1
|
Silva TM, Oliveira ACDJ, Leão AD, Ramos RKLG, Chaves LL, Silva-Filho ECD, Soares MFDLR, Soares-Sobrinho JL. Cashew gum as future multipurpose biomacromolecules. Carbohydr Polym 2025; 347:122749. [PMID: 39486978 DOI: 10.1016/j.carbpol.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
The review highlights significant advances in delivery systems, with an emphasis on the use of cashew gum (CG), a natural polysaccharide extracted from Anacardium occidentale L., recognized for its remarkable biodegradability and versatility. CG has a wide range of applications spanning sectors such as food, pharmaceuticals, agriculture, and biotechnology. This study examines research focused on the extraction, purification, and chemical modifications of CG, as well as its combination with other biopolymers to enhance physicochemical and mechanical properties. These strategies aim to optimize the gum's characteristics, allowing for the creation of innovative materials with improved performance, expanding its potential applications. This review aims to provide a comprehensive overview of recent research trends, focusing on the utilization of CG as a polymeric component in the development of biomaterials with diverse applications.
Collapse
Affiliation(s)
- Tarcísio Mendes Silva
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Antônia Carla De Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Amanda Damasceno Leão
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - Luise Lopes Chaves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | | | - Monica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil
| | - José Lamartine Soares-Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos-NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco-UFPE, Brazil.
| |
Collapse
|
2
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Silva CNS, Cruz MV, Fernandes KF, Batista KA. Production of anti-inflammatory films based on cashew gum polysaccharide and polyvinyl alcohol for wound dressing applications. 3 Biotech 2023; 13:299. [PMID: 37575597 PMCID: PMC10421841 DOI: 10.1007/s13205-023-03686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/25/2023] [Indexed: 08/15/2023] Open
Abstract
In the present study, we aimed to produce CGP/PVA films containing entrapped anti-inflammatory drugs for wound dressing applications. Using a 33-1 fractional factorial design, the effect of each component was evaluated on the physicochemical and morphological properties of the produced materials. The best formulation for entrapment of diclofenac sodium and ketoprofen was also determined. The produced films presented high swelling capacity, with some formulations showing o porous structure. CGP/PVA films showed a maximum retention of 75.6% for diclofenac sodium and 32.2% for ketoprofen, and both drugs were released in a controlled manner for up to 7 h. The drug release kinetic was studied, and the data were fitted using a Korsmeyer-Peppas model, which suggested that the release mechanism is controlled by diffusion. These results indicate that CGP/PVA-based matrices have great potential to be used as drug-delivery systems for wound dressing applications, contributing to prolonging the drug's action time and then improving their anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Cassio N. S. Silva
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
| | - Maurício V. Cruz
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
- Departamento de Áreas Acadêmicas II, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia, Goiânia, GO 74055-120 Brazil
| | - Kátia F. Fernandes
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
| | - Karla A. Batista
- Laboratório de Química de Polímeros, Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas 2, Campus Samambaia, Universidade Federal de Goiás, Goiânia, GO 74690-900 Brazil
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia, GO 74395-160 Brazil
| |
Collapse
|
4
|
de Lemos Vasconcelos Silva E, de Jesus Oliveira AC, de Carvalho Moreira LMC, Silva-Filho EC, Wanderley AG, de La Roca Soares MF, Soares-Sobrinho JL. Insulin-loaded nanoparticles based on acetylated cashew gum/chitosan complexes for oral administration and diabetes treatment. Int J Biol Macromol 2023; 242:124737. [PMID: 37148931 DOI: 10.1016/j.ijbiomac.2023.124737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.
