1
|
Ying Y, Wang W, Li Y, Li Z, Zhao X, Zhang S, Shu J, Shen Z, Zhang W. Mitochondrial Genome Comparison and Phylogenetic Variety of Four Morphologically Similar Bamboo Pests. Ecol Evol 2024; 14:e70588. [PMID: 39568765 PMCID: PMC11578632 DOI: 10.1002/ece3.70588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Bamboo snout moths (Lepidoptera, Crambidae) comprise the four species: Eumorphobotys obscuralis, Circobotys aurealis, Demobotys pervulgalis, and Crypsiptya coclesalis. These economically important insect pests of bamboo are widely distributed in tropical and subtropical regions. The lack of precise mitochondrial genetic data has impeded the development of effective identification techniques, accurate classification strategies, and targeted prevention and treatment strategies. In this study, we obtained the complete mitochondrial genome sequences of four bamboo snout moth species using high-throughput sequencing. The mitogenomes were 15,103-15,349 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a noncoding region (A + T rich element), consistent with previously studied Crambidae mitogenomes. We reconstructed the phylogenetic relationships among the four species using Bayesian inference and maximum likelihood methods. The moths that fed on bamboo were well clustered in a single clade. Crypsiptya coclesalis was most closely related to D. pervulgalis, while E. obscuralis was most closely related to C. aurealis. The divergence among the main lineages of 97 Lepidoptera species was reconstructed using an uncorrelated relaxed molecular clock. Analyses of the phylogenetic relationships and divergence times showed that the evolution of lepidopteran species has been closely related to that of their hosts. The data support the development of molecular identification techniques for the four species of bamboo snout moth, and our results provide a basis for targeted control strategies.
Collapse
Affiliation(s)
- Yue Ying
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| | - Wenhao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University Hangzhou China
| | - Yan Li
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| | - Zhihong Li
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| | - Xinkang Zhao
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University Hangzhou China
| | - Jinping Shu
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| | - Zhenming Shen
- Lin'an District Agriculture and Rural Bureau Hangzhou China
| | - Wei Zhang
- Research Institute of Subtropical Forestry Chinese Academy of Forestry Hangzhou China
| |
Collapse
|
2
|
Han S, Ding H, Peng H, Dai C, Zhang S, Yang J, Gao J, Kan X. Sturnidae sensu lato Mitogenomics: Novel Insights into Codon Aversion, Selection, and Phylogeny. Animals (Basel) 2024; 14:2777. [PMID: 39409726 PMCID: PMC11475038 DOI: 10.3390/ani14192777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The Sturnidae family comprises 123 recognized species in 35 genera. The taxa Mimidae and Buphagidae were formerly treated as subfamilies within Sturnidae. The phylogenetic relationships among the Sturnidae and related taxa (Sturnidae sensu lato) remain unresolved due to high rates of morphological change and concomitant morphological homoplasy. This study presents five new mitogenomes of Sturnidae sensu lato and comprehensive mitogenomic analyses. The investigated mitogenomes exhibit an identical gene composition of 37 genes-including 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes-and one control region (CR). The most important finding of this study is drawn from CAM analyses. The surprisingly unique motifs for each species provide a new direction for the molecular species identification of avian. Furthermore, the pervasiveness of the natural selection of PCGs is found in all examined species when analyzing their nucleotide composition and codon usage. We also determine the structures of mt-tRNA, mt-rRNA, and CR structures of Sturnidae sensu lato. Lastly, our phylogenetic analyses not only well support the monophyly of Sturnidae, Mimidae, and Buphagidae, but also define nine stable subclades. Taken together, our findings will enable the further elucidation of the evolutionary relationships within Sturnidae sensu lato.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Hui Peng
- Teaching and Research Office of Evidence-Based Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei 230061, China;
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (S.H.); (H.D.); (S.Z.); (J.Y.); (J.G.)
