1
|
Wang J, Xie J, Mei J. Research Progress Regarding Psychrotrophic Pseudomonas in Aquatic Products: Psychrophilic Characteristics, Spoilage Mechanisms, Detection Methods, and Control Strategies. Foods 2025; 14:363. [PMID: 39941956 PMCID: PMC11817643 DOI: 10.3390/foods14030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Aquatic products are an important part of the human diet, but they are easily contaminated by Pseudomonas spp., which leads to food deterioration and economic loss. In this paper, the main characteristics of psychrotrophic Pseudomonas in aquatic products are reviewed, including its growth adaptation mechanism and biofilm formation ability at low temperatures, and the key role of psychrotrophic Pseudomonas in aquatic product spoilage is emphasized. Studies have shown that psychrotrophic Pseudomonas can produce a variety of volatile compounds by decomposing proteins and amino acids, affecting the sensory quality and safety of aquatic products. A variety of control strategies to extend the shelf life of aquatic products have been explored, including physical, chemical, and biological methods, particularly biofilm-specific inhibition techniques such as inhibition of quorum sensing and the application of natural antimicrobials. Future research should prioritize the development of novel anti-biofilm products to address the growing problem of psychrotrophic Pseudomonas contamination in the aquatic product industry to ensure food safety and public health.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
2
|
Trinh J, Tran M, Coaker G. The perception and evolution of flagellin, cold shock protein and elongation factor Tu from vector-borne bacterial plant pathogens. MOLECULAR PLANT PATHOLOGY 2024; 25:e70019. [PMID: 39460504 PMCID: PMC11512079 DOI: 10.1111/mpp.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024]
Abstract
Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Megann Tran
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Gitta Coaker
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Machulin AV, Deryusheva EI, Galzitskaya OV. Variation in base composition, structure-function relationships, and origins of structural repetition in bacterial rpsA gene. Biosystems 2024; 238:105196. [PMID: 38537772 DOI: 10.1016/j.biosystems.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Protein domain repeats are known to arise due to tandem duplications of internal genes. However, the understanding of the underlying mechanisms of this process is incomplete. The goal of this work was to investigate the mechanism of occurrence of repeat expansion based on studying the sequences of 1324 rpsA genes of bacterial S1 ribosomal proteins containing different numbers of S1 structural domains. The rpsA gene encodes ribosomal S1 protein, which is essential for cell viability as it interacts with both mRNA and proteins. Gene ontology (GO) analysis of S1 domains in ribosomal S1 proteins revealed that bacterial protein sequences in S1 mainly have 3 types of molecular functions: RNA binding activity, nucleic acid activity, and ribosome structural component. Our results show that the maximum value of rpsA gene identity for full-length proteins was found for S1 proteins containing six structural domains (58%). Analysis of consensus sequences showed that parts of the rpsA gene encoding separate S1 domains have no a strictly repetitive structure between groups containing different numbers of S1 domains. At the same time, gene regions encoding some conserved residues that form the RNA-binding site remain conserved. The detected phylogenetic similarity suggests that the proposed fold of the rpsA translation initiation region of Escherichia coli has functional value and is important for translational control of rpsA gene expression in other bacterial phyla, but not only in gamma Proteobacteria.
Collapse
Affiliation(s)
- Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Evgeniya I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
4
|
Arana N, Perez Mora B, Permingeat V, Giordano R, Calderone M, Tuttobene M, Klinke S, Rinaldi J, Müller G, Mussi MA. Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Photochem Photobiol Sci 2023; 22:2019-2036. [PMID: 37269546 DOI: 10.1007/s43630-023-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
It is now clearly recognized that light modulates the physiology of many bacterial chemotrophs, either directly or indirectly. An interesting case are bacterial pathogens of clinical relevance. This work summarizes, discusses, and provides novel complementary information to what is currently known about light sensing and responses in critical human pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These pathogens are associated with severe hospital and community infections difficult to treat due to resistance to multiple drugs. Moreover, light responses in Brucella abortus, an important animal and human pathogen, are also compiled. Evidence recovered so far indicates that light modulates aspects related to pathogenesis, persistence, and antibiotic susceptibility in these pathogens; such as motility, biofilm formation, iron uptake, tolerance to antibiotics, hemolysis and virulence. The pathogens elicit differential responses to light depending likely on their pathophysiology, ability to cause disease and characteristics of the host. The response to light is not restricted to discrete physiological traits but is global. In higher organisms, light provides spatial and temporal information. Then, it is crucial to understand what information light is providing in these bacterial pathogens. Our current hypothesis postulates that light serves as a signal that allows these pathogens to synchronize their behavior to the circadian rhythm of the host, to optimize infection. Advances on the molecular mechanism of light signal transduction and physiological responses to light, as well as in the relation between light and bacterial infection, would not only enlarge our understanding of bacterial pathogenesis but also could potentially provide alternative treatment options for infectious illnesses.
