1
|
Tárraga WA, Cathcarth M, Picco AS, Longo GS. Silica-binding peptides: physical chemistry and emerging biomaterials applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:203001. [PMID: 40153945 DOI: 10.1088/1361-648x/adc6e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
Silica-binding peptides (SBPs) are increasingly recognized as versatile tools for various applications spanning biosensing, biocatalysis, and environmental remediation. This review explores the interaction between these peptides and silica surfaces, offering insights into how variables such as surface silanol density, peptide sequence and composition, and solution conditions influence binding affinity. Key advancements in SBP applications are discussed, including their roles in protein purification, biocatalysis, biosensing, and biomedical engineering. By examining the underlying binding mechanisms and exploring their practical potential, this work provides a comprehensive understanding of how SBPs can drive innovations in materials science and biotechnology.
Collapse
Affiliation(s)
- Wilson A Tárraga
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
2
|
Mainali P, Chua MSW, Tan DJ, Loo BLW, Ow DSW. Enhancing recombinant growth factor and serum protein production for cultivated meat manufacturing. Microb Cell Fact 2025; 24:41. [PMID: 39956904 PMCID: PMC11831813 DOI: 10.1186/s12934-025-02670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The commercial growth factors (GFs) and serum proteins (SPs) contribute to the high cost associated with the serum-free media for cultivated meat production. Producing recombinant GFs and SPs in scale from microbial cell factories can reduce the cost of culture media. Escherichia coli is a frequently employed host in the expression recombinant GFs and SPs. This review explores critical strategies for cost reduction in GFs and SPs production, focusing on yield enhancement, product improvement, purification innovation, and process innovation. Firstly, the review discusses the use of fusion tags to increase the solubility and yield of GFs & SPs, highlighting various studies that have successfully employed these tags for yield enhancement. We then explore how tagging strategies can streamline and economize the purification process, further reducing production costs. Additionally, we address the challenge of low half-life in GFs and SPs and propose potential strategies that can enhance their stability. Furthermore, improvements in the E. coli chassis and cell engineering strategies are also described, with an emphasis on the key areas that can improve yield and identify areas for cost minimization. Finally, we discuss key bioprocessing areas which can facilitate easier scale-up, enhance yield, titer, and productivity, and ultimately lower long-term production costs. It is crucial to recognize that not all suggested approaches can be applied simultaneously, as their relevance varies with different GFs and SPs. However, integrating of multiple strategies is anticipated to yield a cumulative effect, significantly reducing production costs. This collective effort is expected to substantially decrease the price of cultivated meat, contributing to the broader goal of developing sustainable and affordable meat.
Collapse
Affiliation(s)
- Prashant Mainali
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Melvin Shen-Wei Chua
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Ding-Jie Tan
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bernard Liat-Wen Loo
- Food, Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Dr, Singapore, 138683, Republic of Singapore
| | - Dave Siak-Wei Ow
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
3
|
Liu X, Li X, Xie Q, Lu C, Xie Z, Zhou X, Chen L, Qiu C, Jin Z, Long J. Precise Immobilization Strategy Combined with Rational Design to Improve β-Agarase Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23366-23378. [PMID: 39393787 DOI: 10.1021/acs.jafc.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Recently, the orientational immobilization of enzymes has attracted extensive attention. In this study, we report the development of a strategy combined with rational design to achieve precise site-specific covalent immobilization of β-agarase. We first rationally screened six surface sites that can be mutated to cysteine by combining molecular dynamics simulation and energy calculation. Site-specific immobilization was successfully achieved by Michael addition reaction of mutant enzymes and maleimide-modified magnetic nanoparticles (MAL-MNPs). The enzyme activity retention rate of R66C-MAL-MNPs and K588C-MAL-MNPs was greater than 96%. The thermal deactivation kinetics study revealed that the site-specific immobilization strategy significantly improved the thermal stability of Aga50D, resulting in a substantial increase in its antidenaturation activity at elevated temperatures, and the highest t1/2 of the immobilized mutant enzymes was increased by an impressive 21.25-fold at 40 °C. The immobilized mutant enzymes also showed significantly enhanced tolerance to metal ions and organic reagents. For instance, all of the immobilized enzymes maintained over 90% of their enzymatic activity in the 50% (v/v) acetone/water solution. The present work may pave the way for the design of precisely immobilized enzymes, which can help promote green manufacturing.