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
EFSA Panel on Plant Health (PLH), Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Grégoire J, Malumphy C, Akrivou A, Kertesz V, Papachristos D, Sfyra O, MacLeod A. Pest categorisation of Diaphania indica. EFSA J 2024; 22:e8806. [PMID: 38799477 PMCID: PMC11117125 DOI: 10.2903/j.efsa.2024.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Diaphania indica (Lepidoptera: Crambidae), the cucumber moth for the territory of the European Union (EU), following the commodity risk assessment of Jasminum polyanthum from Uganda, in which D. indica was identified as a pest of possible concern to the European Union. D. indica is native to South Asian countries and is now distributed in tropical and subtropical areas of the Americas, Africa, Asia and Oceania. In the EU, D. indica occurs in Madeira (Portugal). It is a polyphagous pest, feeding on 16 genera in 6 plant families, primarily on plants of the Cucurbitaceae family. Important cucurbit hosts in the EU include cucumber (Cucumis sativus), melon (Cucumis melo), pumpkin (Cucurbita moschata), summer squash (Cucurbita pepo) and watermelon (Citrullus lanatus). Plants for planting, fruits and cut flowers provide potential pathways for entry into the EU. Climatic conditions and availability of host plants in southern EU countries would most probably allow this species to successfully establish and spread. Establishment could also occur in greenhouses in the northern parts of the EU. Economic impact in cultivated hosts, especially cucurbit crops is anticipated if establishment occurs. This insect is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and further spread. D. indica meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.
Collapse
|
4
|
Jin X, Guo X, Chen J, Li J, Zhang S, Zheng S, Wang Y, Peng Y, Zhang K, Liu Y, Liu B. The complete mitochondrial genome of Hemigrapsus sinensis (Brachyura, Grapsoidea, Varunidae) and its phylogenetic position within Grapsoidea. Genes Genomics 2023; 45:377-391. [PMID: 36346542 DOI: 10.1007/s13258-022-01319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In this study, the complete mitogenome of Hemigrapsus sinensis was the first identified and analyzed. OBJECTIVE The complete mitochondrial genome of Hemigrapsus sinensis (Brachyura, Grapsoidea, Varunidae) and its phylogenetic position within Grapsoidea. METHODS The sample of Hemigrapsus sinensis was collected and DNA was extracted. After sequencing, NOVOPlasty was used for sequence assembly. Annotate sequences with MITOS WebServer, tRNAscan-SE2.0, and NCBI database. MEGA was used for sequence analysis and Phylosuite was used for phylogenetic tree construction. DnaSP was used to calculate Ka/Ks. RESULTS This mitochondrial genome shows that it was 15,900 bp and encoded 13 PCGs, 22 tRNA genes, two rRNA genes, and one control region. The genome composition tends to A + T (74.34%) and presents a negative GC-skew (- 0.22) and AT-skew (- 0.03). The PCGs initiation codon was the typical ATN and termination codon was the typical TAN, incomplete T or missing. The ML and BI trees showed that H. sinensis was most closely related to Hemigrapsus and clustered together with the Varunidae. And our phylogenetic trees provide proof that Ocypodoidea and Grapsoidea may be of common origin. Meanwhile, in the phylogenetic tree, parallel mixing of Chiromantes and Orisarma raised doubts over the traditional classification system. Besides, Incomplete Lineage sorting (ILS) was observed in Varunidae. In the subsequent analysis of evolution rate, we found that all of the PCGs (NAD4 was not calculated) had undergone negative selections, indicating the conservation of mitochondrial genes of H. sinensis during the evolution. CONCLUSION Therefore, researching the complete mitogenome of H. sinensis would be contributing to molecular taxonomy, phylogenetic relationship, and breeding optimization within the Grapsoidea superfamily.
