β-glucanases by sequence alignment and surface charge engineering. Int J Biol Macromol 2021; 192:426-434. [PMID: 34627850 DOI: 10.1016/j.ijbiomac.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022]
Abstract
High stability at acidic environment is required for 1,3-1,4-β-glucanase to function in biofuel, brewing and animal feed industries. In this study, a mesophilic β-glucanase from Bacillus terquilensis CGX 5-1 was rationally engineered through sequence alignment and surface charge engineering to improve its acidic resistance ability. Nineteen singly-site variants were constructed and Q1E, I133L and V134A variants showed better acidic stability without the compromise of catalytic property and thermostability. Furthermore, four multi-site variants were constructed and one double-site variant Q1E/I133L with better stability at acidic environment and higher catalytic property was obtained. The fluorescence spectroscopy and structural analysis showed that more surface negative charge, decreased exposure degree of residue No.1, shifted side chain direction of residue No.133 and the lower total and folding free energy might be the reason for the improvement of acidic stability of Q1E/I133L variant. The obtained Q1E/I133L variant has potential applications in industries.
Collapse
|
11
|
Khalid A, Ye M, Wei C, Dai B, Yang R, Huang S, Wang Z. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets. Prep Biochem Biotechnol 2020; 51:497-510. [PMID: 33108947 DOI: 10.1080/10826068.2020.1833344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, a strain producing β-glucanase and protease, identified as Bacillus velezensis Y1, was isolated from the manure of piglet. We attempted to produce β-glucanase and protease after optimization of various process parameters with the submerged fermentation. The effects of each factor on producing β-glucanase and protease were as follows: temperature > time > pH > loaded liquid volume. The properties of the β-glucanase showed that the most suitable reaction temperature was 65 °C and pH was 6.0. However for protease optimum reaction temperature was 50 °C, and pH was 6.0. The amplified PCR fragments of β-glucanase and protease were 1434 bp containing an open reading frame of 1413 bp encoding a protein with 444 amino acids and 1752 bp containing an open reading frame of 1521 bp encoding a protein with 506 amino acids, respectively. So, the study demonstrated a viable approach of using newly identified B. velezensis Y1 strain for the maximum yield of two industrially important enzymes.
Collapse
Affiliation(s)
- Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Miao Ye
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Chunjie Wei
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Binghong Dai
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Shoujun Huang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Hu X, Fan G, Liao H, Fu Z, Ma C, Ni H, Li X. Optimized soluble expression of a novel endoglucanase from Burkholderia pyrrocinia in Escherichia coli. 3 Biotech 2020; 10:387. [PMID: 32832337 DOI: 10.1007/s13205-020-02327-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pyrrocinia B1213, a novel microbe isolated from a Baijiu-producing environment, displayed strong cellulolytic activity on agar plates with glucan as the carbon source and had an activity of 674.5 U/mL after culturing with barley. Genome annotation of B. pyrrocinia identificated a single endoglucanase (EG)-encoding gene, designated as BpEG01790. The endoglucanase BpEG01790 shows 98.28% sequence similarity with an endo-β-1,4-glucanase (EC 3.2.1.4) from Burkholderia stabilis belonging to glycoside hydrolase family 8 (GH8). The gene BpEG01790 has an open reading frame of 1218 bp encoding a 406 amino acid (AA) residue protein (43.0 kDa) with a 40-AA signal peptide. BpEG01790 was successfully cloned into pET28a( +) with and without the signal peptide; however, attempts to overexpress this protein in Escherichia coli BL21(DE3) cells using this expression system failed. BpEG01790 was also cloned into the pCold TF vector. Active BpEG01790 was successfully overexpressed with or without the signal peptide using the pCold TF vector expression system and E. coli BL21 (DE3) cells. Overexpression of recombinant BpEG01790 without the signal peptide was higher compared with the construct that included the signal peptide. Optimization of culture conditions improved the enzyme activity by 12.5-fold. This is the first report describing the heterologous soluble overexpression of an EG belonging to GH8 from B. pyrrocinia using TF as a molecular chaperone.
Collapse
Affiliation(s)
- Xiaoqing Hu
- College of Food and Biological Engineering, Jimei University, Yindou Road, Jimei District, Xiamen, 361021 Fujian China
| | - Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
| | - Hui Liao
- College of Food and Biological Engineering, Jimei University, Yindou Road, Jimei District, Xiamen, 361021 Fujian China
| | - Zhilei Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Chao Ma
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Yindou Road, Jimei District, Xiamen, 361021 Fujian China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048 China
| |
Collapse
|
13
|
Dai J, Dong A, Xiong G, Liu Y, Hossain MS, Liu S, Gao N, Li S, Wang J, Qiu D. Production of Highly Active Extracellular Amylase and Cellulase From Bacillus subtilis ZIM3 and a Recombinant Strain With a Potential Application in Tobacco Fermentation. Front Microbiol 2020; 11:1539. [PMID: 32793132 PMCID: PMC7385192 DOI: 10.3389/fmicb.2020.01539] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, a series of bacteria capable of degrading starch and cellulose were isolated from the aging flue-cured tobacco leaves. Remarkably, there was a thermophilic bacterium, Bacillus subtilis ZIM3, that can simultaneously degrade both starch and cellulose at a wide range of temperature and pH values. Genome sequencing, comparative genomics analyses, and enzymatic activity assays showed that the ZIM3 strain expressed a variety of highly active plant biomass-degrading enzymes, such as the amylase AmyE1 and cellulase CelE1. The in vitro and PhoA-fusion assays indicated that these enzymes degrading complex plant biomass into fermentable sugars were secreted into ambient environment to function. Besides, the amylase and cellulase activities were further increased by three- to five-folds by using overexpression. Furthermore, a fermentation strategy was developed and the biodegradation efficiency of the starch and cellulose in the tobacco leaves were improved by 30–48%. These results reveal that B. subtilis ZIM3 and the recombinant strain exhibited high amylase and cellulase activities for efficient biodegradation of starch and cellulose in tobacco and could potentially be applied for industrial tobacco fermentation.