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qiaoling Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Abdelhamid MAA, Son RG, Ki MR, Pack SP. Biosilica-coated carbonic anhydrase displayed on Escherichia coli: A novel design approach for efficient and stable biocatalyst for CO 2 sequestration. Int J Biol Macromol 2024; 277:134058. [PMID: 39038576 DOI: 10.1016/j.ijbiomac.2024.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
A robust and stable carbonic anhydrase (CA) system is indispensable for effectively sequestering carbon dioxide to mitigate climate change. While microbial surface display technology has been employed to construct an economically promising cell-displayed CO2-capturing biocatalyst, the displayed CA enzymes were prone to inactivation due to their low stability in harsh conditions. Herein, drawing inspiration from biomineralized diatom frustules, we artificially introduced biosilica shell materials to the CA macromolecules displayed on Escherichia coli surfaces. Specifically, we displayed a fusion of CA and the diatom-derived silica-forming Sil3K peptide (CA-Sil3K) on the E. coli surface using the membrane anchor protein Lpp-OmpA linker. The displayed CA-Sil3K (dCA-Sil3K) fusion protein underwent a biosilicification reaction under mild conditions, resulting in nanoscale self-encapsulation of the displayed enzyme in biosilica. The biosilicified dCA-Sil3K (BS-dCA-Sil3K) exhibited improved thermal, pH, and protease stability and retained 63 % of its initial activity after ten reuses. Additionally, the BS-dCA-Sil3K biocatalyst significantly accelerated the CaCO3 precipitation rate, reducing the time required for the onset of CaCO3 formation by 92 % compared to an uncatalyzed reaction. Sedimentation of BS-dCA-Sil3K on a membrane filter demonstrated a reliable CO2 hydration application with superior long-term stability under desiccation conditions. This study may open new avenues for the nanoscale-encapsulation of enzymes with biosilica, offering effective strategies to provide efficient, stable, and economic cell-displayed biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
5
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
6
|
Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Nanoengineered Silica-Based Biomaterials for Regenerative Medicine. Int J Mol Sci 2024; 25:6125. [PMID: 38892312 PMCID: PMC11172759 DOI: 10.3390/ijms25116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The paradigm of regenerative medicine is undergoing a transformative shift with the emergence of nanoengineered silica-based biomaterials. Their unique confluence of biocompatibility, precisely tunable porosity, and the ability to modulate cellular behavior at the molecular level makes them highly desirable for diverse tissue repair and regeneration applications. Advancements in nanoengineered silica synthesis and functionalization techniques have yielded a new generation of versatile biomaterials with tailored functionalities for targeted drug delivery, biomimetic scaffolds, and integration with stem cell therapy. These functionalities hold the potential to optimize therapeutic efficacy, promote enhanced regeneration, and modulate stem cell behavior for improved regenerative outcomes. Furthermore, the unique properties of silica facilitate non-invasive diagnostics and treatment monitoring through advanced biomedical imaging techniques, enabling a more holistic approach to regenerative medicine. This review comprehensively examines the utilization of nanoengineered silica biomaterials for diverse applications in regenerative medicine. By critically appraising the fabrication and design strategies that govern engineered silica biomaterials, this review underscores their groundbreaking potential to bridge the gap between the vision of regenerative medicine and clinical reality.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
7
|