Collapse
Affiliation(s)
- Eliadna de Lemos Vasconcelos Silva
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | | | - Monica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Oliveira RWG, de Oliveira JM, da Paz FB, Muniz EC, de Moura EM, Costa JCS, do Nascimento MO, Carvalho ALM, Pinheiro IM, Mendes AN, Filgueiras LA, de Souza PR, de Moura CVR. Films composed of white angico gum and chitosan containing chlorhexidine as an antimicrobial agent. Int J Biol Macromol 2023; 235:123905. [PMID: 36870650 DOI: 10.1016/j.ijbiomac.2023.123905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Anadenanthera colubrina, popularly known as white angico, is a species extensively cultivated in Brazil, mainly in the cerrado region, including the state of Piauí. This study examines the development of films composed of white angico gum (WAG) and chitosan (CHI) and containing chlorhexidine (CHX), an antimicrobial agent. The solvent casting method was used to prepare films. Different combinations and concentrations of WAG and CHI were used to obtain films with good physicochemical characteristics. Properties such as the in vitro swelling ratio, the disintegration time, folding endurance, and the drug content were determined. The selected formulations were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction, and the CHX release time and antimicrobial activity were evaluated. CHX showed a homogenous distribution in all CHI/WAG film formulations. The optimised films showed good physicochemical properties with 80% CHX release over 26 h, which is considered promising for local treatment of severe lesions in the mouth. Cytotoxicity tests of the films did not show toxicity. The antimicrobial and antifungal effects were very effective against the tested microorganisms.
Collapse
Affiliation(s)
| | | | | | - Edvani Curti Muniz
- Department of Chemistry, Federal University of Piauí, 64049-550, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Oliveira BPD, Bessa NUDC, do Nascimento JF, de Paula Cavalcante CS, Fontenelle RODS, Abreu FOMDS. Synthesis of luminescent chitosan-based carbon dots for Candida albicans bioimaging. Int J Biol Macromol 2023; 227:805-814. [PMID: 36549618 DOI: 10.1016/j.ijbiomac.2022.12.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
In this work, we used chitosan as a raw material to synthesize carbon dots using fast microwave carbonization. We studied the influence of the synthesis time, doping agent, and the molar ratio between the reactants on the quantum yield of carbon dots. Chitosan-based carbon dots displayed stable blue fluorescence emission with excitation-dependent behavior and quantum yield values ranging from 1.16 to 7.07 %. ANOVA results showed that the interaction factor between the doping agent and the molar ratio of the reactants was a significant combination to produce carbon dots with higher quantum yield. The presence of the doping agent improved the carbon dots optical properties by obtaining higher fluorescence intensity values. Confocal laser microscope images showed that the carbon dots internalized in the Candida albicans cellular membrane, exhibiting blue, green, and red emissions, acting as a promising agent for bioimaging.
Collapse
Affiliation(s)
- Bruno Peixoto de Oliveira
- Program in Natural Sciences, State University of Ceará (UECE), Fortaleza 60.714-903, CE, Brazil; Educators Training Institute, Federal University of Cariri (UFCA), Brejo Santo, CE, 63.260-000, Brazil.
| | - Nathalia Uchoa de Castro Bessa
- Natural Polymers Laboratory, Department of Chemistry, State University of Ceará (UECE), Fortaleza, CE, 60.714-903, Brazil
| | | | | | | | | |
Collapse
|
7
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
8
|
Effect of Acyl Chain Length on Hydrophobized Cashew Gum Self-Assembling Nanoparticles: Colloidal Properties and Amphotericin B Delivery. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Given its many potential applications, cashew gum hydrophobic derivatives have gained increasing attraction in recent years. We report here the effect of acyl chain length on hydrophobized cashew gum derivatives, using acetic, propionic, and butyric anhydrides on self-assembly nanoparticle properties and amphotericin B delivery. Nanoparticles with unimodal particle size distribution, highly negative zeta potential, and low PDI were produced. Butyrate cashew gum nanoparticles presented smaller size (<~100 nm) than acetylated and propionate cashew gum nanoparticles and no cytotoxicity in murine fibroblast cells was observed up to 100 µg/mL for loaded and unloaded nanoparticles. As a proof of concept of the potential use of the developed nanoparticle as a drug carrier formulation, amphotericin B (AmB) was encapsulated and fully characterized in their physicochemical, AmB association and release, stability, and biological aspects. They exhibited average hydrodynamic diameter lower than ~200 nm, high AmB efficiency encapsulations (up to 94.9%), and controlled release. A decrease in AmB release with the increasing of the anhydride chain length was observed, which explains the differences in antifungal activity against Candida albicans strains. An excellent storage colloidal stability was observed for unloaded and loaded AmB without use of surfactant. Considering the AmB delivery, the acyl derivative with low chain length is shown to be the best one, as it has high drug loading and AmB release, as well as low minimum inhibitory concentration against Candida albicans strains.
