1
|
Kong Q, Gao S, Li P, Sun H, Zhang Z, Yu X, Deng F, Wang T. Calcitonin gene-related peptide-modulated macrophage phenotypic alteration regulates angiogenesis in early bone healing. Int Immunopharmacol 2024; 130:111766. [PMID: 38452411 DOI: 10.1016/j.intimp.2024.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of calcitonin gene-related peptide (CGRP) on the temporal alteration of macrophage phenotypes and macrophage-regulated angiogenesis duringearlybonehealing and preliminarily elucidate the mechanism. METHODS In vivo, the rat mandibular defect models were established with inferior alveolar nerve transection (IANT) or CGRP receptor antagonist injection. Radiographicandhistologic assessments for osteogenesis, angiogenesis, and macrophage phenotypic alteration within bone defects were performed. In vitro, the effect and mechanism of CGRP on macrophage polarization and phenotypic alteration were analyzed. Then the conditioned medium (CM) from CGRP-treated M1 or M2 macrophages was used to culture human umbilical vein endothelial cells (HUVECs), and the CGRP's effect on macrophage-regulated angiogenesis was detected. RESULTS Comparable changes following IANT and CGRP blockade within bone defects were observed, including the suppression of early osteogenesis and angiogenesis, the prolonged M1 macrophage infiltration and the prohibited transition toward M2 macrophages around vascular endothelium. In vitro experiments showed that CGRP promoted M2 macrophage polarization while upregulating the expression of interleukin 6 (IL-6), a major cytokine that facilitates the transition from M1 to M2-dominant stage, in M1 macrophages via the activation of Yes-associated protein 1. Moreover, CGRP-treated macrophage-CM showed an anabolic effect on HUVECs angiogenesis compared with macrophage-CM and might prevail over the direct effect of CGRP on HUVECs. CONCLUSIONS Collectively, our results reveal the effect of CGRP on M1 to M2 macrophage phenotypic alteration possibly via upregulating IL-6 in M1 macrophages, and demonstrate the macrophage-regulated pro-angiogenic potential of CGRP in early bone healing.
Collapse
Affiliation(s)
- Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Siyong Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Pugeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hanyu Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaolin Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Tianlu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
2
|
Baheti W, Chen X, La M, He H. Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation. J Appl Biomater Funct Mater 2024; 22:22808000241266665. [PMID: 39129373 DOI: 10.1177/22808000241266665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.
Collapse
Affiliation(s)
- Wufanbieke Baheti
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotao Chen
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi, China
| | - Mi La
- Department of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huiyu He
- Department of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Characterization of Rice Protein Hydrolysate/Chitosan Composite Films and Their Bioactivities Evaluation When Incorporating Curcumin: Effect of Genipin Concentration. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Shaygani H, Seifi S, Shamloo A, Golizadeh M, Rahnamaee SY, Alishiri M, Ebrahimi S. Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications. Int J Pharm 2023; 636:122764. [PMID: 36889413 DOI: 10.1016/j.ijpharm.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Fabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation. Accordingly, sodium alginate and chitosan were coated on the surface of TNT implants with different coating orders through layer-by-layer assembly. The coatings' swelling ratio and degradation rate were around 613% and 75%, respectively. The drug release results showed that surface-coatings prolonged the releasing profile for about 4 weeks. Chitosan coated TNTs demonstrated greater inhibition zone at 16.33mm compared with the other samples where no inhibition zone was observed. However, chitosan and alginate coated TNTs exhibited smaller inhibition zones at 48.56mm and 43.28mm, respectively, compared to bare TNT, which can be attributed to the coatings preventing the antibiotic burst release. Higher viability of cultured osteoblast cells was observed for chitosan-coated TNT as the top layer compared to the bare TNT at 12.18%, indicating improved bioactivity of TNT implants when the chitosan has the most contact with cells. Coupled with the cell viability assay, molecular dynamics (MD) simulations were carried out by placing collagen and fibronectin near the considered substrates. In agreement with cell viability results, MD simulations also indicated that chitosan had the highest adsorption energy approximately 60Kcal/mol. In summary, the proposed bilayer chitosan-coated drug-loaded TNT implant with chitosan and sodium alginate coating as the top and the bottom layers, respectively, can be a potential candidate for orthopedic applications in the light of its bacterial biofilm prevention, better osteoconductivity, and providing an adequate drug release profile.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Mortaza Golizadeh
