1
|
Syarifuddin A, Haliza N, Izzah N, Tahir MM, Dirpan A. Physical, Mechanical, Barrier, and Optical Properties of Sodium Alginate/Gum Arabic/Gluten Edible Films Plasticized with Glycerol and Sorbitol. Foods 2025; 14:1219. [PMID: 40238405 PMCID: PMC11988629 DOI: 10.3390/foods14071219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Polysaccharides and proteins are the primary components of edible films used for food packaging. Adding plasticizers such as glycerol or sorbitol during manufacturing can help enhance the properties of films derived from biopolymer combinations. In this study, we aimed to produce sodium alginate/gum arabic/gluten edible films and evaluate the effects of various concentrations of glycerol and sorbitol used as plasticizers on the films' physical, mechanical, barrier, and optical properties. Using solvent casting, an edible film based on sodium alginate/gum arabic/gluten was plasticized with either glycerol or sorbitol at concentrations of 2, 4, and 6% (w/v). The properties of the edible films were then characterized. Decreases in solubility, tensile strength, and water vapor transmission rate were observed when higher glycerol and sorbitol concentrations were added. The films plasticized with 6% glycerol and 6% sorbitol had the lowest solubility, tensile strength, and water vapor transmission rates. In addition, the films plasticized with glycerol, regardless of concentration, had lower transparency values than those plasticized with sorbitol. The addition of glycerol and sorbitol had insignificant effects on the thickness properties and L values of the films. The absorption peaks of the Fourier-transform infrared spectra patterns of the films plasticized with sorbitol and glycerol were similar, confirming there was an interaction between the plasticizers and polymers. Together, the results demonstrate that sorbitol and glycerol are compatible with sodium alginate/gum arabic/gluten film-forming solutions, indicating that the films obtained could be employed for food packaging.
Collapse
Affiliation(s)
- Adiansyah Syarifuddin
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia; (N.H.); (N.I.); (M.M.T.); (A.D.)
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| | - Nur Haliza
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia; (N.H.); (N.I.); (M.M.T.); (A.D.)
| | - Nur Izzah
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia; (N.H.); (N.I.); (M.M.T.); (A.D.)
| | - Mulyati Muhammad Tahir
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia; (N.H.); (N.I.); (M.M.T.); (A.D.)
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| | - Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia; (N.H.); (N.I.); (M.M.T.); (A.D.)
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| |
Collapse
|
2
|
Shi C, Jia L, Tao H, Hu W, Li C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. Fortification of cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. Int J Biol Macromol 2024; 276:133920. [PMID: 39029840 DOI: 10.1016/j.ijbiomac.2024.133920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China; Department of Clinical, Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.
| |
Collapse
|
3
|
Mojo-Quisani A, Ccallo-Silva DA, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, Comettant-Rabanal R, Mamani-Condori R, Huamaní-Meléndez VJ. Development of Edible Films Based on Nostoc and Modified Native Potato Starch and Their Physical, Mechanical, Thermal, and Microscopic Characterization. Polymers (Basel) 2024; 16:2396. [PMID: 39274028 PMCID: PMC11397336 DOI: 10.3390/polym16172396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Considering the potential of biopolymers from underutilized Andean sources in Peru to improve the characteristics of edible films, this work aimed to evaluate the formation of a polymeric matrix composed of Nostoc and modified potato starch for the formulation of edible films for food coating. The effects of polymer matrix ratio and drying temperature on films obtained by thermoforming were studied, determining the water vapor permeability and mechanical properties using a multifactorial design. Additionally, thermal properties were characterized by TGA and DSC, and structural properties by FT-IR and scanning electron microscopy. The results showed that the films exhibited lower solubility, lighter hues, better water vapor resistance, higher tensile strength, and improved thermal stability with increasing modified starch content. The formulation with higher Nostoc content exhibited a more homogeneous surface according to microscopy images, and no new chemical bonds were formed by adding modified starch and Nostoc to the polymer matrix, according to FT-IR spectra. These findings are promising and suggest using Nostoc for elaborating edible films composed of native and modified starch from native Andean potatoes as bio-based materials with potential application in the food industry.
