1
|
Yang X, Zhang L, Ran H, Peng F, Tu Y. Micro/nanomotors for active inflammatory disease therapy. Biomater Sci 2025. [PMID: 40181756 DOI: 10.1039/d5bm00052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Inflammation is a carefully orchestrated response of the immune system to repair injured tissues and clear various damage factors. However, dysregulated inflammation can eventually contribute to the development and progression of various inflammatory diseases. Although anti-inflammatory drugs have demonstrated certain therapeutic efficacy in clinical settings, significant limitations still persist, highlighting the necessity for the development of improved approaches to address complex inflammatory conditions. Micro/nanomotors (MNMs) have shown significant promise for applications in the biomedical field due to their micro/nano-scale sizes and autonomous movement. Unlike traditional nanoparticles, which exhibit passive diffusion in biological fluids, MNMs can convert external energy into a driving force for self-propulsion. This capability not only enhances the tissue penetration depth and retention rates but also facilitates interaction with inflammatory lesions. Recent efforts have suggested that MNMs for inflammatory disease therapy could provide an efficient therapeutic effect. Herein, we mainly introduce the recent advances in inflammatory disease therapy based on MNMs. We conclude by discussing both the obstacles and potential opportunities for MNMs innovations in addressing inflammation.
Collapse
Affiliation(s)
- Xue Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Wang Z, Li X, Jiang Y, Wu T, Guo S, Li T. Preparation of hydrogel microsphere and its application in articular cartilage injury. Mater Today Bio 2025; 31:101641. [PMID: 40130039 PMCID: PMC11931253 DOI: 10.1016/j.mtbio.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, hydrogel microspheres have garnered significant attention due to their unique structure and functionality, demonstrating substantial potential in articular cartilage injury repair. This paper provides a comprehensive overview of current strategies for cartilage injury repair and summarizes the materials and preparation methods of hydrogel microspheres. Furthermore, it highlights the multiple roles of hydrogel microspheres in cartilage repair, including inflammation control, regulation of chondrocyte metabolism, drug and cell delivery, lubrication improvement, and recruitment of endogenous stem cells. Finally, the paper discusses the application prospects of hydrogel microspheres, identifies current limitations and challenges, and offers insights to guide future research and practical applications in cartilage injury repair.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tingyu Wu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Sijia Guo
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tao Li
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
3
|
He X, He S, Xiang G, Deng L, Zhang H, Wang Y, Li J, Lu H. Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405943. [PMID: 39155588 DOI: 10.1002/adma.202405943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone and joint disease characterized by decreased cartilage lubrication, leading to continuous wear and ultimately irreversible damage. This situation is particularly challenging for early-stage OA, as current bio-lubricants lack precise targeting for small inflammatory lesions. In this work, an antibody-mediated targeting hydrogel microspheres (HMS) is developed to precisely lubricate the local injury site of cartilage and prevent the progression of early OA. Anti-Collagen type I (Anti-Col1) is an antibody that targets cartilage injury sites in early OA stages. It is anchored on a HMS matrix made of Gelatin methacrylate (GelMA) and poly (sulfobetaine methacrylate) (PSBMA) to create targeted HMS (T-G/S HMS). The T-G/S HMS's high hydrophilicity, along with the dynamic interaction between its surficial Anti-Col1 and the Col1 on cartilage injury site, ensures its precise and effective lubrication of early OA lesions. Consequently, injecting T-G/S HMS into rats with early OA significantly slows disease progression and reduces symptoms. In conclusion, the developed injectable targeted lubricating HMS and the precisely targeted lubrication strategy represent a promising, convenient technique for treating OA, particularly for slowing the early-stage OA progression.
Collapse
Affiliation(s)
- Xiangming He
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sihan He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gang Xiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Linhua Deng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jiusheng Li
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Lu
- Laboratory for Advanced Lubricating Materials, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Zhang L, Ma M, Li J, Qiao K, Xie Y, Zheng Y. Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier. Bioact Mater 2024; 39:147-162. [PMID: 38808158 PMCID: PMC11130597 DOI: 10.1016/j.bioactmat.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.