Collapse
Affiliation(s)
- Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Xingle Guo
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Jian Chen
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Jiasheng Li
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, Guangdong, China
| | - Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Ying Peng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Kun Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China.,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022, China. .,National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, No. 1, Haida South Road, Zhoushan, 316022, Zhejiang, China.
| |
Collapse
|
5
|
Cheng M, Liu Y, Zheng X, Zhang R, Feng K, Yue B, Du C, Zhou C. Characterization of Seventeen Complete Mitochondrial Genomes: Structural Features and Phylogenetic Implications of the Lepidopteran Insects. INSECTS 2022; 13:998. [PMID: 36354822 PMCID: PMC9694843 DOI: 10.3390/insects13110998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Lepidoptera (moths and butterflies) are widely distributed in the world, but high-level phylogeny in Lepidoptera remains uncertain. More mitochondrial genome (mitogenome) data can help to conduct comprehensive analysis and construct a robust phylogenetic tree. Here, we sequenced and annotated 17 complete moth mitogenomes and made comparative analysis with other moths. The gene order of trnM-trnI-trnQ in 17 moths was different from trnI-trnQ-trnM of ancestral insects. The number, type, and order of genes were consistent with reported moths. The length of newly sequenced complete mitogenomes ranged from 14,231 bp of Rhagastis albomarginatus to 15,756 bp of Numenes albofascia. These moth mitogenomes were typically with high A+T contents varied from 76.0% to 81.7% and exhibited negative GC skews. Among 13 protein coding genes (PCGs), some unusual initiations and terminations were found in part of newly sequenced moth mitogenomes. Three conserved gene-overlapping regions and one conserved intergenic region were detected among 17 mitogenomes. The phylogenetic relationship of major superfamilies in Macroheterocera was as follows: (Bombycoidea + Lasiocampoidea) + ((Drepanoidea + Geometroidea) + Noctuoidea)), which was different from previous studies. Moreover, the topology of Noctuoidea as (Notodontidae + (Erebidae + Noctuidae)) was supported by high Bayesian posterior probabilities (BPP = 1.0) and bootstrapping values (BSV = 100). This study greatly enriched the mitogenome database of moth and strengthened the high-level phylogenetic relationships of Lepidoptera.
Collapse
Affiliation(s)
- Meiling Cheng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
- State Forestry and Grassland Administration Key Laboratory of Conservation Biology for Rare Animals of the Giant Panda State Park, China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kaize Feng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Chao Du
- Baotou Teachers College, Baotou 014060, China
| | - Chuang Zhou
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Parvathi MS, Antony PD, Kutty MS. Multiple Stressors in Vegetable Production: Insights for Trait-Based Crop Improvement in Cucurbits. FRONTIERS IN PLANT SCIENCE 2022; 13:861637. [PMID: 35592574 PMCID: PMC9111534 DOI: 10.3389/fpls.2022.861637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Vegetable production is a key determinant of contribution from the agricultural sector toward national Gross Domestic Product in a country like India, the second largest producer of fresh vegetables in the world. This calls for a careful scrutiny of the threats to vegetable farming in the event of climate extremes, environmental degradation and incidence of plant pests/diseases. Cucurbits are a vast group of vegetables grown almost throughout the world, which contribute to the daily diet on a global scale. Increasing food supply to cater to the ever-increasing world population, calls for intensive, off-season and year-round cultivation of cucurbits. Current situation predisposes these crops to a multitude of stressors, often simultaneously, under field conditions. This scenario warrants a systematic understanding of the different stress specific traits/mechanisms/pathways and their crosstalk that have been examined in cucurbits and identification of gaps and formulation of perspectives on prospective research directions. The careful dissection of plant responses under specific production environments will help in trait identification for genotype selection, germplasm screens to identify superior donors or for direct genetic manipulation by modern tools for crop improvement. Cucurbits exhibit a wide range of acclimatory responses to both biotic and abiotic stresses, among which a few like morphological characters like waxiness of cuticle; primary and secondary metabolic adjustments; membrane thermostability, osmoregulation and, protein and reactive oxygen species homeostasis and turnover contributing to cellular tolerance, appear to be common and involved in cross talk under combinatorial stress exposures. This is assumed to have profound influence in triggering system level acclimation responses that safeguard growth and metabolism. The possible strategies attempted such as grafting initiatives, molecular breeding, novel genetic manipulation avenues like gene editing and ameliorative stress mitigation approaches, have paved way to unravel the prospects for combined stress tolerance. The advent of next generation sequencing technologies and big data management of the omics output generated have added to the mettle of such emanated concepts and ideas. In this review, we attempt to compile the progress made in deciphering the biotic and abiotic stress responses of cucurbits and their associated traits, both individually and in combination.