Collapse
Affiliation(s)
- Antonieta Mojo-Quisani
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Daniel A Ccallo-Silva
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - David Choque-Quispe
- Agroindustrial Engineering, José María Arguedas National University, Andahuaylas 03701, Peru
| | - Miriam Calla-Florez
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | | | - Raúl Comettant-Rabanal
- Universidad Privada San Juan Bautista, Facultad de Ingenierías, Escuela Profesional de Ingeniería Agroindustrial, Carretera Panamericana Sur Ex km 300, La Angostura-Subtanjalla, Ica 11004, Peru
| | - Raul Mamani-Condori
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Víctor J Huamaní-Meléndez
- Department of Food Engineering and Technology, São Paulo State University (UNESP), Campus of São José do Rio Preto, São Paulo 15385-000, Brazil
| |
Collapse
|
4
|
Petry JM, Pellá MCG, Silva OA, Caetano J, Dragunski DC. Plasticizer concentration effect on films and coatings based on poly(vinyl alcohol) and cationic starch blends. Food Chem 2024; 438:137977. [PMID: 37976874 DOI: 10.1016/j.foodchem.2023.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Films based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.0% w v-1) to assess the effect of plasticizer on the films. Spectroscopic analyses confirmed the interaction between them. However, micrographs indicated the formation of sorbitol crystals on the surface of the films, especially at higher sorbitol concentrations. The blends presented low water vapor transmission rate values, reaching (7.703 ± 0.000) g h-1 m-2 (PVA75CS25S15), and low solubility values for the films containing higher CS amounts. The lack of statistical differences in most parameters suggests that no significant gain comes from increasing the amount of sorbitol at percentages higher than 15%. As a coating, the blend PVA75CS25S15 successfully decreased the loss of moisture content in acerolas by 1.15 times (compared to the control), confirming the suitability of this matrix as a fruit coating.
Collapse
Affiliation(s)
- Jaiane Maiara Petry
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | | | - Otavio Augusto Silva
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil
| | - Josiane Caetano
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil
| | - Douglas Cardoso Dragunski
- Center of Engineer and Exact Sciences, State University of West Parana, 85903-000 Toledo, PR, Brazil; Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
5
|
Pellá MCG, Simão AR, Pereira GM, Rubira AF. Hydrolysis effects on the water uptake of starch-g-glycidyl methacrylate ( GMASt)/dimethylacrylamide (DMAAm)-based hydrogels for potential agricultural purposes. Int J Biol Macromol 2023; 253:127654. [PMID: 37884240 DOI: 10.1016/j.ijbiomac.2023.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This work assessed the effect of different hydrolysis periods on the properties of hydrogels based on 75 % w w-1 of N,N'-dimethyl acrylamide (DMAAm) and 25 % w w-1 of starch-g-(glycidyl methacrylate) (GMASt). FTIR results confirmed the conversion of ester groups into carboxylic acids and carboxylates, besides forming a keto-enol tautomer due to the peeling reaction of starch. For DMAAm, the hydrolysis mostly converted amide into carboxylate groups. The morphology, thermal stability, and the mechanical properties of the predominantly amorphous matrices (as confirmed by XRD results) did not drastically change even after 10 days of hydrolysis in alkali media. However, the thermogravimetric analysis results suggested that DMAAm partially protected GMASt from the hydrolysis. The swelling degree of the matrix increased from (10.1 ± 2.1) g g-1 to (61.9 ± 2.6) g g-1 after 1 day of hydrolysis, but no statistical differences (at 95 % of significance) were observed for the matrices hydrolyzed for longer periods, confirming that the maximum hydrolysis occurred within 24 h. The results confirmed that the hydrolysis increased the water uptake of the GMASt/DMAAm-based matrices, making appealing for uses as a water retentor for agricultural purposes.