Aguiar TQ, Domingues L. Recombinant protein purification and immobilization strategies based on peptides with dual affinity to iron oxide and silica. Biotechnol J 2023; 18:e2300152. [PMID: 37478356 DOI: 10.1002/biot.202300152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Iron oxide and silica-based materials have emerged as attractive protein purification and immobilization matrices. His6 has been reported as an effective affinity tag for both iron oxide and silica. Here, the silica-binding tags CotB1p and Car9 were shown to work as effectively as iron oxide-binding tags. Using EGFP as a model protein, commercially available bare iron oxide (BIONs) or silicon dioxide (BSiNs) nanoparticles as low-cost purification/immobilization matrices, and non-hazardous and mild binding and elution conditions, adsorption and desorption studies were performed with lysates from Escherichia coli-producing cells to compare the performance of these dual-affinity tags. Under the conditions tested, the His6 tag stood out as the best-performing tag, followed by CotB1p. Our findings concluded the promising combination of these tags, BIONs and BSiNs for one-step purification of recombinant proteins, and two-step purification and immobilization of recombinant proteins without intermediate buffer exchange. This proof of concept work set the ground for future evaluation of these purification and immobilization strategies using other proteins with different properties, which will be of interest to expand their utility and applicability.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
9
|
Ali J, Faridi S, Sardar M. Carbonic anhydrase as a tool to mitigate global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83093-83112. [PMID: 37336857 DOI: 10.1007/s11356-023-28122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The global average temperature breaks the record every year, and this unprecedented speed at which it is unfolding is causing serious climate change which in turn impacts the lives of humans and other living organisms. Thus, it is imperative to take immediate action to limit global warming. Increased CO2 emission from the industrial sector that relies on fossil fuels is the major culprit. Mitigating global warming is an uphill battle that involves an integration of technologies such as switching to renewable energy, increasing the carbon sink capacity, and implementing carbon capture and sequestration (CCS) on major sources of CO2 emissions. Among all these methods, CCS is globally accepted as a potential technology to address this climate change. CCS using carbonic anhydrase (CA) is gaining momentum due to its advantages over other conventional CCS technologies. CA is a metalloenzyme that catalyses a fundamental reaction for life, i.e. the interconversion of bicarbonate and protons from carbon dioxide and water. The practical application of CA requires stable CAs operating under harsh operational conditions. CAs from extremophilic microbes are the potential candidates for the sequestration of CO2 and conversion into useful by-products. The soluble free form of CA is expensive, unstable, and non-reusable in an industrial setup. Immobilization of CA on various support materials can provide a better alternative for application in the sequestration of CO2. The present review provides insight into several types of CAs, their distinctive characteristics, sources, and recent developments in CA immobilization strategies for application in CO2 sequestration.
Collapse
Affiliation(s)
- Juned Ali
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shazia Faridi
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
10
|
Lin T, Zhang S, Zhang D, Chen X, Ge Y, Hu Y, Fan J. Use of the redox-dependent intein system for enhancing production of the cyclic green fluorescent protein. Protein Expr Purif 2023; 207:106272. [PMID: 37062513 DOI: 10.1016/j.pep.2023.106272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023]
Abstract
To expand the reported redox-dependent intein system application, in this work, we used the split intein variant with highly trans-splicing efficiency and minimal extein dependence to cyclize the green fluorescent protein variant reporter in vitro. The CPG residues were introduced adjacent to the intein's catalytic cysteine for reversible formation of a disulfide bond to retard the trans-splicing reaction under the oxidative environment. The cyclized reporter protein in Escherichia coli cells was easily prepared by organic extraction and identified by the exopeptidase digestion. The amounts of extracted cyclized protein reporter in BL21 (DE3) cells were higher than those in hyperoxic SHuffle T7 coexpression system for facilitating the disulfide bond formation. The double His6-tagged precursor was purified for in vitro cyclization of the protein for 3 h. Compared with the purified linear counterpart, the cyclic reporter showed about twofold increase in fluorescence intensity, exhibited thermal and hydrolytic stability, and displayed better folding efficiency in BL21 (DE3) cells at the elevated temperature. Taken together, the developed redox-dependent intein system will be used for producing other cyclic disulfide-free proteins. The cyclic reporter is a potential candidate applied in certain thermophilic aerobes.