Collapse
Affiliation(s)
- Natalia Arana
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Valentín Permingeat
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rocío Giordano
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Malena Calderone
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| |
Collapse
|
5
|
Wang X, Zhao J, Ding S, Zhang H. Interaction of polystyrene nanoplastics with human fibrinogen. Int J Biol Macromol 2023; 238:124049. [PMID: 36931485 DOI: 10.1016/j.ijbiomac.2023.124049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Nanoplastics are an emerging environmental contaminant that can penetrate biological barriers to enter the bloodstream and risk human health. In this context, nanoplastics are likely to interact with proteins in the blood to possibly affect protein structure and function and consequently induce biological effects. Here we report that polystyrene (PS), PS-NH2, and PS-COOH nanoplastics disrupt the structure of human fibrinogen (HF) in a dose-dependent manner, as revealed by UV-vis and fluorescence spectroscopy. All three nanoplastics interacted with HF in a similar way, with PS-NH2 having the greatest effect on HF structure. Furthermore, fibrinogen polymerization experiments demonstrated that nanoplastics have the potential to promote blood coagulation, with PS-NH2 again having a stronger effect. Collectively, these results provide insights into the interactions occurring between nanoplastics and HF, the likely transport and fate of nanoplastics in organisms, and their potential pathophysiological consequences.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Shengli Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
6
|
Alrouji M, DasGupta D, Ashraf GM, Bilgrami AL, Alhumaydhi FA, Al Abdulmonem W, Shahwan M, Alsayari A, Atiya A, Shamsi A. Inhibition of microtubule affinity regulating kinase 4 by an acetylcholinesterase inhibitor, Huperzine A: Computational and experimental approaches. Int J Biol Macromol 2023; 235:123831. [PMID: 36870649 DOI: 10.1016/j.ijbiomac.2023.123831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), 752 amino acids long, belonging to the AMPK superfamily, plays a vital role in regulating microtubules due to its potential to phosphorylate microtubule-associated proteins (MAP's) and thus, MARK4 plays a key role in Alzheimer's disease (AD) pathology. MARK4 is a druggable target for cancer, neurodegenerative diseases, and metabolic disorders. In this study, we have evaluated the MARK4 inhibitory potential of Huperzine A (HpA), an acetylcholinesterase inhibitor (AChEI), a potential AD drug. Molecular docking revealed the key residues governing the MARK4-HpA complex formation. The structural stability and conformational dynamics of the MARK4-HpA complex was assessed by employing Molecular dynamics (MD) simulation. The results suggested that the binding of HpA with MARK4 leads to minimal structural alterations in the native conformation of MARK4, implying the stability of the MARK4-HpA complex. Isothermal titration calorimetry (ITC) studies deciphered that HpA binds to MARK4 spontaneously. Moreover, the kinase assay depicted significant inhibition of MARK by HpA (IC50 = 4.91 μM), implying it to be a potent MARK4 inhibitor that can be implicated in the treatment of MARK4-directed diseases.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Debarati DasGupta
- 428 Church Street, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, United Arab Emirates.
| |
Collapse
|
7
|
Adnan M, Koli S, Mohammad T, Siddiqui AJ, Patel M, Alshammari N, Bardakci F, Elasbali AM, Hassan MI. Searching for Novel Anaplastic Lymphoma Kinase Inhibitors: Structure-Guided Screening of Natural Compounds for a Tyrosine Kinase Therapeutic Target in Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:461-470. [PMID: 35925819 DOI: 10.1089/omi.2022.0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase molecular target with broad importance for drug discovery, especially in the field of cancer therapeutics. ALK belongs to the insulin receptor superfamily that is involved in various malignancies, including non-small cell lung cancer, anaplastic large cell lymphoma, and neuroblastoma. ALK has been shown to play a role in cancer progression and metastasis, making it one of the prime targets to develop novel anticancer therapeutics. In this context, natural compounds can be an important resource to unravel novel ALK inhibitors. In this study, we report a structure-based virtual screening of natural compounds from the ZINC database, with an eye to potential inhibitors of ALK. Molecular docking was performed on a natural compound library, and top hits holding good binding affinity, docking score, and specificity toward ALK were selected. The hits were further evaluated based on the PAINS (pan-assay interference compounds) filter, ADMET (absorption, distribution, metabolism, excretion, toxicity) properties, PASS (prediction of activity spectra for substances) analysis, and two-dimensional interaction of protein-ligand complexes. Importantly, two natural compounds (ZINC03845566 and ZINC03999625) were identified as potential candidates for ALK, having appreciable affinity and specificity toward the ALK binding pocket and depicting drug-like properties as predicted from ADMET analysis and their physicochemical parameters. An all-atom molecular dynamics simulation for 100 ns on ALK promised stable ALK-ligand complexes. Hence, we conclude that ZINC03845566 and ZINC03999625 can act as potential ALK inhibitors against cancers where ALK plays a role, for example, in lung cancer, among others. All in all, these findings inform future discovery and translational research for ALK inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Saadgee Koli