Collapse
Affiliation(s)
| | - Andressa Renatta Simão
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil
| | - Guilherme Miranda Pereira
- Department of Sciences, State University of Maringa, 5790, Av. Reitor Zeferino Vaz, Goioere, Parana 87360-000, Brazil
| | - Adley Forti Rubira
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
6
|
Carrión MG, Corripio MAR, Contreras JVH, Marrón MR, Olán GM, Cázares ASH. Optimization and characterization of taro starch, nisin, and sodium alginate-based biodegradable films: antimicrobial effect in chicken meat. Poult Sci 2023; 102:103100. [PMID: 37837678 PMCID: PMC10589887 DOI: 10.1016/j.psj.2023.103100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/16/2023] Open
Abstract
Biodegradable films based on polymers from renewable resources have become a feasible technology to preserve the quality (texture, color, flavor) and safety of food. The addition of antimicrobial agents to films can prevent the growth of pathogenic microorganisms that affect meat and poultry products. In this study, a biodegradable film with sodium alginate (SA), taro starch (MS), and nisin (Nis) was optimized to have high tensile strength (TS), breaking force (BF), and a low water vapor permeability (WVP) using a Box-Behnken response surface design, and its antimicrobial effect was evaluated in relation to its use as a packaging material for chicken meat. The OB was characterized via analysis of its mechanical, physical, and chemical properties; in addition, the total migration of Nis was also analyzed, along with its retention ability, the kinetics of the release of Nis into food simulants, and its antimicrobial activity against Listeria monocytogenes in vitro and on inoculated chicken meat. The resulting optimal OB was produced with 1.9% MS, 1% glycerol (G), and 2,369 IU/mL of Nis, and displayed adequate TS and WVP. The OB significantly reduced the microbial load and helped extend the shelf life of the chicken meat under refrigeration by up to 15 d. Total migration and the kinetics of the release of Nis showed that the OB can be used on hydrophilic and acidic foods, making it a natural alternative for use in food packaging.
Collapse
Affiliation(s)
| | | | | | - Marcela Rangel Marrón
- Facultad de Química, Universidad Autónoma del Carmen, Ciudad del Carmen, C.P. 24180, Campeche, México
| | - Gema Morales Olán
- Colegio de Postgraduados - Campus Córdoba, Veracruz, C.P. 94953, México
| | | |
Collapse
|
7
|
Shanbhag C, Shenoy R, Shetty P, Srinivasulu M, Nayak R. Formulation and characterization of starch-based novel biodegradable edible films for food packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2858-2867. [PMID: 37711571 PMCID: PMC10497475 DOI: 10.1007/s13197-023-05803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 09/16/2023]
Abstract
Petroleum-based plastics were widely used as packaging materials. However, plastic materials were not reusable and biodegradable, causing a severe negative impact on the environment. Edible films can be a suitable alternative to plastic films, particularly in food packaging. This research work prepared edible films containing blends of cornstarch, arrowroot powder, refined wheat flour, vinegar, and glycerol. Arrowroot powder added strength and nutritional value to the films. Glycerol, as a plasticiser, improved the flexibility of films. The combination of vinegar and glycerol increased the film's strength. The characteristic properties of prepared films, like thickness, bursting strength, moisture content, transparency, water-solubility, water vapour permeability, tensile strength, elongation, and Young's modulus, were analysed. The thermal stability of the films was evaluated by thermogravimetric analysis. The films were characterised by FTIR spectroscopy, and their surface morphology was analysed by scanning electron microscopy. The prepared films exhibited excellent properties suitable for food packaging. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05803-2.