Collapse
|
9
|
Lima I, Moreno L, Dias S, Silva D, Oliveira AC, Soares L, Sousa R, Dittz D, Rolim H, Nunes L. Acetylated cashew gum nanoparticles for mesalazine delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
10
|
Yu X, Wang M, Zhang Y, Liu X, Zhang X, Liu J, Wang D, Jin W, Lyu Y. Preparation of a novel biodegradable film by co-fermentation of straw and shrimp shell with Aureobasidium pullulans and Photobacterium sp. LYM-1. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Amaral RG, de Andrade LRM, Andrade LN, Loureiro KC, Souto EB, Severino P. Cashew Gum: A Review of Brazilian Patents and Pharmaceutical Applications with a Special Focus on Nanoparticles. MICROMACHINES 2022; 13:mi13071137. [PMID: 35888956 PMCID: PMC9315767 DOI: 10.3390/mi13071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022]
Abstract
Natural polysaccharides are structures composed of highly diversified biological macromolecules whose properties have been exploited by a diversity of industries. Until 2018, the polysaccharides market raised more than US $ 12 billion worldwide, while an annual growth forecast of 4.8% is expected by 2026. The food industry is largely responsible for the consumption of this plant-source material, produced by microbiological fermentation. Among the used polysaccharides, gums are hydrocolloids obtained from a variety of sources and in different forms, being composed of salts of calcium, potassium, magnesium and sugar monomers. Their non-toxicity, hydrophilicity, viscosity, biodegradability, biocompatibility and sustainable production are among their main advantages. Although Brazil is amongst the largest producers of cashew gum, reaching 50 tons per year, the polysaccharide is not being used to its full potential, in particular, with regard to its uses in pharmaceuticals. Cashew gum (CG), obtained from Anacardium occidentale L., caught the attention of the industry only in 1970; in 1990, its production started to grow. Within the Brazilian academy, the groups from the Federal University of Ceará and Piauí are devoting the most efforts to the study of cashew gum, with a total of 31 articles already published. The number of patents in the country for innovations containing cashew tree gum has reached 14, including the technological process for the purification of cashew tree gum, comparison of physical and chemical methods for physicochemical characterizations, and optimum purification methodology. This scenario opens a range of opportunities for the use of cashew gum, mainly in the development of new pharmaceutical products, with a special interest in nanoparticles.
Collapse
Affiliation(s)
- Ricardo G. Amaral
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil;
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil;
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe, Lagarto, Sergipe 49400-000, Brazil;
| | - Kahynna C. Loureiro
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.B.S.); (P.S.)
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil;
- Correspondence: (E.B.S.); (P.S.)
| |
Collapse
|
12
|
Patel J, Maiti S, Moorthy NHN. Repaglinide-laden hydrogel particles of xanthan gum derivatives for the management of diabetes. Carbohydr Polym 2022; 287:119354. [DOI: 10.1016/j.carbpol.2022.119354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
|
13
|
Chagas ADLD, de Oliveira LP, Cruz MV, de Melo RM, Miguel MP, Fernandes KF, de Menezes LB. Polysaccharide-Based Membrane Biocompatibility Study of Anacardium occidentale L. and Polyvinyl Alcohol after Subcutaneous Implant in Rats. MATERIALS 2022; 15:ma15041296. [PMID: 35207837 PMCID: PMC8878544 DOI: 10.3390/ma15041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
Polymeric membranes are a viable and sustainable option for the biotechnology industry from an economic and environmental point of view. In this study, we evaluated tissue response and tolerance to the implantation of a polymeric membrane prepared with cashew gum polysaccharide (CGP) associated with polyvinyl alcohol (PVA). The objective was to characterize the biocompatibility of the CGP/PVA membrane in vivo. Following the evaluation criteria of the ISO 10993-6 standard, we demonstrated that the CGP/PVA membrane showed moderate tissue reaction, with a non-irritating ISO pattern, a thinner fibrous capsule, and a smaller amount of collagen compared to the positive control group. At 30 and 60 days, the membrane presented a similar amount of mast cells to that observed in the negative control group. The data demonstrate that the CGP/PVA membrane presents biocompatibility in accordance with the ISO 10993-6 standard.