Collapse
Affiliation(s)
- Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, 230036, PR China.
| |
Collapse
|
11
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
12
|
Abdelhamid MAA, Son RG, Park KS, Pack SP. Oriented multivalent silaffin-affinity immobilization of recombinant lipase on diatom surface: Reliable loading and high performance of biocatalyst. Colloids Surf B Biointerfaces 2022; 219:112830. [PMID: 36162181 DOI: 10.1016/j.colsurfb.2022.112830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Microbial lipases are widely used biocatalysts; however, their functional surface immobilization should be designed for successful industrial applications. One of the unmet challenges is to develop a practical surface immobilization to achieve both high stability and activity of lipases upon the large loading. Herein, we present a silaffin-based multivalent design as a simple and oriented approach for Bacillus subtilis lipase A (LipA) immobilization on economic diatom biosilica matrix to yield highly-stable activity with reliable loading. Specifically, silaffin peptides Sil3H, Sil3K, and Sil3R, as monovalent or divalent genetic fusion tags, selectively immobilized LipA on biosilica surfaces. Sil3K peptide fusion to LipA termini most efficiently produced high catalytic activity upon immobilization. The activity was 70-fold greater than that of immobilized wild-type LipA. Compared to single fusion, the double Sil3K fusion displayed 1.7 higher enzymatic loading combined with high catalytic performances of LipA on biosilica surfaces. The multivalent immobilized LipA was distributed uniformly on biosilica surfaces. The biocatalyst was stable over a wide pH range with 98% retention activity after 10 reuses. The stabilized lipase fusion was compatible with laundry detergents, making it an attractive biocatalyst for detergent formulations. These findings demonstrate that multivalent surface immobilization is a plausible method for developing high-performance biocatalysts suitable for industrial biotechnological applications.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
13
|
Liu S, Wang Z, Chen K, Yu L, Shi Q, Dong X, Sun Y. Cascade chiral amine synthesis catalyzed by site-specifically co-immobilized alcohol and amine dehydrogenases. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sustainable and efficient production of chiral amines was realized with an oriented co-immobilized dual-enzyme system via SiBP-tag.
Collapse
Affiliation(s)
- Si Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
14
|
Cheon EJ, Kim SH, Lee DK, Jo YK, Ki MR, Park CJ, Jang HS, Ahn JS, Pack SP, Jun SH. Osteostimulating Ability of β-tricalcium Phosphate/collagen Composite as a Practical Bone-grafting Substitute: In vitro and in vivo Comparison Study with Commercial One. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Min KH, Shin JW, Ki MR, Kim SH, Kim KH, Pack SP. Bio-inspired formation of silica particles using the silica-forming peptides found by silica-binding motif sequence, RRSSGGRR. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Rauwolf S, Steegmüller T, Schwaminger SP, Berensmeier S. Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. Eng Life Sci 2021; 21:549-557. [PMID: 34690628 PMCID: PMC8518568 DOI: 10.1002/elsc.202100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low-cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high-purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag's arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS-PAGE and RP-HPLC. The equilibrium binding capacity of the fusion protein GFP-(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One-step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | - Tobias Steegmüller
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | | | - Sonja Berensmeier
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| |
Collapse
|
17
|
Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101475] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Pushpavanam K, Ma J, Cai Y, Naser NY, Baneyx F. Solid-Binding Proteins: Bridging Synthesis, Assembly, and Function in Hybrid and Hierarchical Materials Fabrication. Annu Rev Chem Biomol Eng 2021; 12:333-357. [PMID: 33852353 DOI: 10.1146/annurev-chembioeng-102020-015923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable interest in the development of hybrid organic-inorganic materials because of the potential for harvesting the unique capabilities that each system has to offer. Proteins are an especially attractive organic component owing to the high amount of chemical information encoded in their amino acid sequence, their amenability to molecular and computational (re)design, and the many structures and functions they specify. Genetic installation of solid-binding peptides (SBPs) within protein frameworks affords control over the position and orientation of adhesive and morphogenetic segments, and a path toward predictive synthesis and assembly of functional materials and devices, all while harnessing the built-in properties of the host scaffold. Here, we review the current understanding of the mechanisms through which SBPs bind to technologically relevant interfaces, with an emphasis on the variables that influence the process, and highlight the last decade of progress in the use of solid-binding proteins for hybrid and hierarchical materials synthesis.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98115, USA
| | - Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA;
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98115, USA; .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98115, USA
| |
Collapse
|
19
|
Abdelhamid MAA, Pack SP. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater 2021; 120:38-56. [PMID: 32447061 DOI: 10.1016/j.actbio.2020.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
20
|
Zhang X, Chen J, Li E, Hu C, Luo SZ, He C. Ultrahigh Adhesion Force Between Silica-Binding Peptide SB7 and Glass Substrate Studied by Single-Molecule Force Spectroscopy and Molecular Dynamic Simulation. Front Chem 2020; 8:600918. [PMID: 33330393 PMCID: PMC7729015 DOI: 10.3389/fchem.2020.600918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides have been identified to effectively and specifically bind on certain surfaces such as silica, polystyrene and titanium dioxide. It is of great interest, in many areas such as enzyme immobilization, surface functionalization and nanotechnology, to understand how these proteins/peptides bind to solid surfaces. Here we use single-molecule force spectroscopy (SMFS) based on atomic force microscopy to directly measure the adhesion force between a silica-binding peptide SB7 and glass surface at single molecule level. SMFS results show that the adhesion force of a single SB7 detaching from the glass surface distributes in two populations at ~220 pN and 610 pN, which is higher than the unfolding forces of most mechanically stable proteins and the unbinding forces of most stable protein-protein interactions. Molecular dynamics simulation reveals that the electrostatic interactions between positively charged arginine residues and the silica surface dominates the binding of SB7 on silica. Our study provides experimental evidence and molecular mechanism at the single-molecule level for the SB7-based immobilization of proteins on silica-based surface, which is able to withstand high mechanical forces, making it an ideal fusion tag for silica surface immobilization or peptide-base adhesive materials.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, China
| | - Jialin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Enci Li
- State Key Laboratory of Precision Measuring Technology and Instrument, Tianjin University, Tianjin, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instrument, Tianjin University, Tianjin, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, China
| |
Collapse
|
21
|
Chen Y, Lv Z, Liu Z, Li X, Li C, Sossah FL, Song B, Li Y. Effect of different drying temperatures on the rehydration of the fruiting bodies of Yu Muer ( Auricularia cornea) and screening of browning inhibitors. Food Sci Nutr 2020; 8:6037-6046. [PMID: 33282256 PMCID: PMC7684618 DOI: 10.1002/fsn3.1891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, the color of the dry fruiting bodies, fresh weight (FW): dry weight (DW) ratio, amino acids, and total phenolics, which are of nutritional or commercial interest, were compared among different drying temperature treatments. The effect of rehydration methods and color protection reagents on the fruiting body color, polyphenol oxidase (PPO) activity, and browning inhibition rate were evaluated. The results showed that drying with hot air at 65℃ was quickest and resulted in a better color without compromising the FW:DW ratio and rehydration ratio of the fruiting bodies. Furthermore, some reactions that occurred under high temperatures increased the content of protein, amino acids, and total phenolics. Soaking after boiling was the most suitable rehydration method, leading to the lowest PPO activity (39.87 ± 1.35 U/g). All of the four analyzed color protection reagents could significantly inhibit the browning of Yu Muer fruiting bodies under room temperature water rehydration conditions, with a citric acid content of 6 g/L showing the best performance. These results provide technical support for the development of the Yu Muer industry and for promoting the commercial processing of Yu Muer fruiting bodies slices.
Collapse
Affiliation(s)
- Yanqi Chen
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Zhiwen Lv
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Zhirun Liu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Xiao Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Changtian Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
| | - Bing Song
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
- Guizhou Key Laboratory of Edible fungi breedingGuizhou Academy of Agricultural SciencesGuiyangChina
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of EducationJilin Agricultural UniversityChangchunChina
| |
Collapse
|
22
|
Production of TiO2-deposited Diatoms and Their Applications for Photo-catalytic Degradation of Aqueous Pollutants. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0019-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Abdelhamid MA, Meligy AM, Yeo KB, Lee CS, Pack SP. Silaffin-3-derived pentalysine cluster as a new fusion tag for one-step immobilization and purification of recombinant Bacillus subtilis catalase on bare silica particles. Int J Biol Macromol 2020; 159:1103-1112. [DOI: 10.1016/j.ijbiomac.2020.04.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 01/15/2023]
|