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Anwar S, DasGupta D, Azum N, Alfaifi SY, Asiri AM, Alhumaydhi FA, Alsagaby SA, Sharaf SE, Shahwan M, Hassan MI. Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Anjum F, Joshia N, Mohammad T, Shafie A, Alhumaydhi FA, Aljasir MA, Shahwan MJS, Abdullaev B, Adnan M, Elasbali AM, Pasupuleti VR, Hassan MI. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson's Disease. J Pers Med 2022; 12:220. [PMID: 35207708 PMCID: PMC8878504 DOI: 10.3390/jpm12020220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinsonism-associated deglycase-PARK7/DJ-1 (PARK7) is a multifunctional protein having significant roles in inflammatory and immune disorders and cell protection against oxidative stress. Mutations in PARK7 may result in the onset and progression of a few neurodegenerative disorders such as Parkinson's disease. This study has analyzed the non-synonymous single nucleotide polymorphisms (nsSNPs) resulting in single amino acid substitutions in PARK7 to explore its disease-causing variants and their structural dysfunctions. Initially, we retrieved the mutational dataset of PARK7 from the Ensembl database and performed detailed analyses using sequence-based and structure-based approaches. The pathogenicity of the PARK7 was then performed to distinguish the destabilizing/deleterious variants. Aggregation propensity, noncovalent interactions, packing density, and solvent accessible surface area analyses were carried out on the selected pathogenic mutations. The SODA study suggested that mutations in PARK7 result in aggregation, inducing disordered helix and altering the strand propensity. The effect of mutations alters the number of hydrogen bonds and hydrophobic interactions in PARK7, as calculated from the Arpeggio server. The study indicated that the alteration in the hydrophobic contacts and frustration of the protein could alter the stability of the missense variants of the PARK7, which might result in disease progression. This study provides a detailed understanding of the destabilizing effects of single amino acid substitutions in PARK7.
Collapse
Affiliation(s)
- Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Namrata Joshia
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (F.A.A.); (M.A.A.)
| | - Moyad J. S. Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman 20550, United Arab Emirates;
| | - Bekhzod Abdullaev
- Scientific Department, Akfa University, Tashkent 100095, Uzbekistan;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 55436, Saudi Arabia;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 44800, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Riau 28291, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Katti-genahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| |
Collapse
|
10
|
Shen L, Zhang S, Chen G. Regulated strategies of cold-adapted microorganisms in response to cold: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68006-68024. [PMID: 34648167 DOI: 10.1007/s11356-021-16843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are a large number of active cold-adapted microorganisms in the perennial cold environment. Due to their high-efficiency and energy-saving catalytic properties, cold-adapted microorganisms have become valuable natural resources with potential in various biological fields. In this study, a series of cold response strategies for microorganisms were summarized. This mainly involves the regulation of cell membrane fluidity, synthesis of cold adaptation proteins, regulators and metabolic changes, energy supply, and reactive oxygen species. Also, the potential of biocatalysts produced by cold-adapted microorganisms including cold-active enzymes, ice-binding proteins, polyhydroxyalkanoates, and surfactants was introduced, which provided a guidance for expanding its application values. Overall, new insights were obtained on response strategies of microorganisms to cold environments in this review. This will deepen the understanding of the cold tolerance mechanism of cold-adapted microorganisms, thus promoting the establishment and application of low-temperature biotechnology.
Collapse
Affiliation(s)
- Lijun Shen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| |
Collapse
|
11
|
Choudhury A, Mohammad T, Samarth N, Hussain A, Rehman MT, Islam A, Alajmi MF, Singh S, Hassan MI. Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1. Sci Rep 2021; 11:10202. [PMID: 33986331 PMCID: PMC8119478 DOI: 10.1038/s41598-021-89450-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Conserved telomere maintenance component 1 (CTC1) is an important component of the CST (CTC1-STN1-TEN1) complex, involved in maintaining the stability of telomeric DNA. Several non-synonymous single-nucleotide polymorphisms (nsSNPs) in CTC1 have been reported to cause Coats plus syndrome and Dyskeratosis congenital diseases. Here, we have performed sequence and structure analyses of nsSNPs of CTC1 using state-of-the-art computational methods. The structure-based study focuses on the C-terminal OB-fold region of CTC1. There are 11 pathogenic mutations identified, and detailed structural analyses were performed. These mutations cause a significant disruption of noncovalent interactions, which may be a possible reason for CTC1 instability and consequent diseases. To see the impact of such mutations on the protein conformation, all-atom molecular dynamics (MD) simulations of CTC1-wild-type (WT) and two of the selected mutations, R806C and R806L for 200 ns, were carried out. A significant conformational change in the structure of the R806C mutant was observed. This study provides a valuable direction to understand the molecular basis of CTC1 dysfunction in disease progression, including Coats plus syndrome.