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Yahya Rahnamaee
- Polymeric Materials Research Group (PMRG), School of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mojgan Alishiri
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Li Y, Xu Z, Wang J, Pei X, Chen J, Wan Q. Alginate-based biomaterial-mediated regulation of macrophages in bone tissue engineering. Int J Biol Macromol 2023; 230:123246. [PMID: 36649862 DOI: 10.1016/j.ijbiomac.2023.123246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Mater Today Bio 2023; 18:100540. [PMID: 36632628 PMCID: PMC9826856 DOI: 10.1016/j.mtbio.2022.100540] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology and drug-release biomaterials have been thoroughly explored in the last few years aiming to develop specialized clinical treatments. However, it is rare to find biomaterials associated with drug delivery properties in the current dental market for application in oral bone- and periodontal-related procedures. The gap between basic scientific evidence and translation to a commercial product remains wide. Several challenges have been reported regarding the clinical translation of biomaterials with drug-delivery systems (BDDS) and nanofeatures. Therefore, processes for BDDS development, application in preclinical models, drug delivery doses, sterilization processes, storage protocols and approval requirements were explored in this review, associated with tentative solutions for these issues. The diversity of techniques and compounds/molecules applied to develop BDDS demands a case-by-case approach to manufacturing and validating a commercial biomaterial. Promising outcomes such as accelerated tissue healing and higher antibacterial response have been shown through basic and preclinical studies using BDDS and nano-engineered biomaterials; however, the adequate process for sterilization, storage, cost-effectiveness and possible cytotoxic effects remains unclear for multifunctional biomaterials incorporated with different chemical compounds; then BDDSs are rarely translated into products. The future benefits of BDDS and nano-engineered biomaterials have been reported suggesting personalized clinical treatment and a promising reduction in the use of systemic antibiotics. Finally, the launch of these specialized biomaterials with solid data and controlled traceability onto the market will generate strong specificity for healthcare treatments.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Furqan A. Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
7
|
Effendy WNFWE, S. M. N. Mydin RB, Gazzali AM, Sreekantan S. Localised Delivery of Cisplatin from Chitosan-Coated Titania Nanotube Array Nanosystems Targeting Nasopharyngeal Carcinoma. Adv Pharm Bull 2023; 13:104-112. [PMID: 36721810 PMCID: PMC9871279 DOI: 10.34172/apb.2023.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Pupose: Cisplatin (CDDP), while amongst the recognised chemotherapeutic drugs currently available, is known to have limitations; the lack of a single treatment approach and non-specific targeted therapies. Therefore, the development of an innovative strategy that could achieve localised CDDP treatment is an urgent undertaking. Recent advances in titania nanotube arrays (TNAs) technology have demonstrated promising applications for localised chemotherapeutic drug treatment. The present work investigated the efficiency of a TNA nanosystem for the localised CDDP treatment of nasopharyngeal carcinoma (NPC). Methods: Two models of the TNA nanosystem were prepared: CDDP loaded onto the TNA nanosystem surface (CDDP-TNA) and the other consisted of chitosan-coated CDDP-TNA. CDDP release from these two nanosystems was comprehensively tested on the NPC cells NPC/HK-1 and C666-1. The NPC cytotoxicity profile of the two CDDP-TNA nanosystems was evaluated after incubation for 24, 48 and 72 hours. Intracellular damage profiles were studied using fluorescence microscopy analysis with Hoechst 33342, acridine orange and propidium iodide. Results: The half-maximal inhibitory concentrations (IC50) of CDDP at 24 hours were 0.50 mM for NPC/HK-1 and 0.05 mM for C666-1. CDDP in the CDDP-TNA and chitosan-coated CDDPTNA models presented a significant degree of NPC inhibition (P<0.05) after 24, 48 and 72 hours of exposure. The outcome revealed cellular damage and shrinkage of the cell membranes after 48 hours of exposure to CDDP-TNA. Conclusion: This in vitro work demonstrated the effectiveness of TNA nanosystems for the localised CDDP treatment of NPC cells. Further in vivo studies are needed to support the findings.
