1
|
Zhang C, Hao J, Shi W, Su Y, Mitchell K, Hua W, Jin W, Lee S, Wen L, Jin Y, Zhao D. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Biofabrication 2023; 15:10.1088/1758-5090/aceffb. [PMID: 37579750 PMCID: PMC10566457 DOI: 10.1088/1758-5090/aceffb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Jiangtao Hao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Weiliang Shi
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Ya Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Wenbo Jin
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Serena Lee
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Danyang Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
2
|
Ma L, Fang X, Wang C. Peptide-based coacervates in therapeutic applications. Front Bioeng Biotechnol 2023; 10:1100365. [PMID: 36686257 PMCID: PMC9845597 DOI: 10.3389/fbioe.2022.1100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Coacervates are droplets formed by liquid‒liquid phase separation. An increasing number of studies have reported that coacervates play an important role in living cells, such as in the generation of membraneless organelles, and peptides contribute to condensate droplet formation. Peptides with versatile functional groups and special secondary structures, including α-helices, β-sheets and intrinsically disordered regions, provide novel insights into coacervation, such as biomimetic protocells, neurodegenerative diseases, modulations of signal transmission, and drug delivery systems. In this review, we introduce different types of peptide-based coacervates and the principles of their interactions. Additionally, we summarize the thermodynamic and kinetic mechanisms of peptide-based coacervates and the associated factors, including salt, pH, and temperature, affecting the phase separation process. We illustrate recent studies on modulating the functions of peptide-based coacervates applied in biological diseases. Finally, we propose their promising broad applications and describe the challenges of peptide-based coacervates in the future.
Collapse
Affiliation(s)
- Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| |
Collapse
|
3
|
Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022; 624:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Coacervation is a liquid-liquid phase separation that can occur in solutions of macromolecules through self-assembly or electrostatic interactions. Recently, coacervates composed of biocompatible macromolecules have been actively investigated as nanostructure platforms to encapsulate and deliver biomolecules such as proteins, RNAs, and DNAs. One particular advantage of coacervates is that they are derived from aqueous solutions, unlike other nanoparticle delivery systems that often require organic solvents. In addition, coacervates achieve high loading while maintaining the viability of the cargo material. Here, we review recent developments in the applications of coacervates and their limitations in the delivery of therapeutic biomolecules. Important factors for coacervation include molecular structures of the polyelectrolytes, mixing ratio, the concentration of polyelectrolytes, and reaction conditions such as ionic strength, pH, and temperature. Various compositions of coacervates have been shown to deliver biomolecules in vitro and in vivo with encouraging activities. However, major hurdles remain for the systemic route of administration other than topical or local delivery. The scale-up of manufacturing methods suitable for preclinical and clinical evaluations remains to be addressed. We conclude with a few research directions to overcome current challenges, which may lead to successful translation into the clinic.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam 13488, Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam 13488, Korea.
| |
Collapse
|
4
|
Kim B, Ban E, Kim A. Gelatin-Alginate Coacervates Optimized by DOE to Improve Delivery of bFGF for Wound Healing. Pharmaceutics 2021; 13:2112. [PMID: 34959393 PMCID: PMC8705889 DOI: 10.3390/pharmaceutics13122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Metabolic disorders in diabetic patients are associated with altered protein and lipid metabolism and defects in granulation tissue formation, resulting in non-healing wounds such as diabetic foot ulcers (DFU). Growth factors have essential roles in tissue re-epithelization and angiogenesis during wound healing. In this study, a complex coacervate was evaluated as an enhanced delivery system for fibroblast growth factor (bFGF) to control its release rate and protect it from proteases. Coacervates composed of gelatin Type A (GA) and sodium alginate (SA) were optimized by the Design of Experiments (DOE), with the polymer ratio and the medium's pH as the independent variables, and turbidity, particle size, polydispersity index, and encapsulation efficiency (EE, %) as the responses. The optimized coacervate protected bFGF from trypsin digestion and showed controlled release compared with bFGF in solution or a physical mixture of GA and SA. It enhanced the viability, migration, and procollagen I C-terminal propeptide synthesis of human dermal fibroblasts in hyperglycemic conditions. In summary, the DOE approach was successfully applied to optimize bFGF GA-SA coacervates as a potential novel therapeutic modality to treat DFU.
