1
|
Ding L, Zhai Z, Qin T, Lin Y, Shuang Z, Sun F, Qin C, Luo H, Zhu W, Ye X, Chen Z, Luo X. Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2' Amino Acid Replacements. Toxins (Basel) 2025; 17:23. [PMID: 39852976 PMCID: PMC11769409 DOI: 10.3390/toxins17010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy. The anticoagulation assay showed that the four P2' single-point mutants still had apparent inhibitory anticoagulation activity that selectively inhibited the human intrinsic coagulation pathway and had no influence on the extrinsic coagulation pathway or common coagulation pathway, which indicated that the single-point mutants had minimal effects on the anticoagulation activity of BF9-N17K. Interestingly, the enzyme inhibitor assay experiments showed that the XIa and plasmin inhibitory activities were significantly changed by the P2' amino acid replacements. The XIa inhibitory activity of BF9-N17K-L19D was apparently enhanced, with an IC50 of 19.28 ± 2.53 nM, and its plasmin inhibitory was significantly weakened, with an IC50 of 459.33 ± 337.40 nM. BF9-N17K-L19K was the opposite to BF9-N17K-L19D, which had enhanced plasmin inhibitory activity and reduced XIa inhibitory activity. For BF9-N17K-L19A and BF9-N17K-L19S, no apparent changes were found in the serine protease inhibitory activity, and they had similar XIa and plasmin inhibitory activities to the template peptide BF9-N17K. These results suggested that the characteristics of the charge of the P2' site might be associated with the drug selectivity between the anticoagulant target XIa and hemostatic target plasmin. In addition, according to the molecular diversity and sequence conservation, a common motif GR/PCR/KA/SXIP-XYGGC is proposed in the XIa-inhibitory Kunitz-type peptides, which might provide a new clue for further peptide engineering. In conclusion, through P2' amino acid classification scanning with the snake venom Kunitz-type peptide scaffold, a new potent and selective XIa inhibitor, BF9-N17K-L19D, was discovered, which provides a new XIa-targeting lead drug template for the treatment of thrombotic-related diseases.
Collapse
Affiliation(s)
- Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhiping Zhai
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Tianxiang Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Yuexi Lin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Zhicheng Shuang
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (L.D.); (Z.Z.); (Y.L.); (Z.S.); (F.S.); (C.Q.); (H.L.); (W.Z.); (X.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
2
|
Sun F, Deng X, Gao H, Ding L, Zhu W, Luo H, Ye X, Luo X, Chen Z, Qin C. Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Acinetobacter baumannii Exotoxin Protein F6W77. Toxins (Basel) 2024; 16:450. [PMID: 39453226 PMCID: PMC11511053 DOI: 10.3390/toxins16100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Recent studies have revealed that the coagulation system plays a role in mammalian innate defense by entrapping bacteria in clots and generating antibacterial peptides. So, it is very important for the survival of bacteria to defend against the host coagulation system, which suggests that bacterial exotoxins might be a new source of anticoagulants. In this study, we analyzed the genomic sequences of Acinetobacter baumannii and a new bacterial exotoxin protein, F6W77, with five Kunitz-domains, KABP1-5, was identified. Each Kunitz-type domain features a classical six-cysteine framework reticulated by three conserved disulfide bridges, which was obviously similar to animal Kunitz-domain peptides but different from plant Kunitz-domain peptides. Anticoagulation function evaluation showed that towards the intrinsic coagulation pathway, KABP1 and KABP5 had apparently inhibitory activity, KABP4 had weak inhibitory activity, and KBAP2 and KABP3 had no effect even at a high concentration of 20 μg/mL. All five Kunitz-domain peptides, KABP1-5, had no inhibitory activity towards the extrinsic coagulation pathway. Enzyme-inhibitor experiments showed that the high-activity anticoagulant peptide KABP1 had apparently inhibitory activity towards two key coagulation factors, Xa and XIa, which was further confirmed by pull-down experiments that showed that KABP1 can bind to coagulation factors Xa and XIa directly. Structure-function relationship analyses of five Kunitz-type domain peptides showed that the arginine of the P1 site of three new bacterial anticoagulants, KABP1, KABP4 and KABP5, might be the key residue for their anticoagulation activity. In conclusion, with bioinformatics analyses, peptide recombination, and functional evaluation, we firstly found bacterial-exotoxin-derived Kunitz-type serine protease inhibitors with selectively inhibiting activity towards intrinsic coagulation pathways, and highlighted a new interaction between pathogenic bacteria and the human coagulation system.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaolin Deng
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huanhuan Gao
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hongyi Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Luo
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Zongyun Chen
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chenhu Qin
- Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (F.S.); (X.D.); (H.G.); (L.D.); (W.Z.); (H.L.); (X.Y.); (X.L.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
3
|
Amino Acid Substitutions at P1 Position Change the Inhibitory Activity and Specificity of Protease Inhibitors BmSPI38 and BmSPI39 from Bombyx mori. Molecules 2023; 28:molecules28052073. [PMID: 36903318 PMCID: PMC10004685 DOI: 10.3390/molecules28052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
It was found that silkworm serine protease inhibitors BmSPI38 and BmSPI39 were very different from typical TIL-type protease inhibitors in sequence, structure, and activity. BmSPI38 and BmSPI39 with unique structure and activity may be good models for studying the relationship between the structure and function of small-molecule TIL-type protease inhibitors. In this study, site-directed saturation mutagenesis at the P1 position was conducted to investigate the effect of P1 sites on the inhibitory activity and specificity of BmSPI38 and BmSPI39. In-gel activity staining and protease inhibition experiments confirmed that BmSPI38 and BmSPI39 could strongly inhibit elastase activity. Almost all mutant proteins of BmSPI38 and BmSPI39 retained the inhibitory activities against subtilisin and elastase, but the replacement of P1 residues greatly affected their intrinsic inhibitory activities. Overall, the substitution of Gly54 in BmSPI38 and Ala56 in BmSPI39 with Gln, Ser, or Thr was able to significantly enhance their inhibitory activities against subtilisin and elastase. However, replacing P1 residues in BmSPI38 and BmSPI39 with Ile, Trp, Pro, or Val could seriously weaken their inhibitory activity against subtilisin and elastase. The replacement of P1 residues with Arg or Lys not only reduced the intrinsic activities of BmSPI38 and BmSPI39, but also resulted in the acquisition of stronger trypsin inhibitory activities and weaker chymotrypsin inhibitory activities. The activity staining results showed that BmSPI38(G54K), BmSPI39(A56R), and BmSPI39(A56K) had extremely high acid-base and thermal stability. In conclusion, this study not only confirmed that BmSPI38 and BmSPI39 had strong elastase inhibitory activity, but also confirmed that P1 residue replacement could change their activity and inhibitory specificity. This not only provides a new perspective and idea for the exploitation and utilization of BmSPI38 and BmSPI39 in biomedicine and pest control, but also provides a basis or reference for the activity and specificity modification of TIL-type protease inhibitors.
Collapse
|
4
|
Ding L, Shu Z, Hao J, Luo X, Ye X, Zhu W, Duan W, Chen Z. Schixator, a new FXa inhibitor from Schistosoma japonicum with antithrombotic effect and low bleeding risk. Biochem Biophys Res Commun 2022; 603:138-143. [DOI: 10.1016/j.bbrc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
5
|
Mariaule V, Kriaa A, Soussou S, Rhimi S, Boudaya H, Hernandez J, Maguin E, Lesner A, Rhimi M. Digestive Inflammation: Role of Proteolytic Dysregulation. Int J Mol Sci 2021; 22:ijms22062817. [PMID: 33802197 PMCID: PMC7999743 DOI: 10.3390/ijms22062817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.
Collapse
Affiliation(s)
- Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Houda Boudaya
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
- Correspondence:
| |
Collapse
|
6
|
S. mansoni SmKI-1 Kunitz-domain: Leucine point mutation at P1 site generates enhanced neutrophil elastase inhibitory activity. PLoS Negl Trop Dis 2021; 15:e0009007. [PMID: 33465126 PMCID: PMC7846107 DOI: 10.1371/journal.pntd.0009007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/29/2021] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Schistosoma mansoni SmKI-1 protein is composed of two domains: a Kunitz-type serine protease inhibitor motif (KD) and a C-terminus domain with no similarity outside the genera. Our previous work has demonstrated that KD plays an essential role in neutrophil elastase (NE) binding blockage, in neutrophil influx and as a potential anti-inflammatory molecule. In order to enhance NE blocking capacity, we analyzed the KD sequence from a structure-function point of view and designed specific point mutations in order to enhance NE affinity. We substituted the P1 site residue at the reactive site for a leucine (termed RL-KD), given its central role for KD's inhibition to NE. We have also substituted a glutamic acid that strongly interacts with the P1 residue for an alanine, to help KD to be buried on NE S1 site (termed EA-KD). KD and the mutant proteins were evaluated in silico by molecular docking to human NE, expressed in Escherichia coli and tested towards its NE inhibitory activity. Both mutated proteins presented enhanced NE inhibitory activity in vitro and RL-KD presented the best performance. We further tested RL-KD in vivo in an experimental model of monosodium urate (MSU)-induced acute arthritis. RL-KD showed reduced numbers of total cells and neutrophils in the mouse knee cavity when compared to KD. Nevertheless, both RL-KD and KD reduced mice hypernociception in a similar fashion. In summary, our results demonstrated that both mutated proteins showed enhanced NE inhibitory activity in vitro. However, RL-KD had a prominent effect in diminishing inflammatory parameters in vivo.