Collapse
Affiliation(s)
| | - Rabiatul Basria S. M. N. Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia.,Corresponding Author: Rabiatul Basria S. M. N. Mydin,
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Sareło P, Sobieszczańska B, Wysokińska E, Gąsior-Głogowska M, Kałas W, Podbielska H, Wawrzyńska M, Kopaczyńska M. In vitro examinations of the anti-inflammatory interleukin functionalized polydopamine based biomaterial as a potential coating for cardiovascular stents. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Chen B, Liang Y, Song Y, Liang Y, Jiao J, Bai H, Li Y. Photothermal-Controlled Release of IL-4 in IL-4/PDA-Immobilized Black Titanium Dioxide (TiO 2) Nanotubes Surface to Enhance Osseointegration: An In Vivo Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5962. [PMID: 36079344 PMCID: PMC9457063 DOI: 10.3390/ma15175962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Host immune response has gradually been accepted as a critical factor in achieving successful implant osseointegration. The aim of this study is to create a favorable immune microenvironment by the dominant release of IL-4 during the initial few days after implant insertion to mitigate early inflammatory reactions and facilitate osseointegration. Herein, the B-TNT/PDA/IL-4 substrate was established by immobilizing an interleukin-4 (IL-4)/polydopamine (PDA) coating on a black TiO2 nanotube (B-TNT) surface, achieving on-demand IL-4 release under near infrared (NIR) irradiation. Gene Ontology (GO) enrichment analyses based on high-throughput DNA microarray data revealed that IL-4 addition inhibited osteoclast differentiation and function. Animal experiment results suggested that the B-TNT/PDA/IL-4+Laser substrate induced the least inflammatory, tartrate-resistant acid phosphatase, inducible nitric oxide synthase and the most CD163 positive cells, compared to the Ti group at 7 days post-implantation. In addition, 28 days post-implantation, micro-computed tomography results showed the highest bone volume/total volume, trabecular thickness, trabecular number and the lowest trabecular separation, while Hematoxylin-eosin and Masson-trichrome staining revealed the largest amount of new bone formation for the B-TNT/PDA/IL-4+Laser group. This study revealed the osteoimmunoregulatory function of the novel B-TNT/PDA/IL-4 surface by photothermal release of IL-4 at an early period post-implantation, thus paving a new way for dental implant surface modification.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Jian Jiao
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
Hasan I, Alharthi FA. Caffeine-Alginate Immobilized CeTiO4 Bionanocomposite for Efficient Photocatalytic Degradation of Methylene Blue. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Li X, Xue S, Zhan Q, Sun X, Chen N, Li S, Zhao J, Hou X, Yuan X. Sequential Delivery of Different MicroRNA Nanocarriers Facilitates the M1-to-M2 Transition of Macrophages. ACS OMEGA 2022; 7:8174-8183. [PMID: 35284756 PMCID: PMC8908531 DOI: 10.1021/acsomega.2c00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 06/01/2023]
Abstract
The early-stage repair of bone injuries dominated by the inflammatory phase is significant for successful bone healing, and the phenotypic transition of macrophages in the inflammatory phase plays indispensable roles during the bone healing process. The goal of this paper is to design a microRNA delivery nanocarrier for strictly temporal guidance of the polarization of macrophages by the sequential delivery of different microRNAs. The results showed that microRNA nanocarriers, synthesized through free radical polymerization, could be internalized by macrophages with about a cellular uptake efficiency of 80%, and the sequential delivery of microRNA-155 nanocarriers and microRNA-21 nanocarriers proved, for the first time, that it could promote an efficient and timely switch from the M1 to the M2 phenotype along the time point of bone tissue repair. The strategy proposed in this paper holds potential for controlling sequential M1-to-M2 polarization of macrophages, which provides another perspective for the treatment of bone tissue regeneration.