Collapse
Affiliation(s)
- Chetana Shanbhag
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ramnath Shenoy
- Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Prakasha Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
- Department of Chemistry, Alva’s Institute of Engineering and Technology, Moodbidri, Karnataka 574225 India
| | - M. Srinivasulu
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ramakrishna Nayak
- Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
8
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Dirpan A, Ainani AF, Djalal M. A Review on Biopolymer-Based Biodegradable Film for Food Packaging: Trends over the Last Decade and Future Research. Polymers (Basel) 2023; 15:2781. [PMID: 37447428 DOI: 10.3390/polym15132781] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, much attention has been paid to the use of biopolymers as food packaging materials due to their important characteristics and properties. These include non-toxicity, ease of availability, biocompatibility, and biodegradability, indicating their potential as an alternative to conventional plastic packaging that has long been under environmental scrutiny. Given the current focus on sustainable development, it is imperative to develop studies on biopolymers as eco-friendly and sustainable food packaging materials. Therefore, the aim of this review is to explore trends and characteristics of biopolymer-based biodegradable films for food packaging, analyze the contribution of various journals and cooperation between countries, highlight the most influential authors and articles, and provide an overview of the social, environmental, and economic aspects of biodegradable films for food packaging. To achieve this goal, a bibliometric analysis and systematic review based on the PRISMA method were conducted. Relevant articles were carefully selected from the Scopus database. A bibliometric analysis was also conducted to discuss holistically, comprehensively, and objectively biodegradable films for food packaging. An increasing interest was found in this study, especially in the last 3 years with Brazil and China leading the number of papers on biodegradable films for food packaging, which were responsible for 20.4% and 12.5% of the published papers, respectively. The results of the keyword analysis based on the period revealed that the addition of bioactive compounds into packaging films is very promising because it can increase the quality and safety of packaged food. These results reveal that biodegradable films demonstrate a positive and promising trend as food packaging materials that are environmentally friendly and promote sustainability.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar 90245, Indonesia
| | - Andi Fadiah Ainani
- Research Group for Post-Harvest Technology and Biotechnology, Makassar 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
10
|
Niro CM, Mendonça GMN, Paulino LR, Soares VF, Azeredo HMC. Freeze-Dried Banana Slices Carrying Probiotic Bacteria. Foods 2023; 12:2282. [PMID: 37372493 DOI: 10.3390/foods12122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Findings on diet-health relationships have induced many people to adopt healthier diets, including the substitution of energy-dense snacks with healthier items, e.g., those containing probiotic microorganisms. The aim of this research was to compare two methods to produce probiotic freeze-dried banana slices-one of them consisting of impregnating slices with a suspension of probiotic Bacillus coagulans, the other based on coating the slices with a starch dispersion containing the bacteria. Both processes resulted in viable cell counts above 7 log ufc.g-1, although the presence of the starch coating prevented a significant loss in viability during freeze-drying. The coated slices were less crispy than the impregnated ones, according to the shear force test results. However, the sensory panel (with more than 100 panelists) did not perceive significant texture differences. Both methods presented good results in terms of probiotic cell viability and sensory acceptability (the coated slices being significantly more accepted than the non-probiotic control slices).
Collapse
Affiliation(s)
- Carolina M Niro
- Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil
| | - Giovana M N Mendonça
- Graduate Program in Food, Nutrition and Food Engineering, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Lucca R Paulino
- São Carlos School of Engineering, University of São Paulo (USP), São Carlos 13566-590, Brazil
| | | | | |
Collapse
|
11
|
A comparative study of starch-g-(glycidyl methacrylate)/synthetic polymer-based hydrogels. Carbohydr Polym 2023; 307:120614. [PMID: 36781274 DOI: 10.1016/j.carbpol.2023.120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Chemical modification reactions and blending formation are two alternatives used to improve the properties of starch-based materials. This work used both approaches to evaluate how they would affect the properties of hydrogels. The hydrogels were based on corn starch (St), modified with glycidyl methacrylate (GMA; starch-g-GMA; GMASt), and blended with N,N'-dimethylacrylamide (DMAAm; GMAStxDMAAmy) or sodium acrylate (SA; GMAStxSAy). The results confirmed that the pure GMASt matrix had a low swelling degree (≈3 g g-1), but when blended with the synthetic polymers, this value reached ≈10 g g-1 (sample GMASt25DMAAm75). All matrices showed responsiveness towards pH variations. In general, they swelled more at pH 5 than at pH 7. While DMAAm had more influence on the swelling degree, SA was more efficient as a mechanical enhancer. Increasing 25 % of the amount of SA in the blend increased Young's Modulus by a factor of ≈10 times. It confirmed that both polymers effectively change the properties of GMASt, but in different ways.