Collapse
Affiliation(s)
- M. S. Parvathi
- Department of Plant Physiology, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - P. Deepthy Antony
- Centre for Intellectual Property Rights, Technology Management and Trade, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - M. Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| |
Collapse
|
7
|
Yi J, Wu H, Liu J, Li J, Lu Y, Zhang Y, Cheng Y, Guo Y, Li D, An Y. Novel gene rearrangement in the mitochondrial genome of Anastatus fulloi (Hymenoptera Chalcidoidea) and phylogenetic implications for Chalcidoidea. Sci Rep 2022; 12:1351. [PMID: 35079090 PMCID: PMC8789778 DOI: 10.1038/s41598-022-05419-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Anastatus comprises a large group of parasitoids, including several biological control agents in agricultural and forest systems. The taxonomy and phylogeny of these species remain controversial. In this study, the mitogenome of A. fulloi Sheng and Wang was sequenced and characterized. The nearly full-length mitogenome of A. fulloi was 15,692 bp, compromising 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and a control region (CR). The total A + T contents were 83.83%, 82.18%, 87.58%, 87.27%, and 82.13% in the whole mitogenome, 13 PCGs, 22 tRNA genes, 2 rRNA genes, and CR, respectively. The mitogenome presented negative AT skews and positive GC skews, except for the CR. Most PCGs were encoded on the heavy strand, started with ATN codons, and ended with TAA codons. Among the 3736 amino acid-encoding codons, TTA (Leu1), CGA (Arg), TCA (Ser2), and TCT (Ser2) were predominant. Most tRNAs had cloverleaf secondary structures, except trnS1, with the absence of a dihydrouridine (DHU) arm. Compared with mitogenomes of the ancestral insect and another parasitoid within Eupelmidae, large-scale rearrangements were found in the mitogenome of A. fulloi, especially inversions and inverse transpositions of tRNA genes. The gene arrangements of parasitoid mitogenomes within Chalcidoidea were variable. A novel gene arrangement was presented in the mitogenome of A. fulloi. Phylogenetic analyses based on the 13 protein-coding genes of 20 parasitoids indicated that the phylogenetic relationship of 6 superfamilies could be presented as Mymaridae + (Eupelmidae + (Encyrtidae + (Trichogrammatidae + (Pteromalidae + Eulophidae)))). This study presents the first mitogenome of the Anastatus genus and offers insights into the identification, taxonomy, and phylogeny of these parasitoids.