Collapse
Affiliation(s)
- Xueping Li
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Suling Xue
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qi Zhan
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaolei Sun
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Chen
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Sidi Li
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, Shandong Province, China
| | - Jin Zhao
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xin Hou
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin
Key Laboratory of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Sánchez-Bodón J, Andrade del Olmo J, Alonso JM, Moreno-Benítez I, Vilas-Vilela JL, Pérez-Álvarez L. Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies. Polymers (Basel) 2021; 14:165. [PMID: 35012187 PMCID: PMC8747097 DOI: 10.3390/polym14010165] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) and its alloys have been demonstrated over the last decades to play an important role as inert materials in the field of orthopedic and dental implants. Nevertheless, with the widespread use of Ti, implant-associated rejection issues have arisen. To overcome these problems, antibacterial properties, fast and adequate osseointegration and long-term stability are essential features. Indeed, surface modification is currently presented as a versatile strategy for developing Ti coatings with all these challenging requirements and achieve a successful performance of the implant. Numerous approaches have been investigated to obtain stable and well-organized Ti coatings that promote the tailoring of surface chemical functionalization regardless of the geometry and shape of the implant. However, among all the approaches available in the literature to functionalize the Ti surface, a promising strategy is the combination of surface pre-activation treatments typically followed by the development of intermediate anchoring layers (self-assembled monolayers, SAMs) that serve as the supporting linkage of a final active layer. Therefore, this paper aims to review the latest approaches in the biomedical area to obtain bioactive coatings onto Ti surfaces with a special focus on (i) the most employed methods for Ti surface hydroxylation, (ii) SAMs-mediated active coatings development, and (iii) the latest advances in active agent immobilization and polymeric coatings for controlled release on Ti surfaces.
Collapse
Affiliation(s)
- Julia Sánchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - Jon Andrade del Olmo
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Jose María Alonso
- i+Med S. Coop, Parque Tecnológico de Alava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain;
| | - Isabel Moreno-Benítez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain; (J.S.-B.); (J.A.d.O.); (I.M.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
13
|
He Y, Li K, Yang X, Leng J, Xu K, Yuan Z, Lin C, Tao B, Li X, Hu J, Dai L, Becker R, Huang TJ, Cai K. Calcium Peroxide Nanoparticles-Embedded Coatings on Anti-Inflammatory TiO 2 Nanotubes for Bacteria Elimination and Inflammatory Environment Amelioration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102907. [PMID: 34665526 DOI: 10.1002/smll.202102907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Implant-associated bacterial infections significantly impair the integration between titanium and soft tissues. Traditional antibacterial modifications of titanium implants are able to eliminate bacteria, but the resulting pro-inflammatory reactions are usually ignored, which still poses potential risks to human bodies. Here, a dual drug-loading system on titanium has been developed via the adhesion of a catechol motif-modified methacrylated gelatin hydrogel onto TiO2 nanotubes. Then synthesized CaO2 nanoparticles (NPs) are embedded into the hydrogel, and interleukin-4 (IL-4) is loaded into the nanotubes to achieve both antibacterial and anti-inflammatory properties. The dual drug-loading system can eliminate Staphylococcus aureus (S. aureus) rapidly, attributed to the H2 O2 release from CaO2 NPs. The potential cytotoxicity of CaO2 NPs is also remarkably reduced after being embedded into the hydrogel. More importantly, with the gradual release of IL-4, the dual drug-loading system is capable of modulating pro-inflammatory reactions by inducing M2 phenotype polarization of macrophages. In a subcutaneous infection model, the S. aureus contamination is effectively resolved after 2 days, and the resulting pro-inflammatory reactions are also inhibited after 7 days. Finally, the damaged tissue is significantly recovered. Taken together, the dual drug-loading system exhibits great therapeutic potential in effectively killing pathogens and inhibiting the resulting pro-inflammatory reactions.