Collapse
|
12
|
Fan X, Zhang B, Zhang X, Ma Z, Feng X. Incorporating Portulaca oleracea extract endows the chitosan-starch film with antioxidant capacity for chilled meat preservation. Food Chem X 2023; 18:100662. [PMID: 37025418 PMCID: PMC10070503 DOI: 10.1016/j.fochx.2023.100662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aimed to investigate the application potential of Portulaca oleracea extract (POE) in active packaging for the preservation of chilled meat. First, the antioxidant capacity and active ingredients of POE were systematically studied. The results demonstrated that POE has excellent antioxidant capacity and contains abundant antioxidant compounds. Subsequently, antioxidant-active packaging films based on chitosan and starch containing different concentrations of POE (CS/POE films) were successfully developed. The main physicochemical and mechanical properties of the CS/POE films were characterized and evaluated. The CS/POE films exhibited remarkable antioxidant activity and can significantly reduce lipid oxidation in meat. Compared with polyethylene film, the CS/POE films-treated meats had better preservation effects and longer shelf-life. These findings suggested that CS/POE film has the potential to become a good alternative to conventional plastics in food packaging. In conclusion, Portulaca oleracea extract is an excellent natural antioxidant with great potential in active packaging for chilled meat preservation.
Collapse
|
13
|
Matrix-entrapped fibers create ecological niches for gut bacterial growth. Sci Rep 2023; 13:1884. [PMID: 36732599 PMCID: PMC9895076 DOI: 10.1038/s41598-023-27907-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Insoluble plant cell walls are a main source of dietary fiber. Both chemical and physical fiber structures create distinct niches for gut bacterial utilization. Here, we have taken key fermentable solubilized polysaccharides of plant cell walls and fabricated them back into cell wall-like film forms to understand how fiber physical structure directs gut bacterial fermentation outcomes. Solubilized corn bran arabinoxylan (Cax), extracted to retain some ferulate residues, was covalently linked using laccase to form an insoluble cell wall-like film (Cax-F) that was further embedded with pectin (CaxP-F). In vitro fecal fermentation using gut microbiota from three donors was performed on the films and soluble fibers. Depending on the donor, CaxP-F led to higher relative abundance of recognized beneficial bacteria and/or butyrate producers-Akkermansia, Bifidobacterium, Eubacterium halii, unassigned Lachnospiraceae, Blautia, and Anaerostipes-than free pectin and Cax, and Cax-F. Thus, physical form and location of fibers within cell walls form niches for some health-related gut bacteria. This work brings a new understanding of the importance of insoluble cell wall-associated fibers and shows that targeted fiber materials can be fabricated to support important gut microbiota taxa and metabolites of health significance.
Collapse
|
14
|
Abotbina W, Sapuan SM, Ilyas RA, Sultan MTH, Alkbir MFM, Sulaiman S, Harussani MM, Bayraktar E. Recent Developments in Cassava ( Manihot esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6992. [PMID: 36234333 PMCID: PMC9571773 DOI: 10.3390/ma15196992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The rapid use of petroleum resources coupled with increased awareness of global environmental problems associated with the use of petroleum-based plastics is a major driving force in the acceptance of natural fibers and biopolymers as green materials. Because of their environmentally friendly and sustainable nature, natural fibers and biopolymers have gained significant attention from scientists and industries. Cassava (Manihot esculenta) is a plant that has various purposes for use. It is the primary source of food in many countries and is also used in the production of biocomposites, biopolymers, and biofibers. Starch from cassava can be plasticized, reinforced with fibers, or blended with other polymers to strengthen their properties. Besides that, it is currently used as a raw material for bioethanol and renewable energy production. This comprehensive review paper explains the latest developments in bioethanol compounds from cassava and gives a detailed report on macro and nano-sized cassava fibers and starch, and their fabrication as blend polymers, biocomposites, and hybrid composites. The review also highlights the potential utilization of cassava fibers and biopolymers for industrial applications such as food, bioenergy, packaging, automotive, and others.