Collapse
Affiliation(s)
- Jiequn Yi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Han Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jianbai Liu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jihu Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinglin Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yifei Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yinjie Cheng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yi Guo
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
8
|
Wang J, Tang L. The complete mitochondrial genome of Calliptamus barbarus Costa 1836 (Orthoptera: Acrididae) from Qinghai Lake, China and its phylogeny. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:732-733. [PMID: 33763562 PMCID: PMC7954494 DOI: 10.1080/23802359.2020.1860701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The complete mitochondrial genome of Calliptamus barbarus (Orthoptera: Acrididae: Calliptaminae) from Qinghai Lake, Qinghai province, China is a circular molecule of 15,668 bp in size, and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and one AT-rich region. The overall nucleotide composition is 41.8% of A, 30.9% of T, 11.3% of G, and 16.0% of C. All PCGs started with typical ATN codon, e.g. one with ATA, two with ATT and ATC, and eight with ATG. Eleven PCGs ended with complete stop codon TAA, and the other two genes (ND1 and ND4L) ended with TAG. Phylogenetic trees were reconstructed with 13 PCGs using Bayesian Inference (BI) and maximum likelihood (ML) to validate the taxonomic status of C. barbarus, exhibiting the close relationships with C. abbreviates + C. italicus.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China.,Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Lei Tang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China.,Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, China
| |
Collapse
|
9
|
Zhang KJ, Rong X, Lv ZP, Liu L, Li GY, Liu H. Comparative Mitochondrial Analysis of Cnaphalocrocis exigua (Lepidoptera: Crambidae) and Its Close Relative C. medinalis. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5978893. [PMID: 33180944 PMCID: PMC7660152 DOI: 10.1093/jisesa/ieaa112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Rice leaffolders are important pests on rice in Asia, Oceania, and Africa, causing serious loss to rice production. There are two main rice leaffolders in China, namely Cnaphalocrocis medinalis (Guenée) and C. exigua (Butler) with the former having the ability of long-distance migration. To reveal the differences in the mitochondrial genomes (mitogenome) between them, we compared the completed mitogenome of C. exigua with three C. medinalis individuals. Although phylogenetic analysis based on the mitogenomic data strongly supported the close relationship between these two species, many differences were still being revealed. The results showed that the mitogenome of C. exigua was shorter in length (15,262 bp) and slight lower in AT content than that of C. medinalis. Except for the different start codons of nad3 and nad6 gene, we also found the cox1 gene had a typical start codon 'ATG' which suggested that the starting position of this gene must be reconsidered in the entire superfamily Pyraloidea. All tRNAs have a typical clover-leaf structure, except for the dihydrouridine (DHU) stem losing of trnS1, which has the atypical anticondon 'TCT' instead of 'GCT' in C. medinalis and most Pyraloidea species. Two intergenic regions (between trnY and cox1, nad3 and trnA) featured by AT repeats were only found in C. medinalis and even rarely appeared in reported Pyraloidea species. Furthermore, regardless of interspecific comparison or intraspecific comparison of these two species, protein coding genes, especially the atp8 genes, had quite different evolutionary rates.
Collapse
Affiliation(s)
- Kai-Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xia Rong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhao-Peng Lv
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guo-Yang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Ding JH, Yang Y, Li J. Complete mitochondrial genome of Cerace xanthocosma and its phylogenetic position in the family Tortricidae. Mitochondrial DNA B Resour 2020; 5:2906-2908. [PMID: 33457997 PMCID: PMC7782875 DOI: 10.1080/23802359.2020.1791750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerace xanthocosma Diakonoff, 1950 belongs to the Tortricidae of Lepidoptera, distributed in China and Japan. Its mitochondrial genome is 15,344 bp in size, containing 37 genes (13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes) and a non-coding A + T-rich region. In the 37 genes, 14 genes are located on the minority-strand (N-strand) with the remaining genes on the majority-strand (J-strand). The A + T-rich region has a poly-T stretch and a motif ATAGA. Phylogenetic analysis using Bayesian Inference method shows the sister relationship between Tortricinae and Olethreutinae with the placement of C. xanthocosma as the basal lineage of Tortricinae.
