1
|
Puster LO, Stanley CB, Uversky VN, Curtis JE, Krueger S, Chu Y, Peterson CB. Characterization of an Extensive Interface on Vitronectin for Binding to Plasminogen Activator Inhibitor-1: Adoption of Structure in an Intrinsically Disordered Region. Biochemistry 2019; 58:5117-5134. [PMID: 31793295 DOI: 10.1021/acs.biochem.9b00605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central β-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration (Rg) and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.
Collapse
Affiliation(s)
- Letitia O Puster
- Department of Biochemistry and Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Christopher B Stanley
- Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow region 142290 , Russia
| | - Joseph E Curtis
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research , Gaithersburg , Maryland 20899 , United States
| | - Yuzhuo Chu
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Cynthia B Peterson
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
2
|
Folding perspectives of an intrinsically disordered transactivation domain and its single mutation breaking the folding propensity. Int J Biol Macromol 2019; 155:1359-1372. [PMID: 31733244 DOI: 10.1016/j.ijbiomac.2019.11.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Transcriptional regulation is a critical facet of cellular development controlled by numerous transcription factors, among which are E-proteins (E2A, HEB, and E2-2) that play important roles in lymphopoiesis. For example, primary hematopoietic cells immortalisation is promoted by interaction of the conserved PCET motif consisting of the Leu-X-X-Leu-Leu (LXXLL) and Leu-Asp-Phe-Ser (LDFS) sequences of the transactivation domains (AD1) of E-proteins with the KIX domain of CBP/p300 transcriptional co-activators. Earlier, it was shown that the LXXLL motif is essential for the PCET-KIX interaction driven by the PCET helical transition. In this study, we analyzed the dehydration-driven gain of helicity in the conserved region (residues 11-28) of the AD1 domain of E-protein. Particularly, we showed that AD1 structure was dramatically affected by alcohols, but was insensitive to changes in pH or the presence of osmolytes sarcosine and taurine, or high polyethylene glycol (PEG) concentrations and DOPC Liposomes. These structure-forming effects of solvents were almost completely absent in the case of L21P AD1 mutant characterized by weakened interaction with KIX. This indicates that KIX interaction-induced AD1 ordering is driven by PCET motif dehydration. The L21P mutation-caused loss of molecular recognition function of AD1 is due to the mutation-induced disruption of the AD1 helical propensity.
Collapse
|
4
|
Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. Int J Biol Macromol 2018; 125:244-255. [PMID: 30529354 DOI: 10.1016/j.ijbiomac.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
pH-induced structural changes of the synthetic homopolypeptides poly-E, poly-K, poly-R, and intrinsically disordered proteins (IDPs) prothymosin α (ProTα) and linker histone H1, in concentrated PEG solutions simulating macromolecular crowding conditions within the membrane-less organelles, were characterized. The conformational transitions of the studied poly-amino acids in the concentrated PEG solutions depend on the polymerization degree of these homopolypeptides, the size of their side chains, the charge distribution of the side chains, and the crowding agent concentration. The results obtained for poly-amino acids are valid for IDPs having a significant total charge. The overcrowded conditions promote a significant increase in the cooperativity of the pH-induced coil-α-helix transition of ProTα and provoke histone H1 aggregation. The most favorable conditions for the pH-induced structural transitions in concentrated PEG solutions are realized when the charged residues are grouped in blocks, and when the distance between the end of the side group carrying charge and the backbone is small. Therefore, the block-wise distribution of charged residues within the IDPs not only plays an important role in the liquid-liquid phase transitions, but may also define the expressivity of structural transitions of these proteins in the overcrowded conditions of the membrane-less organelles.
Collapse
|
5
|
Permyakov SE, Vologzhannikova AA, Khorn PA, Shevelyova MP, Kazakov AS, Emelyanenko VI, Denesyuk AI, Denessiouk K, Uversky VN, Permyakov EA. Comprehensive analysis of the roles of 'black' and 'gray' clusters in structure and function of rat β-parvalbumin. Cell Calcium 2018; 75:64-78. [PMID: 30176502 DOI: 10.1016/j.ceca.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 01/05/2023]
Abstract
Recently we found two highly conserved structural motifs in the proteins of the EF-hand calcium binding protein family. These motifs provide a supporting scaffold for the Ca2+ binding loops and contribute to the hydrophobic core of the EF-hand domain. Each structural motif forms a cluster of three amino acids called cluster I ('black' cluster) and cluster II ('grey' cluster). Cluster I is much more conserved and mostly incorporates aromatic amino acids. In contrast, cluster II includes a mix of aromatic, hydrophobic, and polar amino acids. The 'black' and 'gray' clusters in rat β-parvalbumin consist of F48, A100, F103 and G61, L64, M87, respectively. In the present work, we sequentially substituted these amino acids residues by Ala, except Ala100, which was substituted by Val. Physical properties of the mutants were studied by circular dichroism, scanning calorimetry, dynamic light scattering, chemical crosslinking, and fluorescent probe methods. The Ca2+ and Mg2+ binding affinities of these mutants were evaluated by intrinsic fluorescence and equilibrium dialysis methods. In spite of a rather complicated pattern of contributions of separate amino acid residues of the 'black' and 'gray' clusters into maintenance of rat β-parvalbumin structural and functional status, the alanine substitutions in the cluster I cause noticeably more pronounced changes in various structural parameters of proteins, such as hydrodynamic radius of apo-form, thermal stability of Ca2+/Mg2+-loaded forms, and total energy of Ca2+ binding in comparison with the changes caused by amino acid substitutions in the cluster II. These findings were further supported by the outputs of computational analysis of the effects of these mutations on the intrinsic disorder predisposition of rat β-parvalbumin, which also indicated that local intrinsic disorder propensities and the overall levels of predicted disorder were strongly affected by mutations in the cluster I, whereas mutations in cluster II had less pronounced effects. These results demonstrate that amino acids of the cluster I provide more essential contribution to the maintenance of structuraland functional properties of the protein in comparison with the residues of the cluster II.
Collapse
Affiliation(s)
- Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alisa A Vologzhannikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Polina A Khorn
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marina P Shevelyova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexei S Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Victor I Emelyanenko
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander I Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, 20520, Finland
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Department of Biomedical Engineering, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|