Collapse
Affiliation(s)
- Walid Abotbina
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - R. A. Ilyas
- Sustainable Waste Management Research Group (SWAM), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
- Laboratory of Biocomposite Technology, Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - M. T. H. Sultan
- Department of Aerospace Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - M. F. M. Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Persiaran Sinaran Ilmu, Bandar Seri Alam, Masai 81750, Johor, Malaysia
- Facilities Maintenance Engineering Section, Malaysian Institute of Industrial Technology (MITEC), Universitiy Kuala Lumpur, Johor Bahru 81750, Johor, Malaysia
| | - S. Sulaiman
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - M. M. Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Meguro 152-8552, Tokyo, Japan
| | - Emin Bayraktar
- School of Mechanical and Manufacturing Engineering, ISAE-SUPMECA Institute of Mechanics of Paris, 93400 Saint-Ouen, France
| |
Collapse
|
15
|
Kumar L, Deshmukh RK, Gaikwad KK. Antimicrobial packaging film from cactus (Cylindropuntia fulgida) mucilage and gelatine. Int J Biol Macromol 2022; 215:596-605. [PMID: 35777505 DOI: 10.1016/j.ijbiomac.2022.06.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Gelatine is an excellent substitute for biodegradable packaging materials; nevertheless, it is necessary to mix it with other polymers due to its poor mechanical and high hydrophilicity. In the present study, we used Cylindropuntia fulgida mucilage (CF) as main constituent and gelatine (GTN). The Euphorbia caducifolia extract (ECE) was incorporated in concentrations of 0, 1, 5, 10, 20 %, and its influence on the film's morphological, thermal, mechanical, and water vapor barrier properties was assessed. The surface of fabricated CF/GTN/ECE biocomposite films was more homogeneous and smoother with the high concentration of in ECE. The elongation at break improved from 2 to 60.59 %, and WVP enhanced from 3.34 to 2.59 10-4 g mm/mm2 day kPa and highest antimicrobial activity of 3.62 ± 0.71 Log CFU g-1 when CF/GTN was incorporated with 20 % ECE. Incorporating CF and ECE 10 to 20 % makes these films a good substitute for the packaging of food products.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Nandhini Suresh S, Puspharaj C, Natarajan A, Subramani R. Gum acacia/Pectin/Pullulan based edible film for food packaging application to improve the shelf life of Ivy gourd. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siva Nandhini Suresh
- Department of Chemistry PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Charumathi Puspharaj
- Department of Zoology PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Arunadevi Natarajan
- Department of Chemistry PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| | - Ramesh Subramani
- Department of Food Processing Technology and Management PSGR Krishnammal College for Women Coimbatore Tamil Nadu India
| |
Collapse
|
17
|
Anubha M, Saranya R, Chandrasatheesh C, Jayapriya J. Effect of neem gum on water sorption, biodegradability and mechanical properties of thermoplastic corn starch-based packaging films. Chem Ind 2022. [DOI: 10.1080/00194506.2022.2065368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. Anubha
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Avadi, Chennai, India
| | - R. Saranya
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| | - C. Chandrasatheesh
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| | - J. Jayapriya
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, India
| |
Collapse
|
18
|
Development of anchote (Coccinia abyssinica) starch-based edible film: response surface modeling and interactive analysis of composition for water vapor permeability. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Antibacterial chitosan-Dioscorea alata starch film enriched with essential oils optimally prepared by following response surface methodology. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Vasco MF, Campañone LA, Gamboa‐Santos J. Formulation of edible films based on carboxymethylcellulose, cassava starch and alginate using high intensity ultrasound emulsification treatments. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Florencia Vasco
- CIDCA (CONICET‐CCT y Universidad Nacional de La Plata), 47 y 116 La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| | - Laura Analía Campañone
- CIDCA (CONICET‐CCT y Universidad Nacional de La Plata), 47 y 116 La Plata Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, 1 y 47 La Plata Argentina
| | - Juliana Gamboa‐Santos
- CIDCA (CONICET‐CCT y Universidad Nacional de La Plata), 47 y 116 La Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| |
Collapse
|
21
|
|
22
|
Development and Characterization of Semi-Refined Iota Carrageenan/SiO 2-ZnO Bionanocomposite Film with the Addition of Cassava Starch for Application on Minced Chicken Meat Packaging. Foods 2021; 10:foods10112776. [PMID: 34829058 PMCID: PMC8619299 DOI: 10.3390/foods10112776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
In the current study, film based on semi-refined ι-carrageenan/cassava starch (SRiC/CS) incorporated with SiO2-ZnO nanoparticles was fabricated and characterized to deal with serious environmental problems resulting from plastic packaging materials. This study aimed to evaluate film properties with the variation of SRiC/CS proportions of bionanocomposite films for application to minced chicken meat packaging. Increasing CS portion contributed to increased transparency, reduced surface roughness, and decreased mechanical properties of films. The variable significantly (p < 0.05) increased the water vapor permeability (WVP) and reduced the water solubility of films. The incorporation of the nanoparticles significantly (p < 0.05) increased UV screening, decreased WVP, and enhanced the antimicrobial activity of films. Furthermore, the substitution of 0.5 wt% (weight percentage) CS provided the best film characteristics. Based on the color and the total volatile base nitrogen (TVBN) results, SRiC film incorporated with the nanoparticles preserved minced chicken quality up to six days. Thus, the developed films are desirable for biodegradable food packaging.