Collapse
Affiliation(s)
- Angelica de Lima das Chagas
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil;
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Leiny Paula de Oliveira
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Mauricio Vicente Cruz
- Departamento de Áreas Acadêmicas II, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia, Goiania 74055-120, GO, Brazil;
| | - Renato Miranda de Melo
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil;
| | - Marina Pacheco Miguel
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
| | - Katia Flavia Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiania 74690-900, GO, Brazil;
| | - Liliana Borges de Menezes
- Programa de Pós-Graduação em Ciências Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia 74001-970, GO, Brazil; (L.P.d.O.); (M.P.M.)
- Setor de Patologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, s/n, Setor Universitário, Goiânia 74605-050, GO, Brazil
- Correspondence: ; Tel.:+55-62-3209-6110
| |
Collapse
|
14
|
Silva-Carvalho R, Leão T, Bourbon AI, Gonçalves C, Pastrana L, Parpot P, Amorim I, Tomas AM, Portela da Gama M. Hyaluronic acid-Amphotericin B Nanocomplexes: a Promising Anti-Leishmanial Drug Delivery System. Biomater Sci 2022; 10:1952-1967. [DOI: 10.1039/d1bm01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic...
Collapse
|
15
|
Thermal responsive poly-N-isopropylacrylamide/galactomannan copolymer nanoparticles as a potential amphotericin delivery carrier. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. Int J Biol Macromol 2021; 190:801-809. [PMID: 34508723 DOI: 10.1016/j.ijbiomac.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
We developed a new hydrophobic polymer based on angico gum (AG), and we produced new nanoparticles to expand the applications of natural polysaccharides in nanomedicine. Phthalate angico gum (PAG) was characterized by 1H NMR, FTIR, elementary analysis, solubility, XRD, and TG. PAG was a hydrophobic and semi-crystalline material, a relevant characteristic for drug delivery system applications. As a proof of concept, nevirapine (NVP) was selected for nanoparticles development. Plackett-Burman's experimental design was used to understand the influence of several factors in nanoparticles production. PAG proved to be a versatile material for producing nanoparticles with different characteristics. Optimized nanoparticles were produced using desirability parameters. NVP-loaded PAG nanoparticles formulation showed 202.1 nm of particle size, 0.23 of PDI, -17.1 of zeta potential, 69.8 of encapsulation efficiency, and promoted modified drug release for 8 h. Here we show that PAG presents as a promising biopolymer for drug delivery systems.
Collapse
|
17
|
Cashew Gum (Anacardium occidentale) as a Potential Source for the Production of Tocopherol-Loaded Nanoparticles: Formulation, Release Profile and Cytotoxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Every year, more than thirty thousand tons of Cashew gum (Anacardium occidentale, family: Anacardiaceae) are produced in Brazil; however, only a small amount is used for different applications in foodstuff and in pharmaceutical industries. As a raw material for the production of drug delivery systems, cashew gum is still regarded as an innovative compound worth to be exploited. In this work, cashew gum was extracted from the crude exudate of cashew tree employing four methodologies resulting in a light brown powder in different yields (40.61% to 58.40%). The total ashes (0.34% to 1.05%) and moisture (12.90% to 14.81%) were also dependent on the purification approach. FTIR spectra showed the typical bands of purified cashew gum samples, confirming their suitability for the development of a pharmaceutical product. Cashew gum nanoparticles were produced by nanoprecipitation resulting in particles of low polydispersity (<0.2) and an average size depending on the percentage of the oil. The zeta potential of nanoparticles was found to be below 20 mV, which promotes electrostatic stability. Encapsulation efficiencies were above 99.9%, while loading capacity increased with the increase of the percentage of the oil content of particles. The release of the oil from the nanoparticles followed the Korsmeyer–Peppas kinetics model, while particles did not show any signs of toxicity when tested in three distinct cell lines (LLC-MK2, HepG2, and THP-1). Our study highlights the potential added value of using a protein-, lignans-, and nucleic acids-enriched resin obtained from crude extract as a new raw material for the production of drug delivery systems.