Collapse
|
7
|
Mishra M, Singh V, Tellis MB, Joshi RS, Singh S. Repurposing the McoTI-II Rigid Molecular Scaffold in to Inhibitor of 'Papain Superfamily' Cysteine Proteases. Pharmaceuticals (Basel) 2020; 14:ph14010007. [PMID: 33374547 PMCID: PMC7822474 DOI: 10.3390/ph14010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/19/2023] Open
Abstract
Clan C1A or ‘papain superfamily’ cysteine proteases are key players in many important physiological processes and diseases in most living systems. Novel approaches towards the development of their inhibitors can open new avenues in translational medicine. Here, we report a novel design of a re-engineered chimera inhibitor Mco-cysteine protease inhibitor (CPI) to inhibit the activity of C1A cysteine proteases. This was accomplished by grafting the cystatin first hairpin loop conserved motif (QVVAG) onto loop 1 of the ultrastable cyclic peptide scaffold McoTI-II. The recombinantly expressed Mco-CPI protein was able to bind with micromolar affinity to papain and showed remarkable thermostability owing to the formation of multi-disulphide bonds. Using an in silico approach based on homology modelling, protein–protein docking, the calculation of the free-energy of binding, the mechanism of inhibition of Mco-CPI against representative C1A cysteine proteases (papain and cathepsin L) was validated. Furthermore, molecular dynamics simulation of the Mco-CPI–papain complex validated the interaction as stable. To conclude, in this McoTI-II analogue, the specificity had been successfully redirected towards C1A cysteine proteases while retaining the moderate affinity. The outcomes of this study pave the way for further modifications of the Mco-CPI design for realizing its full potential in therapeutics. This study also demonstrates the relevance of ultrastable peptide-based scaffolds for the development of novel inhibitors via grafting.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Correspondence: (M.M.); (S.S.)
| | - Vigyasa Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi 110067, India
| | - Meenakshi B. Tellis
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; (M.B.T.); (R.S.J.)
| | - Rakesh S. Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; (M.B.T.); (R.S.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi 110067, India
- Correspondence: (M.M.); (S.S.)
| |
Collapse
|
8
|
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 2020; 88:537-548. [PMID: 32696206 DOI: 10.1007/s00239-020-09959-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this 'flexibility within the structural rigidity' is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
9
|
Kaur S, Devi A, Saikia B, Doley R. Expression and characterization of Flavikunin: A Kunitz-type serine protease inhibitor identified in the venom gland cDNA library of Bungarus flaviceps. J Biochem Mol Toxicol 2018; 33:e22273. [PMID: 30536558 DOI: 10.1002/jbt.22273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
Trancriptomic analysis of the venom gland cDNA library of Bungarus flaviceps revealed Kunitz-type serine protease inhibitor as one of the major venom protein families with three groups A, B, C. One of the group B isoforms named Flavikunin, which lacked an extra cysteine residue involved in disulfide bond formation in β-bungarotoxin, was synthesized, cloned, and overexpressed in Escherichia coli. To decipher the structure-function relationship, the P1 residue of Flavikunin, histidine, was mutated to alanine and arginine. Purified wild-type and mutant Flavikunins were screened against serine proteases-thrombin, factor Xa, trypsin, chymotrypsin, plasmin, and elastase. The wild-type and mutant Flavikunin (H∆R) inhibited plasmin with an IC 50 of 0.48 and 0.35 µM, respectively. The in-silico study showed that P1 residue of wild-type and mutant (H∆R) Flavikunin interacted with S1' and S1 site of plasmin, respectively. Thus, histidine at the P1 position was found to be involved in plasmin inhibition with mild anticoagulant activity.
Collapse
Affiliation(s)
- Simran Kaur
- Molecular Toxinology Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Arpita Devi
- Molecular Toxinology Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Bhaskarjyoti Saikia
- Molecular Toxinology Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Robin Doley
- Molecular Toxinology Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|