Collapse
Affiliation(s)
- Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Aijun Dong
- Technology Research Center of China Tobacco Hubei Industry Co., Ltd., Wuhan, China
| | - Guoxi Xiong
- Technology Research Center of China Tobacco Hubei Industry Co., Ltd., Wuhan, China
| | - Yaqi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Md Shahdat Hossain
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,National Institute of Biotechnology, Dhaka, Bangladesh
| | - Shuangyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuyang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Huang Y, Wang J, Hou Y, Hu SQ. Production of yeast hydrolysates by Bacillus subtilis derived enzymes and antihypertensive activity in spontaneously hypertensive rats. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1791174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University and Technology, Guangzhou, Guangdong, China
| | - Jiajia Wang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Lab of Agricultural Products Processing, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University and Technology, Guangzhou, Guangdong, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Liu S, Wang J, Zhu Z, Shi T, Zhang YHPJ. Efficient secretory production of large-size heterologous enzymes in Bacillus subtilis: A secretory partner and directed evolution. Biotechnol Bioeng 2020; 117:2957-2968. [PMID: 32589796 DOI: 10.1002/bit.27478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
Secretory production of recombinant proteins provides a simple approach to the production and purification of target proteins in the enzyme industry. We developed a combined strategy for the secretory production of three large-size heterologous enzymes with a special focus on 83-kDa isoamylase (IA) from an archaeon Sulfolobus tokodaii in a bacterium Bacillus subtilis. First, a secretory protein of the B. subtilis family 5 glycoside hydrolase endoglucanase (Cel5) was used as a fusion partner, along with the NprB signal peptide, to facilitate secretory production of IA. This secretory partner strategy was effective for the secretion of two other large enzymes: family 9 glycoside hydrolase from Clostridium phytofermentas and cellodextrin phosphorylase from Clostridium thermocellum. Second, the secretion of Cel5-IA was improved by directed evolution with two novel double-layer Petri-dish-based high-throughput screening (HTS) methods. The high-sensitivity HTS relied on the detection of high-activity Cel5 on the carboxymethylcellulose/Congo-red assay. The second modest-sensitivity HTS focused on the detection of low-activity IA on the amylodextrin-I2 assay. After six rounds of HTS, a secretory Cel5-IA level was increased to 234 mg/L, 155 times the wild-type IA with the NprB signal peptide only. This combinatory strategy could be useful to enhance the secretory production of large-size heterologous proteins in B. subtilis.
Collapse
Affiliation(s)
- Shan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
16
|
Liu X, Jiang Z, Ma S, Yan Q, Chen Z, Liu H. High-level production and characterization of a novel β-1,3-1,4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Yang H, Ma Y, Zhao Y, Shen W, Chen X. Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis. Appl Microbiol Biotechnol 2020; 104:2973-2985. [DOI: 10.1007/s00253-020-10435-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
|
18
|
Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis. Enzyme Microb Technol 2019; 124:70-78. [DOI: 10.1016/j.enzmictec.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
|
19
|
Liu X, Wang H, Wang B, Pan L. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Microb Cell Fact 2018; 17:163. [PMID: 30348150 PMCID: PMC6196424 DOI: 10.1186/s12934-018-1011-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Bacillus subtilis has been widely used as a host for heterologous protein expression in food industry. B. subtilis ATCC6051 is an alternative expression host for the production of industrial enzymes, and exhibits favorable growth properties compared to B. subtilis 168. Extracellular expression of pullulanase from recombinant B. subtilis is still limited due to the issues on promoters of B. subtilis expression system. This study was undertaken to develop a new, high-level expression system in B. subtilis ATCC6051. Results To further optimize B. subtilis ATCC6051 as a expression host, eight extracellular proteases (aprE, nprE, nprB, epr, mpr, bpr, vpr and wprA), the sigma factor F (spoIIAC) and a surfactin (srfAC) were deleted, yielding the mutant B. subtilis ATCC6051∆10. ATCC6051∆10 showed rapid growth and produced much more extracellular protein compared to the widetype strain ATCC6051, due to the inactivation of multiple proteases. Using this mutant as the host, eleven plasmids equipped with single promoters were constructed for recombinant expression of pullulanase (PUL) from Bacillus naganoensis. The plasmid containing the PspovG promoter produced the highest extracellular PUL activity, which achieved 412.9 U/mL. Subsequently, sixteen dual-promoter plasmids were constructed and evaluated using this same method. The plasmid containing the dual promoter PamyL–PspovG produced the maximum extracellular PUL activity (625.5 U/mL) and showed the highest expression level (the dry cell weight of 18.7 g/L). Conclusions Taken together, we constructed an effective B. subtilis expression system by deleting multiple proteases and screening strong promoters. The dual-promoter PamyL–PspovG system was found to support superior expression of extracellular proteins in B. subtilis ATCC6051. Electronic supplementary material The online version of this article (10.1186/s12934-018-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Liu
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hai Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Building B6, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
The features that distinguish lichenases from other polysaccharide-hydrolyzing enzymes and the relevance of lichenases for biotechnological applications. Appl Microbiol Biotechnol 2018; 102:3951-3965. [DOI: 10.1007/s00253-018-8904-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
|