Collapse
|
18
|
Vidallon MLP, Teo BM. Recent developments in biomolecule-based nanoencapsulation systems for antimicrobial delivery and biofilm disruption. Chem Commun (Camb) 2021; 56:13907-13917. [PMID: 33146161 DOI: 10.1039/d0cc05880g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecules are very attractive nanomaterial components, generally, due to their biocompatibility, biodegradability, abundance, renewability, and sustainability, as compared to other resources for nanoparticle-based delivery systems. Biomolecule-based nanoencapsulation and nanodelivery systems can be designed and engineered for antimicrobial cargos in order to surmount classical and current challenges, including the emergence of multi-drug resistant strains of microorganisms, the low effectiveness and limitations in the applicability of the present antimicrobials, and biofilm formation. This feature article highlights the recent applications and capabilities of biomacromolecule-based nanomaterials for the delivery and activity enhancement of antimicrobials, and disruption of biofilms. Unique properties of some nanomaterials, arising from specific biomacromolecules, were also emphasized. We expect that this review will be helpful to researchers in engineering new types of antimicrobial nanocarriers, hybrid particles and colloidal systems with tailored properties.
Collapse
Affiliation(s)
- Mark Louis P Vidallon
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
da Silva CNS, Di-Medeiros MCB, Lião LM, Fernandes KF, Batista KDA. Cashew Gum Polysaccharide Nanoparticles Grafted with Polypropylene Glycol as Carriers for Diclofenac Sodium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2115. [PMID: 33922015 PMCID: PMC8122507 DOI: 10.3390/ma14092115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
This investigation focuses on the development and optimization of cashew gum polysaccharide (CGP) nanoparticles grafted with polypropylene glycol (PPG) as carriers for diclofenac sodium. The optimization of parameters affecting nanoparticles formulation was performed using a central composite rotatable design (CCRD). It was demonstrated that the best formulation was achieved when 10 mg of CGP was mixed with 10 μL of PPG and homogenized at 22,000 rpm for 15 min. The physicochemical characterization evidenced that diclofenac was efficiently entrapped, as increases in the thermal stability of the drug were observed. The CGP-PPG@diclofenac nanoparticles showed a globular shape, with smooth surfaces, a hydrodynamic diameter around 275 nm, a polydispersity index (PDI) of 0.342, and a zeta potential of -5.98 mV. The kinetic studies evidenced that diclofenac release followed an anomalous transport mechanism, with a sustained release up to 68 h. These results indicated that CGP-PPG nanoparticles are an effective material for the loading/release of drugs with similar structures to diclofenac sodium.
Collapse
Affiliation(s)
- Cassio Nazareno Silva da Silva
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | | | - Luciano Morais Lião
- Laboratório de Ressonância Nuclear Magnética, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil;
| | - Kátia Flávia Fernandes
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
| | - Karla de Aleluia Batista
- Laboratório de Química de Polímeros, Instituto de Ciências Biológicas, ICB2, Campus Samambaia, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil; (C.N.S.d.S.); (K.F.F.)
- Departamento de Áreas Acadêmicas, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Goiânia Oeste, Goiânia 74270-040, GO, Brazil
| |
Collapse
|
20
|
Ribeiro IS, Pontes FJG, Carneiro MJM, Sousa NA, Pinto VPT, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Paula HCB, Feitosa JPA, de Paula RCM. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021; 179:314-323. [PMID: 33675833 DOI: 10.1016/j.ijbiomac.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
Polysaccharide based copolymers have been the focus of several research, particularly for the development of drug delivery systems. This study reports on the preparation of nanoparticles from an amphiphilic copolymer obtained by the poly(ε-caprolactone) graft in the structure of cashew gum, via ring-opening polymerization. The synthesis of copolymers was confirmed by Fourier transform infrared spectroscopy and nuclear magnetic resonance. The copolymers exhibit self-organization capability in water, with critical association concentration of 42 and 50 μg mL-1. The nanoparticle hydrodynamic diameters (212 and 202 nm) revealed a decreasing trend with increasing poly(ε-caprolactone) graft percentage. Epirubicin was used as an anticancer drug model and incorporated into the nanoparticles. The encapsulation efficiency reached 50% and 5.0% drug load. Nanoparticles showed an epirubicin controlled release profile, with maximum release of 93.0 ± 4.0% in 72 h, as well as excellent biocompatibility, according to hemolysis and cytotoxicity assays.