Collapse
|
23
|
Zhao Y, Zhu X, Fang Y. Structure, properties and applications of kudzu starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. Int J Biol Macromol 2021; 185:219-228. [PMID: 34153358 DOI: 10.1016/j.ijbiomac.2021.06.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
This study examines the effects of varying the concentrations of sorbitol (S) and glycerol (G) on the physical, morphological, thermal, and mechanical properties of Dioscorea hispida, starch-based films. In this context, the films of Dioscorea hispida starch were developed using solution casting technique with glycerol (G), sorbitol (S), and a mixture of sorbitol-glycerol (SG) as plasticizers at the ratios of 0, 30, 45, and 60 wt%. The films' moisture contents were increased when increasing the plasticizer contents. The tensile strengths were decreased, but elongations at break were increased; 7.38%-11.54% for G-plasticized films, 10.17%-15.76% for S-plasticized films, and 14.41%- 16.10% for SG-plasticized films with increasing plasticizer concentrations of the film samples. Varying plasticizer concentrations exhibited a minor effect on the S-plasticized film's thermal properties. Significant decrement in the glass transition temperatures of Dioscorea hispida starch films was observed when the plasticizer contents were raised from 30% to 60%. Significantly, the present work has shown that plasticized Dioscorea hispida starch can be considered a promising biopolymer for the applications of biodegradable films.
Collapse
|
25
|
Yavari Maroufi L, Ghorbani M, Tabibiazar M, Mohammadi M, Pezeshki A. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging. Int J Biol Macromol 2021; 183:753-759. [PMID: 33932425 DOI: 10.1016/j.ijbiomac.2021.04.163] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Recently, the improvement of gelatin-based films for usage in food packaging has attracted more attention owing to their non-toxicity, biodegradability, availability, and renewability. In the current study, the improved gelatin-based films were produced using covalent interaction through dialdehyde kappa-carrageenan (DAK-car) and thymol-loaded zein nanoparticle content. The influences of DAK-car into the matrix of gelatin films (GEL) on the structural, total soluble matter (TSM), moisture content (MC), and water vapor permeability (WVP), and mechanical properties were investigated. After the formation of covalent crosslinking amongst the amino groups of GEL and the dialdehyde groups of DAK-car with the blending ratio of 1:2 (GEL 4% w/v): (DAK-car 1% w/v), a remarkably (p < 0.05) reduction was saw in TSM, MC, and WVP of film. The tensile strength of this film (72.26 ± 0.3 MPa) was ~20-fold higher compared with pure GEL film. It should also be noted that the presence of zein nanoparticles (ZNPs) did not have a notably effect on improving the attributes of gelatin-based film. However, the presence of thymol in concentrations of 0.25 and 0.5 mg/mL showed acceptable antioxidant and antimicrobial activities. As a result, GEL/DAK-car with blending ratio of 1:2 containing thymol-loaded ZNPs films demonstrated the valuable potential for application in active food packaging.