Collapse
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xin Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jin Leng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhang Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jingwei Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
14
|
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: Advances, Limitations and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2489. [PMID: 34684930 PMCID: PMC8538755 DOI: 10.3390/nano11102489] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Titanium (Ti) and its alloys offer favorable biocompatibility, mechanical properties and corrosion resistance, which makes them an ideal material choice for dental implants. However, the long-term success of Ti-based dental implants may be challenged due to implant-related infections and inadequate osseointegration. With the development of nanotechnology, nanoscale modifications and the application of nanomaterials have become key areas of focus for research on dental implants. Surface modifications and the use of various coatings, as well as the development of the controlled release of antibiotics or proteins, have improved the osseointegration and soft-tissue integration of dental implants, as well as their antibacterial and immunomodulatory functions. This review introduces recent nano-engineering technologies and materials used in topographical modifications and surface coatings of Ti-based dental implants. These advances are discussed and detailed, including an evaluation of the evidence of their biocompatibility, toxicity, antimicrobial activities and in-vivo performances. The comparison between these attempts at nano-engineering reveals that there are still research gaps that must be addressed towards their clinical translation. For instance, customized three-dimensional printing technology and stimuli-responsive, multi-functional and time-programmable implant surfaces holds great promise to advance this field. Furthermore, long-term in vivo studies under physiological conditions are required to ensure the clinical application of nanomaterial-modified dental implants.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
| | - Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Ze Li
- School of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Ping Di
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia;
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
15
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
16
|
Yu WP, Gong Y, Wang Z, Lu C, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, Zhou JL. The biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 for anti-coagulation and anti-thrombus through accelerating endothelialization. RSC Adv 2021; 11:16510-16521. [PMID: 35479169 PMCID: PMC9031326 DOI: 10.1039/d0ra09295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
The valve replacement is the main treatment of heart valve disease. However, thrombus formation following valve replacement has always been a major clinical drawback. Accelerating the endothelialization of cardiac valve prosthesis is the main approach to reduce thrombus. In the current study, a titanium nanotube was biofunctionalized with a chitosan/genipin heparin hydrogel and the controlled release of interleukin-4 (IL-4), and its regulation of macrophages was investigated to see if it could influence endothelial cells to eventually accelerate endothelialization. TNT60 (titanium dioxide nanotubes, 60 V) with nanoarray was obtained by anodic oxidation of 60 V, and IL-4 was loaded into the nanotube by vacuum drying. The hydrogel (chitosan : genipin = 4 : 1) was applied to the surface of the nanotubes following drying, and the heparin drops were placed on the hydrogel surface with chitosan as the polycation and heparin as the polyanion. A TNT/IL-4/G (G = gel, chitosan/genipin heparin) delivery system was prepared. Our results demonstrated that the biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 had a significant regulatory effect on macrophage M2 polarization, reducing the inflammatory factor release and higher secretion of VEGF (vascular endothelial growth factor), which can accelerate the endothelialization of the implant.