Collapse
Affiliation(s)
- Jian-Hua Ding
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yan Yang
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jun Li
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
11
|
Han X, He H, Shen H, Tang J, Dong W, Shi Y, Wu S, Zhang F, Liang G. Comparative mitochondrial genome analysis of Dendrolimus houi (Lepidoptera: Lasiocampidae) and phylogenetic relationship among Lasiocampidae species. PLoS One 2020; 15:e0232527. [PMID: 32407393 PMCID: PMC7224488 DOI: 10.1371/journal.pone.0232527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
Dendrolimus houi is one of the most common caterpillars infesting Gymnosperm trees, and widely distributed in several countries in Southeast Asia, and exists soley or coexists with several congeners and some Lasiocampidae species in various forest habitats. However, natural hybrids occasionally occur among some closely related species in the same habitat, and host preference, extreme climate stress, and geographic isolation probably lead to their uncertain taxonomic consensus. The mitochondrial DNA (mtDNA) of D. houi was extracted and sequenced by using high-throughput technology, and the mitogenome composition and characteristics were compared and analyzed of these species, then the phylogenetic relationship was constructed using the maximum likelihood method (ML) and the Bayesian method (BI) based on their 13 protein-coding genes (PCGs) dataset, which were combined and made available to download which were combined and made available to download among global Lasiocampidae species data. Mitogenome of D. houi was 15,373 bp in length, with 37 genes, including 13 PCGs, 22 tRNA genes (tRNAs) and 2 rRNA genes (rRNAs). The positions and sequences of genes were consistent with those of most known Lasiocampidae species. The nucleotide composition was highly A+T biased, accounting for ~80% of the whole mitogenome. All start codons of PCGs belonged to typical start codons ATN except for COI which used CGA, and most stop codons ended with standard TAA or TAG, while COI, COII, ND4 ended with incomplete T. Only tRNASer (AGN) lacked DHU arm, while the remainder formed a typical "clover-shaped" secondary structure. For Lasiocampidae species, their complete mitochondrial genomes ranged from 15,281 to 15,570 bp in length, and all first genes started from trnM in the same direction. And base composition was biased toward A and T. Finally, both two methods (ML and BI) separately revealed that the same phylogenetic relationship of D. spp. as ((((D. punctatus + D. tabulaeformis) + D. spectabilis) + D. superans) + (D. kikuchii of Hunan population + D. houi) as in previous research, but results were different in that D. kikuchii from a Yunnan population was included, indicating that different geographical populations of insects have differentiated. And the phylogenetic relationship among Lasiocampidae species was ((((Dendrolimus) + Kunugia) + Euthrix) + Trabala). This provides a better theoretical basis for Lasiocampidae evolution and classification for future research directions.
Collapse
Affiliation(s)
- Xiaohong Han
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huan He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haiyan Shen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinhan Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanying Dong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yufei Shi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Bian D, Ye W, Dai M, Lu Z, Li M, Fang Y, Qu J, Su W, Li F, Sun H, Zhang M, Li B. Phylogenetic relationships of Limacodidae and insights into the higher phylogeny of Lepidoptera. Int J Biol Macromol 2020; 159:356-363. [PMID: 32387615 DOI: 10.1016/j.ijbiomac.2020.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
To determine the systematic status of family Limacodidae within Lepidoptera, the complete mitochondrial genome (mitogenome) of Thosea sinensis (Lepidoptera: Zygaenoidea: Limacodidae) was sequenced. The genome is 15,544 base pairs (bp), including 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and an AT-rich region. These characteristics are similar to of other lepidopterans. The gene order of T. sinensis is identical to that of Ditrysia lepidopterans. The nucleotide composition of the T. sinensis mitochondrial genome is highly biased toward A + T nucleotides (81.1%) and exhibits negative AT and GC skew. All the other 13 PCGs except cox1 are initiated by ATN codons. All tRNA genes are folded into the typical cloverleaf secondary structure, except for trnS1, which lacked the dihydrouridine (DHU) stem. There are 20 intergenic spacer regions ranging from 1 to 56 bp in length, and two gene overlap regions throughout the entire genome. The AT-rich region includes the ATAGA motif, followed by a 19-bp poly T stretch, a microsatellite-like (AT)10, and a poly-A element. Analysis of phylogenetic relationships indicated that T. sinensis belongs to the Limacodidae, and the monophyly of each lepidopteran family was well supported.