Collapse
Affiliation(s)
- LiYang Zhang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- Beijing Wanjie Medical Device Co., Ltd, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yajie Xie
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Lin J, Jia S, Cao F, Huang J, Chen J, Wang J, Liu P, Zeng H, Zhang X, Cui W. Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis Through Promotion of Cartilage Repair. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/07/2024]
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease caused by a variety of factors with joint pain as the main symptom, including fibrosis, chapping, ulcers, and loss of cartilage. Traditional treatment can only delay the progression of OA, and classical delivery system have many side effects. In recent years, microspheres have shown great application prospects in the field of OA treatment. Microspheres can support cells, reproduce the natural tissue microenvironment in vitro and in vivo, and are an efficient delivery system for the release of drugs or biological agents, which can promote cell proliferation, migration, and differentiation. Thus, they have been widely used in cartilage repair and regeneration. In this review, preparation processes, basic materials, and functional characteristics of various microspheres commonly used in OA treatment are systematically reviewed. Then it is introduced surface modification strategies that can improve the biological properties of microspheres and discussed a series of applications of microsphere functionalized scaffolds in OA treatment. Finally, based on bibliometrics research, the research development, future potential, and possible research hotspots of microspheres in the field of OA therapy is systematically and dynamically evaluated. The comprehensive and systematic review will bring new understanding to the field of microsphere treatment of OA.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Fuyang Cao
- Department of Orthopedics Second Hospital of Shanxi Medical University Taiyuan Shanxi 030001 P. R. China
| | - Jingtao Huang
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Hui Zeng
- Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University) Shenzhen Guangdong 518035 China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| |
Collapse
|
7
|
Cao M, Sheng R, Sun Y, Cao Y, Wang H, Zhang M, Pu Y, Gao Y, Zhang Y, Lu P, Teng G, Wang Q, Rui Y. Delivering Microrobots in the Musculoskeletal System. NANO-MICRO LETTERS 2024; 16:251. [PMID: 39037551 PMCID: PMC11263536 DOI: 10.1007/s40820-024-01464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 07/23/2024]
Abstract
Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
Collapse
Affiliation(s)
- Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yimin Sun
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ying Cao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yunmeng Pu
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China
| | - Gaojun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
An H, Zhang M, Gu Z, Jiao X, Ma Y, Huang Z, Wen Y, Dong Y, Zhang P. Advances in Polysaccharides for Cartilage Tissue Engineering Repair: A Review. Biomacromolecules 2024; 25:2243-2260. [PMID: 38523444 DOI: 10.1021/acs.biomac.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Cartilage repair has been a significant challenge in orthopedics that has not yet been fully resolved. Due to the absence of blood vessels and the almost cell-free nature of mature cartilage tissue, the limited ability to repair cartilage has resulted in significant socioeconomic pressures. Polysaccharide materials have recently been widely used for cartilage tissue repair due to their excellent cell loading, biocompatibility, and chemical modifiability. They also provide a suitable microenvironment for cartilage repair and regeneration. In this Review, we summarize the techniques used clinically for cartilage repair, focusing on polysaccharides, polysaccharides for cartilage repair, and the differences between these and other materials. In addition, we summarize the techniques of tissue engineering strategies for cartilage repair and provide an outlook on developing next-generation cartilage repair and regeneration materials from polysaccharides. This Review will provide theoretical guidance for developing polysaccharide-based cartilage repair and regeneration materials with clinical applications for cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinglei Ma
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | - Peixun Zhang
- Department of Orthopaedics and Trauma Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
9
|
Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm (Beijing) 2023; 4:e291. [PMID: 37337579 PMCID: PMC10276889 DOI: 10.1002/mco2.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
Regeneration is a complex process affected by many elements independent or combined, including inflammation, proliferation, and tissue remodeling. Stem cells is a class of primitive cells with the potentiality of differentiation, regenerate with self-replication, multidirectional differentiation, and immunomodulatory functions. Stem cells and their cytokines not only inextricably linked to the regeneration of ectodermal and skin tissues, but also can be used for the treatment of a variety of chronic wounds. Stem cells can produce exosomes in a paracrine manner. Stem cell exosomes play an important role in tissue regeneration, repair, and accelerated wound healing, the biological properties of which are similar with stem cells, while stem cell exosomes are safer and more effective. Skin and bone tissues are critical organs in the body, which are essential for sustaining life activities. The weak repairing ability leads a pronounced impact on the quality of life of patients, which could be alleviated by stem cell exosomes treatment. However, there are obstacles that stem cells and stem cells exosomes trough skin for improved bioavailability. This paper summarizes the applications and mechanisms of stem cells and stem cells exosomes for skin and bone healing. We also propose new ways of utilizing stem cells and their exosomes through different nanoformulations, liposomes and nanoliposomes, polymer micelles, microspheres, hydrogels, and scaffold microneedles, to improve their use in tissue healing and regeneration.