Collapse
Affiliation(s)
- Wen Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Ziyao Wang
- Department of Clinical Pathology, The First Affiliated Hospital of Gannan Medical College Ganzhou China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jing Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Xin Liang Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Guo Dong Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Feng Lin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| |
Collapse
|
17
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
18
|
Rahnamaee SY, Bagheri R, Heidarpour H, Vossoughi M, Golizadeh M, Samadikuchaksaraei A. Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters. Carbohydr Polym 2021; 254:117465. [DOI: 10.1016/j.carbpol.2020.117465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
|
19
|
Li M, Li C, Zhou Y, Tian H, Deng Q, Liu H, Zhu L, Yin X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J Appl Polym Sci 2021. [DOI: 10.1002/app.49667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - You Zhou
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Qiaoyuan Deng
- School of Materials Science and Engineering Hainan University Haikou PR China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou PR China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| |
Collapse
|
20
|
Damia C, Magnaudeix A, Laverdet B. Chemical Functionalization of Calcium Phosphate Bioceramic Surfaces. ENCYCLOPEDIA OF MATERIALS: TECHNICAL CERAMICS AND GLASSES 2021:716-731. [DOI: 10.1016/b978-0-12-803581-8.12108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Pantaroto HN, de Almeida AB, Gomes OP, Matos AO, Landers R, Casarin RCV, da Silva JHD, Nociti FH, Barão VAR. Outlining cell interaction and inflammatory cytokines on UV-photofunctionalized mixed-phase TiO 2 thin film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111438. [PMID: 33255031 DOI: 10.1016/j.msec.2020.111438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/05/2020] [Accepted: 08/22/2020] [Indexed: 12/25/2022]
Abstract
Photofunctionalization mediated by ultraviolet (UV) light seems to be a promising approach to improve the physico-chemical characteristics and the biological response of titanium (Ti) dental implants. Seeing that photofunctionalization is able to remove carbon from the surface, besides to promote reactions on the titanium dioxide (TiO2) layer, coating the Ti with a stable TiO2 film could potentialize the UV effect. Thus, here we determined the impact of UV-photofunctionalized mixed-phase (anatase and rutile) TiO2 films on the physico-chemical properties of Ti substrate and cell biology. Mixed-phase TiO2 films were grown by radiofrequency magnetron sputtering on commercially pure titanium (cpTi) discs, and samples were divided as follow: cpTi (negative control), TiO2 (positive control), cpTi UV, TiO2 UV (experimental). Photofunctionalization was performed using UVA (360 nm - 40 W) and UVC (250 nm - 40 W) lamps for 48 h. Surfaces were analyzed in terms of morphology, topography, chemical composition, crystalline phase, wettability and surface free energy. Pre-osteoblastic cells (MC3T3E1) were used to assess cell morphology and adhesion, metabolism, mineralization potential and cytokine secretion (IFN-γ, TNF-α, IL-4, IL-6 and IL-17). TiO2-coated surfaces exhibited granular surface morphology and greater roughness. Photofunctionalization increased wettability (p < 0.05) and surface free energy (p < 0.001) on both surface conditions. TiO2-treated groups featured normal cell morphology and spreading, and greater cellular metabolic activity at 2 and 4 days (p < 0.05), whereas UV-photofunctionalized surfaces enhanced cell metabolism, cell adhered area, and calcium deposition (day 14) (p < 0.05). In general, assessed proteins were found slightly affected by either UV or TiO2 treatments. Altogether, our findings suggest that UV-photofunctionalized TiO2 surface has the potential to improve pre-osteoblastic cell differentiation and the ability of cells to form mineral nodules by modifying Ti physico-chemical properties towards a more stable context. UV-modified surfaces modulate the secretion of key inflammatory markers.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Amanda B de Almeida
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Orisson P Gomes
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Adaias O Matos
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Gleb Wataghin Physics Institute, Department of Applied Physics, R. Sérgio Buarque de Holanda, 777, Campinas, São Paulo 13083-859, Brazil
| | - Renato Corrêa V Casarin
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - José Humberto D da Silva
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Francisco H Nociti
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil.