Collapse
Affiliation(s)
- Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wujie Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People's Republic of China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China; Sericulture Institute of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Zhou N, Dong Y, Qiao P, Yang Z. Complete Mitogenomic Structure and Phylogenetic Implications of the Genus Ostrinia (Lepidoptera: Crambidae). INSECTS 2020; 11:E232. [PMID: 32272743 PMCID: PMC7240680 DOI: 10.3390/insects11040232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
To understand mitogenome characteristics and reveal phylogenetic relationships of the genus Ostrinia, including several notorious pests of great importance for crops, we sequenced the complete mitogenomes of four species: Ostrinia furnacalis (Guenée, 1854), Ostrinia nubilalis (Hübner, 1796), Ostrinia scapulalis (Walker, 1859) and Ostrinia zealis (Guenée, 1854). Results indicate that the four mitogenomes-O. furnacalis, O. nubilalis, O. scapulalis, and O. zealis-are 15,245, 15,248, 15,311, and 15,208 bp in size, respectively. All four mitogenomes are comprised of 37 encoded genes and a control region. All 13 protein-coding genes (PCGs) initiate with ATN and terminate with TAN, with the exception of cox1 that starts with CGA, and cox1, cox2, and nad5 that terminate with an incomplete codon T. All transfer RNA genes (tRNAs) present the typical clover-leaf secondary structure except for the trnS1 (AGN) gene. There are some conserved structural elements in the control region. Our analyses indicate that nad6 and atp6 exhibit higher evolution rates compared to other PCGs. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods revealed the relationship (O. palustralis + (O. penitalis + (O. zealis + (O. furnacalis + (O. nubilalis + O. scapulalis))))) within Ostrinia.
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
- Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yanling Dong
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
- Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Pingping Qiao
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
- Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Zhaofu Yang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China
- Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Li XD, Hu HW, Zhang SL, Wang JW, Li R. Characterization of the complete mitochondrial genome of Ypthima baldus (Lepidoptera: Satyrinae) with phylogenetic analysis. Mitochondrial DNA B Resour 2020; 5:1019-1020. [PMID: 33366855 PMCID: PMC7748753 DOI: 10.1080/23802359.2020.1721348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/19/2020] [Indexed: 10/26/2022] Open
Abstract
The complete mitochondrial genome of Ypthima baldus was determined and analysed for the first time. It is a circular molecule of 15,304 bp in length and contains 13 protein-coding genes (PCGs), 2 rRNA genes (12S and 16S), 22 tRNA genes (tRNAs), and 1 AT-rich region. The total base composition is 38.6% of A, 7.5% of G, 42.2% of T, and 11.7% of C, respectively. In addition, phylogenetic analysis was carried out with 13 PCGs using the Bayesian Inference (BI) method. The complete mitogenome of Y. baldus will play an important role in population genetics and phylogenetic studies of the species in the future.
Collapse
Affiliation(s)
- Xiao-Dong Li
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, P. R. China
| | - Hao-Wu Hu
- School of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Shu-Li Zhang
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, P. R. China
| | - Jia-Wei Wang
- School of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, P. R. China
| | - Ran Li
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
15
|
Complete mitochondrial genome of Atractomorpha sagittaris (Orthoptera: Pyrgomorphidae) and its phylogenetic analysis for Acrididea. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-019-00402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Characterization of the complete mitochondrial genome of Uca lacteus and comparison with other Brachyuran crabs. Genomics 2020; 112:10-19. [DOI: 10.1016/j.ygeno.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
|
17
|
Li R, Shu X, Li X, Meng L, Li B. Comparative mitogenome analysis of three species and monophyletic inference of Catantopinae (Orthoptera: Acridoidea). Genomics 2019; 111:1728-1735. [DOI: 10.1016/j.ygeno.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
|
18
|