Collapse
Affiliation(s)
| | | | - Aeri Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam-si 463-400, Korea; (B.K.); (E.B.)
| |
Collapse
|
5
|
Derakhshankhah H, Jahanban‐Esfahlan R, Vandghanooni S, Akbari‐Nakhjavani S, Massoumi B, Haghshenas B, Rezaei A, Farnudiyan‐Habibi A, Samadian H, Jaymand M. A bio‐inspired gelatin‐based
pH
‐ and thermal‐sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.50578] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology School of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Sattar Akbari‐Nakhjavani
- Department of Molecular Medicine School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | | | - Babak Haghshenas
- Regenerative Medicine Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amir Farnudiyan‐Habibi
- Department of Pharmaceutical Biomaterials Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Medical Biomaterials Research Center Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
6
|
Jeong S, Kim B, Park M, Ban E, Lee SH, Kim A. Improved Diabetic Wound Healing by EGF Encapsulation in Gelatin-Alginate Coacervates. Pharmaceutics 2020; 12:pharmaceutics12040334. [PMID: 32276508 PMCID: PMC7238057 DOI: 10.3390/pharmaceutics12040334] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Topical imageplication of epidermal growth fctor (EGF) has been used to accelerate diabetic foot ulcers but with limited efficacy. In this study, we selected a complex coacervate (EGF-Coa) composed of the low molecular weight gelatin type A and sodium alginate as a novel delivery system for EGF, based on encapsulation efficiency and protection of EGF from protease. EGF-Coa enhanced in vitro migration of keratinocytes and accelerated wound healing in streptozotocin-induced diabetic mice with increased granulation and re-epithelialization. While diabetic wound sites without treatment showed downward growth of hyperproliferative epidermis along the wound edges with poor matrix formation, EGF-Coa treatment recovered horizontal migration of epidermis over the newly deposited dermal matrix. EGF-Coa treatment also resulted in reduced levels of proinflammatory cytokines IL-1, IL-6, and THF-α. Freeze-dried coacervates packaged in aluminum pouches were stable for up to 4 months at 4 and 25 °C in terms of appearance, purity by RP-HPLC, and in vitro release profiles. There were significant physical and chemical changes in relative humidity above 33% or at 37 °C, suggesting the requirement for moisture-proof packaging and cold chain storage for long term stability. We propose low molecular weight gelatin type A and sodium alginate (LWGA-SA) coacervates as a novel EGF delivery system with enhanced efficacy for chronic wounds.
Collapse
Affiliation(s)
- Seonghee Jeong
- College of Pharmacy, CHA University, Seongnam-si 463-400, Gyeonggi-do, Korea; (S.J.); (B.K.); (M.P.); (E.B.)
| | - ByungWook Kim
- College of Pharmacy, CHA University, Seongnam-si 463-400, Gyeonggi-do, Korea; (S.J.); (B.K.); (M.P.); (E.B.)
| | - Minwoo Park
- College of Pharmacy, CHA University, Seongnam-si 463-400, Gyeonggi-do, Korea; (S.J.); (B.K.); (M.P.); (E.B.)
| | - Eunmi Ban
- College of Pharmacy, CHA University, Seongnam-si 463-400, Gyeonggi-do, Korea; (S.J.); (B.K.); (M.P.); (E.B.)
| | - Soo-Hyeon Lee
- Immunotherapy Development Team, R&D Division, CHA Biolab, Seongnam 463-400, Korea;
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam-si 463-400, Gyeonggi-do, Korea; (S.J.); (B.K.); (M.P.); (E.B.)
- Correspondence: ; Tel.: +82-3-1881-7166
| |
Collapse
|
7
|
Jeong S, Kim B, Lau HC, Kim A. Gelatin-Alginate Complexes for EGF Encapsulation: Effects of H-Bonding and Electrostatic Interactions. Pharmaceutics 2019; 11:pharmaceutics11100530. [PMID: 31614977 PMCID: PMC6835588 DOI: 10.3390/pharmaceutics11100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/24/2023] Open
Abstract
Gelatin Type A (GA) and sodium alginate (SA) complexes were explored to encapsulate epidermal growth factor (EGF), and thereby to circumvent its proteolytic degradation upon topical application to chronic wounds. Phase diagrams were constructed based on turbidity as a function of GA to SA ratio and pH. Various GA-SA mixtures were compared for polydispersity index, zeta potential, Z-average, and ATR-FTIR spectra. Trypsin digestion and human dermal fibroblast scratch wound assay were done to evaluate the effects of EGF encapsulation. The onset pH values for coacervation and precipitation were closer together in high molecular weight GA (HWGA)-SA reaction mixtures than in low molecular weight GA (LWGA)-SA, which was attributed to strong H-bonding interactions between HWGA and SA probed by ATR-FTIR. EGF incorporation in both HWGA-SA precipitates and LWGA-SA coacervates below the isoelectric point of EGF, but not above it, suggests the contribution of electrostatic interactions between EGF and SA. EGF encapsulated in LWGA-SA coacervates was effectively protected from trypsin digestion and showed better in vitro scratch wound activity compared to free EGF. LWGA-SA coacervates are suggested as a novel delivery system for topical application of EGF to chronic wounds.
Collapse
Affiliation(s)
- Seonghee Jeong
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| | - ByungWook Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea
| | - Hui-Chong Lau
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do 463-400, Korea.
| |
Collapse
|
8
|
Chiaoprakobkij N, Seetabhawang S, Sanchavanakit N, Phisalaphong M. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:961-982. [DOI: 10.1080/09205063.2019.1613292] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nadda Chiaoprakobkij
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sutasinee Seetabhawang
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Neeracha Sanchavanakit
- Research Unit of Mineralized Tissues, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|