Collapse
Affiliation(s)
- Leila Yavari Maroufi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahnaz Tabibiazar
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Akram Pezeshki
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
An experimental study on characteristics of sago starch film treated with methanol extract from Artemisia sieberi Besser. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00895-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
RODRIGUES AAM, COSTA RRD, SANTOS LFD, SILVA SDM, BRITTO DD, LIMA MACD. Properties and characterization of biodegradable films obtained from different starch sources. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.28520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Friedrich JC, Silva OA, Faria MG, Colauto NB, Gazzin ZC, Colauto GA, Caetano J, Dragunski DC. Improved antioxidant activity of a starch and gelatin-based biodegradable coating containing Tetradenia riparia extract. Int J Biol Macromol 2020; 165:1038-1046. [DOI: 10.1016/j.ijbiomac.2020.09.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
|
29
|
de Lima Barizão C, Crepaldi MI, Junior ODOS, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG. Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol 2020; 165:582-590. [DOI: 10.1016/j.ijbiomac.2020.09.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
|
30
|
Motta JFG, de Souza AR, Gonçalves SM, Madella DKSF, de Carvalho CWP, Vitorazi L, de Melo NR. Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02548-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Cortés-Rodríguez M, Villegas-Yépez C, Gil González JH, Rodríguez PE, Ortega-Toro R. Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon 2020; 6:e04884. [PMID: 32984596 PMCID: PMC7492850 DOI: 10.1016/j.heliyon.2020.e04884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/20/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
Films and edible coatings based on biopolymers have been developed as a packaging, which can be obtained from biodegradable materials and have properties similar to common plastics. These edible materials have many applications in the food industry, preventing mass transfer between the product and the surrounding environment. The objective of this study was to develop and evaluate the physicochemical and mechanical properties of edible films based on cassava starch (CS), whey protein (WP), and beeswax (BW). Response surface methodology has been used and the experiments were carried out based on face-centred composite design. On the other hand, three CS-based controls were formulated to evaluate the effect of the inclusion of WP and BW. The optimization of multiple responses established the optimal formulation: CS (3.17 %), WP (1.30 %), BW (0.50 %), presenting the following response variables: tensile stress (1.92 MPa), elongation (40.4 %), Young's modulus (42.1 MPa), water vapor permeability 1.79 × 10-11 (g mm/s cm2 Pa), swelling capacity (300.3 %), thickness (0.128 mm), moisture content (6.74 %), and colour: lightness (89.9), chromaticity a∗ (-1.8), chromaticity b∗ (7.7), saturation (9.9), tone (101.1°), and yellowness index (17.7). The selection and evaluation of this optimal formulation are essential because it is the material that shows the best possible mechanical and physicochemical properties using the studied components. The results, especially its good mechanical properties and low permeability to water vapour, would allow its application as a coating for fruits, vegetables, among others, effectively delaying its weight loss due to dehydration.
Collapse
Affiliation(s)
- Misael Cortés-Rodríguez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
- Corresponding author.
| | - Camilo Villegas-Yépez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | - Jesús H. Gil González
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A–110, Medellín, Colombia
| | | | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Food Packaging and Shelf Life Research Group (FP&SL), Research Group in Complex Fluids Engineering and Food Rheology (IFCRA), Avenida del Consulado Calle 30 No. 48 – 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
32
|
Guo Z, Wu X, Zhao X, Fan J, Lu X, Wang L. An edible antioxidant film of Artemisia sphaerocephala Krasch. gum with sophora japonica extract for oil packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Francisco CB, Pellá MG, Silva OA, Raimundo KF, Caetano J, Linde GA, Colauto NB, Dragunski DC. Shelf-life of guavas coated with biodegradable starch and cellulose-based films. Int J Biol Macromol 2020; 152:272-279. [PMID: 32105683 DOI: 10.1016/j.ijbiomac.2020.02.249] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Botin Francisco
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil.; Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Michelly G Pellá
- Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Otavio Augusto Silva
- Department of Chemistry, State University of Maringa, Av. Colombo, 5790, CEP 87020-900 Maringa, Parana, Brazil
| | - Keila Fernanda Raimundo
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Josiane Caetano
- Center of Engineering and Exact Sciences, State University of Western Paraná, Street Rua da Faculdade, 645, Jardim Santa Maria, Toledo, PR 85903-000, Brazil
| | - Giani Andrea Linde
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Nelson B Colauto
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil
| | - Douglas C Dragunski
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Square Mascarenhas de Moraes, 4282, Zone III, Umuarama, PR 87502-210, Brazil.; Center of Engineering and Exact Sciences, State University of Western Paraná, Street Rua da Faculdade, 645, Jardim Santa Maria, Toledo, PR 85903-000, Brazil..
| |
Collapse
|
34
|
Pellá MC, Silva OA, Pellá MG, Beneton AG, Caetano J, Simões MR, Dragunski DC. Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem 2020; 309:125764. [DOI: 10.1016/j.foodchem.2019.125764] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/13/2023]
|