| |
Collapse
|
22
|
Sequential release of immunomodulatory cytokines binding on nano-hydroxyapatite coated titanium surface for regulating macrophage polarization and bone regeneration. Med Hypotheses 2020; 144:110241. [PMID: 33254547 DOI: 10.1016/j.mehy.2020.110241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022]
Abstract
Inflammation occurs when the material is implanted into the body. As one of the important immune cells in the regulation of inflammation, macrophages are able to remove pathogens and necrotic cells, and polarize to different phenotypes to regulate inflammatory response for tissue regeneration. Therefore, it is known that the sequential release of immunomodulatory cytokines from the surface of titanium (Ti) implants can regulate the polarization of macrophages and promote osseointegration of implants. In order to control the switch of macrophage phenotypes at desired time, we fabricated hydroxyapatite (HAp) nanotube arrays coating on Ti surface, by acid-etching, alkali-heating and HAp coating sequentially. Then we loaded the interleukin-4 (IL-4) encapsulated by poly (lactic-co-glycolic acid) (PLGA) on the bottom of the nanotube and the interferon-γ (IFN-γ) encapsulated by sodium hyaluronate (SH) on the top of the nanotube. Based on the physical and chemical properties of PLGA and SH and the spatial distribution of loaded cytokines, we hypothesized that the programmed release of IFN-γ and IL-4, which made the phenotypic transition of macrophages at a specific time, so as to regulate inflammation and promote osteogenic repair. Our hypothesis created a new type of drug sustained release system, which has high research value for improving the osseointegration of implants.
Collapse
|
23
|
Gao Q, Zhang J, Chen C, Chen M, Sun P, Du W, Zhang S, Liu Y, Zhang R, Bai M, Fan C, Wu J, Men T, Jiang X. In Situ Mannosylated Nanotrinity-Mediated Macrophage Remodeling Combats Candida albicans Infection. ACS NANO 2020; 14:3980-3990. [PMID: 32167741 DOI: 10.1021/acsnano.9b07896] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep Candida albicans infection is one of the major causes of death in immunosuppressed hosts. Remodeling macrophages to phenotype M1 can decrease fungus burden and facilitate combating C. albicans under an immunosuppressive state. In this study, a nanotrinity was exploited to direct fungicidal macrophage polarization by leveraging the regulation pathways in macrophage redifferentiation. Conventional chemotherapeutic imatinib, which can abrogate M2 macrophage polarization via "shutting off" the STAT6 phosphorylation pathway, was encapsulated in biodegradable polymeric nanoparticles. In house-customized dual functional mannosylated chitosan oligosaccharides were then coated on the surface of the imatinib-laden nanoparticles, and thus, a mannosylated nanotrinity was achieved with ternary functions for macrophage remodeling: (i) imatinib-blocked STAT6 phosphorylation pathway for decreasing M2 macrophage population; (ii) chitosan oligosaccharides-mediated TLR-4 pathway activation that could promote macrophage redifferentiation to M1 phenotype; (iii) mannose motif-enhanced macrophage targeting. After physiochemical characterization, regulatory effects of the mannosylated nanotrinity on macrophages and the anti-C. albicans efficacy were evaluated at the cellular level and animal level, respectively. The results demonstrated that our mannosylated nanotrinity could efficiently induce macrophage polarization toward the M1 phenotype, decrease M2 phenotype production, and markedly lessen fungus burden and increased the median survival time of mice infected with C. albicans. Therefore, the mannosylated nanotrinity developed in this study could significantly induce macrophage remodeling in situ by the two-pronged process, "turning on" M1 phenotype polarization meanwhile "shutting off" M2 phenotype polarization, and thus allowed to eradicate C. albicans infection.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Chen Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Menglin Chen
- Department of engineering, Aarhus University, Navitas, Inge Lehmanns Gade 10, 8000 Aarhus, Denmark
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Wei Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Shengchang Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Rui Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| | - Mei Bai
- Yancheng City No.1 People's Hospital, Yancheng 224001, Jiangsu Province, PR China
| | - Changchun Fan
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong Province, PR China
| | - Tongyi Men
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, PR China
| | - Xinyi Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, Shandong Province, PR China
| |
Collapse
|
24
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|