Collapse
Affiliation(s)
- Ye Jin
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Shuangyang Li
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Qixuan Yu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Tianli Chen
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| | - Da Liu
- School of PharmacyChangchun University of Chinese MedicineChangchunJilinChina
| |
Collapse
|
10
|
Dao L, Chen S, Sun X, Pang W, Zhang H, Liao J, Yan J, Pang J. Construction and sustained release of konjac glucomannan/naringin composite gel spheres. Front Nutr 2023; 9:1123494. [PMID: 36742005 PMCID: PMC9893279 DOI: 10.3389/fnut.2022.1123494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Objective To improve the bioavailability of active substances and reduce the toxic and side effects on the human body, natural biological macromolecules are used to load active substances and control their release speed in different environments of the human body. In this study, mesoporous silica (MSN) was combined with konjac glucomannan (KGM) and sodium alginate (AC) to prepare pH-sensitive konjac glucomannan/sodium alginate-mesoporous silica loaded naringin gel spheres (KS/MSN). On this basis, the structure, morphology, and release properties of the composite gel spheres were characterized. The results showed that the cumulative release rates of both simulated gastric fluid (SGF) and Simulated colonic fluid (SCF) were lower than that of simulated small intestinal fluid (SIF), which indicated that the prepared composite gel spheres were pH-sensitive to SIF and obtained the best release rate of about 70% under SIF environment. Methods The pH-sensitive konjac glucomannan/sodium alginate composite gel spheres (KGM/SA) were prepared by combining inorganic nano-materials mesoporous silica (MSN) with natural macromolecular polysaccharides konjac glucomannan (KGM) and sodium alginate (SA) and characterized. Results The results showed that there was a process of ionic crosslinking and entanglement between konjac glucomannan (KGM) and sodium alginate (SA). Naringin (NG) and mesoporous silica (MSN) were successfully compounded and had good compatibility. The gel microstructure diagram showed that the addition of MSN improved the gel properties of KGM, and KGM and SA gel spheres (KGM/SA) had good compatibility with mesoporous silica/naringenin nanoparticles (NG/MSN). The study of the simulated digestive environment of the gastrointestinal release medium showed that Konjac glucomannan/sodium alginate-mesoporous silica loaded naringin gel spheres (KS/NM) composite gel spheres had the best slow-release effect and the highest final-release completion degree in SIF. The release of NG from KS/NM composite gel spheres showed a slow upward trend. The results showed that KS/NM composite gel spheres were pH-sensitive. Conclusion The KS/NM composite gel spheres showed obvious pH sensitivity to the release of NG, and the gel spheres had a good sustained release effect on NG.
Collapse
Affiliation(s)
- Liping Dao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyang Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyun Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyuan Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hengzhe Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiqiang Yan
- College of Computer and Information, Fujian Agriculture and Forestry University, Fuzhou, China,Jiqiang Yan,
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Jie Pang,
| |
Collapse
|
11
|
Xu Y, Wang Q, Wang XX, Xiang XN, Peng JL, He CQ, He HC. The Effect of Different Frequencies of Pulsed Electromagnetic Fields on Cartilage Repair of Adipose Mesenchymal Stem Cell-Derived Exosomes in Osteoarthritis. Cartilage 2022; 13:200-212. [PMID: 36377077 PMCID: PMC9924977 DOI: 10.1177/19476035221137726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The intra-articular injection of mesenchymal stem cell (MSC)-derived exosomes has already been proved to reverse osteoarthritic cartilage degeneration. Pulsed electromagnetic field (PEMF) has been found to regulate the biogenic function of MSCs. However, the effect of PEMF on MSC-derived exosomes has not yet been characterized. The aim of this study was to elucidate the regulatory role of different frequencies of PEMF in promoting the osteoarthritic cartilage regeneration of MSC-derived exosomes. METHODS The adipose tissue-derived MSCs (AMSCs) were extracted from the epididymal fat of healthy rats and further exposed to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. The chondrocytes were treated with interlukin-1β (IL-1β) and the regenerative effect of co-culturing with PEMF-exposed AMSC-derived exosomes was assessed via Western blot, quantitative polymerase chain reaction, and ELISA assays. A rat model of osteoarthritis was established by anterior cruciate ligament transection (ACLT) surgery and received 4 times intra-articular injection of PEMF-exposed AMSC-derived exosomes once a week. After 8 weeks, the knee joint specimens of rats were collected for micro-computed tomography and histologic analyses. RESULTS PEMF-exposed AMSC-derived exosomes could be endocytosed with IL-1β-induced chondrocytes. Compared with the AMSC-derived exosomes alone, the PEMF-exposed AMSC-derived exosomes substantially suppressed the inflammation and extracellular matrix degeneration of IL-1β-induced chondrocytes as shown by higher expression of transcripts and proteins of COL2A1, SOX9, and ACAN and lower expression of MMP13 and caspase-1. Of these, the 75-Hz PEMF presented a more significant inhibitive effect than the 15-Hz and 45-Hz PEMFs. Furthermore, the intra-articular injection of 75-Hz PEMF-exposed exosomes could obviously increase the number of tibial epiphyseal trabeculae, lead to a remarkable decrease in Osteoarthritis Research Society International score, and upregulate the COL2A1 and ACAN protein level of the degenerated cartilage. CONCLUSION The present study demonstrated that PEMF stimulation could effectively promote the regeneration effects of AMSC-derived exosomes on osteoarthritic cartilage. Compared with other frequency parameters, the PEMF at a frequency of 75 Hz showed a superior positive effect on AMSC-derived exosomes in suppressing the IL-1β-induced chondrocyte inflammation and extracellular matrix catabolism, as well as the osteoarthritic cartilage degeneration.