Two new mitogenomes of Picidae (Aves, Piciformes): Sequence, structure and phylogenetic analyses. Int J Biol Macromol 2019; 133:683-692. [DOI: 10.1016/j.ijbiomac.2019.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
19
|
Kausar S, Wang F, Cui H. The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells 2018; 7:cells7120274. [PMID: 30563029 PMCID: PMC6316843 DOI: 10.3390/cells7120274] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are dynamic cellular organelles that consistently migrate, fuse, and divide to modulate their number, size, and shape. In addition, they produce ATP, reactive oxygen species, and also have a biological role in antioxidant activities and Ca2+ buffering. Mitochondria are thought to play a crucial biological role in most neurodegenerative disorders. Neurons, being high-energy-demanding cells, are closely related to the maintenance, dynamics, and functions of mitochondria. Thus, impairment of mitochondrial activities is associated with neurodegenerative diseases, pointing to the significance of mitochondrial functions in normal cell physiology. In recent years, considerable progress has been made in our knowledge of mitochondrial functions, which has raised interest in defining the involvement of mitochondrial dysfunction in neurodegenerative diseases. Here, we summarize the existing knowledge of the mitochondrial function in reactive oxygen species generation and its involvement in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
20
|
Li Q, Liao M, Yang M, Xiong C, Jin X, Chen Z, Huang W. Characterization of the mitochondrial genomes of three species in the ectomycorrhizal genus Cantharellus and phylogeny of Agaricomycetes. Int J Biol Macromol 2018; 118:756-769. [DOI: 10.1016/j.ijbiomac.2018.06.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/23/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
|
21
|
Huang Y, Liu Y, Zhu XY, Xin ZZ, Zhang HB, Zhang DZ, Wang JL, Tang BP, Zhou CL, Liu QN, Dai LS. Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny. Int J Biol Macromol 2018; 125:1257-1265. [PMID: 30240711 DOI: 10.1016/j.ijbiomac.2018.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/01/2022]
Abstract
The mitochondrial genome (mitogenome) plays an important role in revealing molecular evolution. In this study, the complete mitogenome of Grammodes geometrica (G. geometrica) (Lepidoptera: Erebidae) was sequenced and characterized. The nucleotide composition of the genome is highly A + T biased, accounting for 80.49%. Most protein-coding genes (PCGs) are initiated by ATN codons except for the cytochrome oxidase subunit 1 (cox1) gene, which was initiated by CGA. The order and orientation of genes with the order trnM-trnI-trnQ-nad2 is a typical rearrangement compared with those ancestral insects in which trnM is located between trnQ and nad2. Most tRNA genes were folded into the typical cloverleaf structure except for trnS1 (AGN). The A + T-rich region contains the conserved motif "ATAGA" followed by a 19 bp poly-T stretch, which was also observed in other Noctuoidea species. In addition, we reconstructed phylogenetic trees among the nucleotide alignments of five families of Noctuoidea species except the Oenosandridae. Finally, we achieved a well-supported tree, which showed that G. geometrica belongs to the Erebidae family. Moreover, the relationships at the family-level can be displayed as follows: (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).
Collapse
Affiliation(s)
- Yan Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
22
|
Li Q, Wang X, Chen X, Han B. Complete mitochondrial genome of the tea looper caterpillar, Ectropis obliqua (Lepidoptera: Geometridae) with a phylogenetic analysis of Geometridae. Int J Biol Macromol 2018; 114:491-496. [DOI: 10.1016/j.ijbiomac.2018.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
23
|
Li J, Zhang Y, Hu K, Zhao Y, Lin R, Li Y, Huang Z, Zhang X, Geng X, Ding J. Mitochondrial genome characteristics of two Sphingidae insects (Psilogramma increta and Macroglossum stellatarum) and implications for their phylogeny. Int J Biol Macromol 2018; 113:592-600. [DOI: 10.1016/j.ijbiomac.2018.02.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 01/12/2023]
|
24
|
Tang JM, Li F, Cheng TY, Duan DY, Liu GH. Comparative analyses of the mitochondrial genome of the sheep ked Melophagus ovinus (Diptera: Hippoboscidae) from different geographical origins in China. Parasitol Res 2018; 117:2677-2683. [DOI: 10.1007/s00436-018-5925-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/11/2018] [Indexed: 01/11/2023]
|