Collapse
Affiliation(s)
- Arunabh Choudhury
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Nikhil Samarth
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University, Campus, Pune, 411007, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University, Campus, Pune, 411007, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
12
|
Habib I, Khan S, Mohammad T, Hussain A, Alajmi MF, Rehman T, Anjum F, Hassan MI. Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. J Biomol Struct Dyn 2021; 40:9053-9066. [PMID: 33982644 DOI: 10.1080/07391102.2021.1922313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
14
|
Amir M, Alam A, Ishrat R, Alajmi MF, Hussain A, Rehman MT, Islam A, Ahmad F, Hassan MI, Dohare R. A Systems View of the Genome Guardians: Mapping the Signaling Circuitry Underlying Oligonucleotide/Oligosaccharide-Binding Fold Proteins. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:518-530. [PMID: 32780668 DOI: 10.1089/omi.2020.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oligonucleotide/oligosaccharide-binding (OB)-fold domain proteins are considered as genome guardians, whose functions are extending beyond genomic stability. The broad functional diversity of the OB-fold proteins is attributed to their protein-DNA, protein-RNA, and protein-protein interactions (PPI). To understand the connectivity of the human OB-fold proteins, we report here a systems-level approach. Specifically, we mapped all human OB-fold PPI networks and evaluated topological features such as network robustness and network hub, among others. We found that the OB-fold network comprised of 227 nodes forming 5523 interactions, and has a scale-free topology having UBA52, ATR, and TP53 as leading hub proteins that control efficient communication within the network. Furthermore, four different clusters and subclusters have been identified, which are implicated in diverse cellular processes, including DNA replication, repair, maintenance of genomic stability, RNA processing, spermatogenesis, complement system, and telomere maintenance. The importance of these clusters is further strengthened by knockout studies, which showed a significant decrease in topological properties. In summary, this study provides new insights on the role of OB-fold protein as genome guardians in regard to the underlying mechanism of signaling pathways, the roles of key regulators, and thus, offers new prospects as potential targets for diagnostics and therapeutics purposes.
Collapse
Affiliation(s)
- Mohd Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
16
|
Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells 2020; 9:cells9020359. [PMID: 32033110 PMCID: PMC7072152 DOI: 10.3390/cells9020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022] Open
Abstract
Telomere comprises the ends of eukaryotic linear chromosomes and is composed of G-rich (TTAGGG) tandem repeats which play an important role in maintaining genome stability, premature aging and onsets of many diseases. Majority of the telomere are replicated by conventional DNA replication, and only the last bit of the lagging strand is synthesized by telomerase (a reverse transcriptase). In addition to replication, telomere maintenance is principally carried out by two key complexes known as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, and TPP1) and CST (CDC13/CTC1, STN1, and TEN1). Shelterin protects the telomere from DNA damage response (DDR) and regulates telomere length by telomerase; while, CST govern the extension of telomere by telomerase and C strand fill-in synthesis. We have investigated both structural and biochemical features of shelterin and CST complexes to get a clear understanding of their importance in the telomere maintenance. Further, we have analyzed ~115 clinically important mutations in both of the complexes. Association of such mutations with specific cellular fault unveils the importance of shelterin and CST complexes in the maintenance of genome stability. A possibility of targeting shelterin and CST by small molecule inhibitors is further investigated towards the therapeutic management of associated diseases. Overall, this review provides a possible direction to understand the mechanisms of telomere borne diseases, and their therapeutic intervention.
Collapse
|
17
|
Amir M, Ahamad S, Mohammad T, Jairajpuri DS, Hasan GM, Dohare R, Islam A, Ahmad F, Hassan MI. Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. J Biomol Struct Dyn 2019; 39:35-44. [DOI: 10.1080/07391102.2019.1705186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Mohd. Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Department of Biotechnology, School of Engineering & Technology, IFTM University, Moradabad, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Naqvi AAT, Alajmi MF, Rehman T, Hussain A, Hassan I. Effects of Pro1266Leu mutation on structure and function of glycoprotein Ib binding domain of von Willebrand factor. J Cell Biochem 2019; 120:17847-17857. [PMID: 31135071 DOI: 10.1002/jcb.29052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both "loss as well as gain of function" mutations observed in this domain. Naturally occurring "gain of function" mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These "gain of function" mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the "gain of function" effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Tabish Rehman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, KSA
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|