Collapse
Affiliation(s)
- Yang Xu
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Qian Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiang-Xiu Wang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Jia-Lei Peng
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Cheng-Qi He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China
| | - Hong-Chen He
- Rehabilitation Medicine Centre, West
China Hospital, Sichuan University, Chengdu, P.R. China,School of Rehabilitation Sciences, West
China School of Medicine, Sichuan University, Chengdu, P.R. China,Rehabilitation Medicine Key Laboratory
of Sichuan Province, Chengdu, P.R. China,Hong-Chen He, Rehabilitation Medicine
Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P.R.
China.
| |
Collapse
|
12
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
13
|
Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applications. Front Chem 2022; 10:1040492. [PMID: 36304746 PMCID: PMC9592724 DOI: 10.3389/fchem.2022.1040492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic hydrogels composed of hydrogel matrices and magnetic nanomaterials have attracted widespread interests. Thereinto, magnetic hydrogels with ordered structure possessing enhanced functionalities and unique architectures, show tremendous advantages in biomedical fields. The ordered structure brought unique anisotropic properties and excellent physical properties. Furthermore, the anisotropic properties of magnetic ordered hydrogels are more analogous to biological tissues in morphology and mechanical property, showing better biocompatibility and bioinducibility. Thus, we aim to systematically describe the latest advances of magnetic hydrogels with ordered structure. Firstly, this review introduced the synthetic methods of magnetic hydrogels focus on constructing ordered structure. Then, their functionalities and biomedical applications are also summarized. Finally, the current challenges and a compelling perspective outlook of magnetic ordered hydrogel are present.
Collapse
|
14
|
Liu C, Guo Y, Cheng Y, Qian H. A colon-targeted delivery system of torularhodin encapsulated in electrospinning microspheres, and its co-metabolic regulation mechanism of gut microbiota. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Liu Y, Nisisako T. Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant. BIOMICROFLUIDICS 2022; 16:024101. [PMID: 35282035 PMCID: PMC8896892 DOI: 10.1063/5.0077916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Microparticles with uniform anisotropic structures are widely used in physical, chemical, and biological fields owing to their ability to combine multiple functions on a micro-scale. Here, a microfluidic emulsion-based external gelation method was demonstrated for the first time to produce monodisperse Janus calcium alginate (Ca-alginate) hydrogel microparticles consisting of two compartments. This approach provided a fast reaction condition under which we could prepare magnetic Janus Ca-alginate microparticles with diameters ranging from 148 to 179 μm and a coefficient of variation (CV) less than 4%. Moreover, the boundaries between the two compartments were clear. In addition, the volume fraction of each compartment could be adjusted by varying the flow rate ratio between two dispersed phases. Next, we produced fluorescent Janus beads and magnetic-fluorescent Janus beads with an average diameter of ∼150 μm (CV < 4.0%). The magnetic Janus hydrogel microparticles we produced could be manipulated by applying a magnetic field to achieve self-assembly, rotation, and accumulation. Magnetic Janus hydrogel microparticles are also capable of mammalian cell encapsulation with good cell viability. This article presents a simple and stable approach for producing monodisperse bi-compartmental Janus hydrogel microparticles that could have great potential for application in physical, biochemical, and biomedical fields.