Collapse
Affiliation(s)
- Irisvan S Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco J G Pontes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Maria J M Carneiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Nayara A Sousa
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Vicente P T Pinto
- Faculty of Medicine, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Gisele S Araújo
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - José D B Marinho Filho
- Cell Culture Laboratory of the Delta, LCC Delta, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ana J Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Federal University of Delta of Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Haroldo C B Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Judith P A Feitosa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
21
|
Oliveira ACDJ, Chaves LL, Ribeiro FDOS, de Lima LRM, Oliveira TC, García-Villén F, Viseras C, de Paula RCM, Rolim-Neto PJ, Hallwass F, Silva-Filho EC, Alves da Silva D, Soares-Sobrinho JL, Soares MFDLR. Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydr Polym 2020; 254:117226. [PMID: 33357841 DOI: 10.1016/j.carbpol.2020.117226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
Chemical modification of polysaccharides is an important approach for their transformation into customized matrices that suit different applications. Microwave irradiation (MW) has been used to catalyze chemical reactions. This study developed a method of MW-initiated synthesis for the production of phthalated cashew gum (Phat-CG). The structural characteristics and physicochemical properties of the modified biopolymers were investigated by FTIR, GPC, 1H NMR, relaxometry, elemental analysis, thermal analysis, XRD, degree of substitution, and solubility. Phat-CG was used as a matrix for drug delivery systems using benznidazole (BNZ) as a model drug. BNZ is used in the pharmacotherapy of Chagas disease. The nanoparticles were characterized by size, PDI, zeta potential, AFM, and in vitro release. The nanoparticles had a size of 288.8 nm, PDI of 0.27, and zeta potential of -31.8 mV. The results showed that Phat-CG has interesting and promising properties as a new alternative for improving the treatment of Chagas disease.
Collapse
Affiliation(s)
- Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Thaisa Cardoso Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain; Andalusian Institute of Earth Sciences, CSIC - UGR, Armilla, Granada, Spain
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro José Rolim-Neto
- Laboratory of Technology of Medicines - LTM, Federal University of Pernambuco, Recife, Brazil
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, Federal University of Piaui, Teresina, PI, Brazil
| | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology - BIOTEC, Federal University of Delta of Parnaiba, Parnaiba, PI, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
22
|
Moreira BR, Pereira-Júnior MA, Fernandes KF, Batista KA. An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydr Polym 2020; 236:116046. [DOI: 10.1016/j.carbpol.2020.116046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
|
24
|
Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. Int J Biol Macromol 2020; 152:492-502. [PMID: 32097738 DOI: 10.1016/j.ijbiomac.2020.02.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/13/2023]
Abstract
Amphotericin B is an antibiotic used in the treatment of fungal disease and leishmania; however, it exhibits side effects to patients, hindering its wider application. Therefore, nanocarriers have been investigated as delivery systems for amphotericin B (AMB) in order to decrease its toxicity, besides increase bioavailability and solubility. Amphiphilic copolymers are interesting materials to encapsulate hydrophobic drugs such as AMB, hence copolymers of cashew gum (CG) and l-lactide (LA) were synthesized using two different CG:LA molar ratios (1:1 and 1:10). Data obtained revealed that copolymer nanoparticles present similar figures for particle sizes and zeta potentials; however, particle size of encapsulated AMB increases if compared to unloaded nanoparticles. The 1:10 nanoparticle sample has better stability although higher polydispersity index (PDI) if compared to 1:1 sample. High amphotericin (AMB) encapsulation efficiencies and low hemolysis were obtained. AMB loaded copolymers show lower aggregation pattern than commercial AMB solution. AMB loaded nanoparticles show antifungal activities against four C. albicans strains. It can be inferred that cashew gum/polylactide copolymers have potential as nanocarrier systems for AMB.
Collapse
|
25
|
Sustainable natural gums for industrial application: Physiochemical and texturometric evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. Int J Biol Macromol 2019; 146:1133-1141. [PMID: 31734368 DOI: 10.1016/j.ijbiomac.2019.10.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
This work was aimed at the production and characterization of a new nanocarrier based on a Sterculia striata polysaccharide (SSP) modified via acylation reaction with propionic anhydride. Nanocapsules of propionated SSP (PSSP) were produced via spontaneous nanoemulsification process and tested as a potential amphotericin B (AMB) nanocarrier. Stable nanoparticles with a very low polydispersity index (0.08-0.29) and high zeta potential (ζ -42.7 to -53.8 mV) were obtained. Particle size was dependent on the degree of substitution and ranged from 205 to 286 nm. A nanocapsule with a degree of substitution (DS) of 2.53 (NCP 2.53) was selected for encapsulation, biocompatibility, and antifungal evaluation against Candida albicans strains. A maximum of 98.3% AMB encapsulation was achieved. Encapsulated AMB was in its monomeric form and showed good biocompatibility and antifungal activity against four C. albicans strains. Data indicate that PSSP has potential as a nanocarrier system for AMB.
Collapse
|
27
|
Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr Rev Food Sci Food Saf 2019; 18:2009-2024. [PMID: 33336964 DOI: 10.1111/1541-4337.12499] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
The self-assembled natural and synthetic polymers are booming. However, natural polymers obtained from native or modified carbohydrate polymers (CPs), such as celluloses, chitosan, glucans, gums, pectins, and starches, have had special attention as raw material in the manufacture of self-assembled polymer composite materials having several forms: films, hydrogels, micelles, and particles. The easy manipulation of the architecture of the CPs, as well as their high availability in nature, low cost, and being sustainable and green polymers have been the main positive points in the use of them for different applications. CPs have been used as building blocks for composite structures, and their easy orientation and ordering has given rise to self-assembled CPs (SCPs). These macromolecules have been little studied for food applications. Nonetheless, their research has grown mainly in the last 5 years as encapsulated food additive wall materials, food coatings, and edible films. The multifaceted properties (systems sensitive to pH, temperature, ionic strength, types of ions, mechanical force, and enzymes) of these devices are leading to the development of advanced food materials. This review article focused on the analysis of SCPs for food applications in order to encourage other research groups for their preparation and implementation.
Collapse
Affiliation(s)
- Germán Ayala Valencia
- Dept. of Chemical and Food Engineering, Federal Univ. of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | - Pooyan Makvandi
- Inst. for Polymers, Composites and Biomaterials (IPCB), Natl. Research Council (CNR), Naples, Italy.,Dept. of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran Univ. of Medical Sciences, Tehran, Iran
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, B7608FLC, Mar del Plata, Argentina
| |
Collapse
|
28
|
Lima Cardial MR, Paula HC, da Silva RBC, da Silva Barros JF, Richter AR, Sombra FM, de Paula RC. Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier. Int J Biol Macromol 2019; 132:534-540. [DOI: 10.1016/j.ijbiomac.2019.03.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 01/11/2023]
|
29
|
Oliveira ACDJ, Araújo ARD, Quelemes PV, Nadvorny D, Soares-Sobrinho JL, Leite JRSDA, da Silva-Filho EC, Silva DAD. Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydr Polym 2019; 213:176-183. [DOI: 10.1016/j.carbpol.2019.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 02/03/2023]
|
30
|
Cruz MV, Jacobowski AC, Macedo ML, Batista KA, Fernandes KF. Immobilization of antimicrobial trypsin inhibitors onto cashew gum polysaccharide/PVA films. Int J Biol Macromol 2019; 127:433-439. [DOI: 10.1016/j.ijbiomac.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
|
31
|
Vasconcelos Silva EDL, Oliveira ACDJ, Patriota YBG, Ribeiro AJ, Veiga F, Hallwass F, Silva-Filho EC, da Silva DA, Soares MFDLR, Wanderley AG, Soares-Sobrinho JL. Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydr Polym 2018; 207:601-608. [PMID: 30600045 DOI: 10.1016/j.carbpol.2018.11.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022]
Abstract
Cashew gum (CG) is a biopolymer that presents a favorable chemical environment for structural modifications, which leads to more stable and resistant colloidal systems. The gum was subjected to an acetylation reaction using a fast, simple, solvent-free and low cost methodology. The derivative was characterized by infrared and NMR spectroscopy, elemental analysis, coefficient of solubility and zeta potential. The modified biopolymer was used as a platform for drug delivery systems using insulin as a model drug. Nanoparticles were developed through the technique of polyelectrolytic complexation and were characterized by size, surface charge, entrapment efficiency and gastrointestinal release profile. The nanoparticles presented size of 460 nm with a 52.5% efficiency of entrapment of insulin and the electrostatic stabilization was suggested by the zeta potential of + 30.6 mV. Sustained release of insulin was observed for up to 24 h. The results showed that acetylated cashew gum (ACG) presented potential as a vehicle for sustained oral insulin release.
Collapse
Affiliation(s)
| | | | | | - António José Ribeiro
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, Federal University of Piauí, Parnaíba, PI, Brazil
| | | | | | | |
Collapse
|