Collapse
Affiliation(s)
- Yingzhe Liu
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
16
|
Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. J Pharm Sci 2022; 111:1250-1261. [PMID: 34986359 DOI: 10.1016/j.xphs.2021.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Alginates are naturally occurring polymers revealing low toxicity, good biocompatibility and biodegradability, excellent gelling and thickening properties, as well as low production cost and good availability. One of the most important features typical for alginates is the ability to undergo ionotropic gelation which is gel formation process occurring upon the contact with cations. Because of their advantageous properties, alginates have been extensively utilized in food and pharmaceutical industries. In this review the current knowledge regarding the most recent studies involving both popularly applied dosage forms, like tablets or hydrogels, and novel advanced drug delivery systems applied in targeted therapies are summarized and discussed. The presented studies indicate that although sodium alginate is a well-established polymer, it is still widely applied as pharmaceutical excipient and the presented research studies indicate that there are still research areas that can be explored and provide innovation in drug delivery systems.
Collapse
|
17
|
Liao S, Meng H, Li J, Zhao J, Xu Y, Wang A, Xu W, Peng J, Lu S. Potential and recent advances of microcarriers in repairing cartilage defects. J Orthop Translat 2021; 27:101-109. [PMID: 33520655 PMCID: PMC7810913 DOI: 10.1016/j.jot.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/11/2022] Open
Abstract
Articular cartilage regeneration is one of the challenges faced by orthopedic surgeons. Microcarrier applications have made great advances in cartilage tissue engineering in recent years and enable cost-effective cell expansion, thus providing permissive microenvironments for cells. In addition, microcarriers can be loaded with proteins, factors, and drugs for cartilage regeneration. Some microcarriers also have the advantages of injectability and targeted delivery. The application of microcarriers with these characteristics can overcome the limitations of traditional methods and provide additional advantages. In terms of the transformation potential, microcarriers have not only many advantages, such as providing sufficient and beneficial cells, factors, drugs, and microenvironments for cartilage regeneration, but also many application characteristics; for example, they can be injected to reduce invasiveness, transplanted after microtissue formation to increase efficiency, or combined with other stents to improve mechanical properties. Therefore, this technology has enormous potential for clinical transformation. In this review, we focus on recent advances in microcarriers for cartilage regeneration. We compare the characteristics of microcarriers with other methods for repairing cartilage defects, provide an overview of the advantages of microcarriers, discuss the potential of microcarrier systems, and present an outlook for future development. Translational potential of this article We reviewed the advantages and recent advances of microcarriers for cartilage regeneration. This review could give many scholars a better understanding of microcarriers, which can provide doctors with potential methods for treating patients with cartilage injure.
Collapse
Affiliation(s)
- Sida Liao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junkang Li
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Zhao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yichi Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shibi Lu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
18
|
Green Synthesized Montmorillonite/Carrageenan/Fe 3O 4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int J Mol Sci 2020; 21:ijms21144851. [PMID: 32659939 PMCID: PMC7402292 DOI: 10.3390/ijms21144851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50–0.734 mg/mL) compared to the unloaded NCs (IC50–1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Collapse
|
19
|
Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int J Biol Macromol 2019; 131:209-217. [DOI: 10.1016/j.ijbiomac.2019.03.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/10/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
|
20
|
Synthesis of dual-responsive Janus nanovehicle via PNIPAm modified SPIONs deposition on crosslinked chitosan microparticles and decrosslinking process in the core. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Correia CR, Reis RL, Mano JF. Design Principles and Multifunctionality in Cell Encapsulation Systems for Tissue Regeneration. Adv Healthc Mater 2018; 7:e1701444. [PMID: 30102458 DOI: 10.1002/adhm.201701444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Cell encapsulation systems are being increasingly applied as multifunctional strategies to regenerate tissues. Lessons afforded with encapsulation systems aiming to treat endocrine diseases seem to be highly valuable for the tissue engineering and regenerative medicine (TERM) systems of today, in which tissue regeneration and biomaterial integration are key components. Innumerous multifunctional systems for cell compartmentalization are being proposed to meet the specific needs required in the TERM field. Herein is reviewed the variable geometries proposed to produce cell encapsulation strategies toward tissue regeneration, including spherical and fiber-shaped systems, and other complex shapes and arrangements that better mimic the highly hierarchical organization of native tissues. The application of such principles in the TERM field brings new possibilities for the development of highly complex systems, which holds tremendous promise for tissue regeneration. The complex systems aim to recreate adequate environmental signals found in native tissue (in particular during the regenerative process) to control the cellular outcome, and conferring multifunctional properties, namely the incorporation of bioactive molecules and the ability to create smart and adaptative systems in response to different stimuli. The new multifunctional properties of such systems that are being employed to fulfill the requirements of the TERM field are also discussed.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group – Biomaterials, Biodegradables, and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
22
|
Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018; 7:antibiotics7020046. [PMID: 29890753 PMCID: PMC6023022 DOI: 10.3390/antibiotics7020046] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Ana Paula Miranda Vieira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Taynara Maria Toito de Lima
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|