1
|
Ariaeenejad S, Kavousi K, Han JL, Ding XZ, Hosseini Salekdeh G. Efficiency of an alkaline, thermostable, detergent compatible, and organic solvent tolerant lipase with hydrolytic potential in biotreatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161066. [PMID: 36565882 DOI: 10.1016/j.scitotenv.2022.161066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Discharging the tannery wastewater into the environment is a serious challenge worldwide due to the release of severe recalcitrant pollutants such as oil compounds and organic materials. The biological treatment through enzymatic hydrolysis is a cheap and eco-friendly method for eliminating fatty substances from wastewater. In this context, lipases can be utilized for bio-treatment of wastewater in multifaceted industrial applications. To overcome the limitations in removing pollutants in the effluent, we aimed to identify a novel robust stable lipase (PersiLipase1) from metagenomic data of tannery wastewater for effective bio-degradation of the oily wastewater pollution. The lipase displayed remarkable thermostability and maintained over 81 % of its activity at 60 °C.After prolonged incubation for 35 days at 60°C, the PersiLipase1 still maintained 53.9 % of its activity. The enzyme also retained over 67 % of its activity in a wide range of pH (4.0 to 9.0). In addition, PersiLipase1 demonstrated considerable tolerance toward metal ions and organic solvents (e.g., retaining >70% activity after the addition of 100 mM of chemicals). Hydrolysis of olive oil and sheep fat by this enzyme showed 100 % efficiency. Furthermore, the PersiLipase1 proved to be efficient for biotreatment of oil and grease from tannery wastewater with the hydrolysis efficiency of 90.76 % ± 0.88. These results demonstrated that the metagenome-derived PersiLipase1 from tannery wastewater has a promising potential for the biodegradation and management of oily wastewater pollution.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China
| | | |
Collapse
|
2
|
Weiland-Bräuer N, Saleh L, Schmitz RA. Functional Metagenomics as a Tool to Tap into Natural Diversity of Valuable Biotechnological Compounds. Methods Mol Biol 2023; 2555:23-49. [PMID: 36306077 DOI: 10.1007/978-1-0716-2795-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Livía Saleh
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrechts University Kiel, Kiel, Germany.
| |
Collapse
|
3
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
4
|
Xiao Y, Liu YD, Yuan G, Mao RQ, Li G. An uncharacterized protein from the metagenome with no obvious homology to known lipases shows excellent alkaline lipase properties and potential applications in the detergent industry. Biotechnol Lett 2021; 43:2311-2325. [PMID: 34698972 DOI: 10.1007/s10529-021-03203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023]
Abstract
A novel lipase, Lip486, which has no obvious homology with known lipases, was discovered using functional metagenomics technology. Phylogenetic tree analysis suggested that the enzyme belongs to a new subfamily called lipolytic enzyme family II. To explore the enzymatic properties, lip486 was expressed heterologously and efficiently in Escherichia coli. The recombinant enzyme displayed the highest activity on the substrate p-nitrophenyl caprate with a carbon chain length of 10, and its optimum temperature and pH were 53 °C and 8.0, respectively. The recombinant Lip486 showed good activity and stability in strong alkaline and medium-low-temperature environments. The results of compatibility and soaking tests showed that the enzyme had good compatibility with 4 kinds of commercial detergents, and an appropriate soaking time could further improve the enzyme activity. Oil stain removal test results for a cotton cloth indicated that the washing performance of commercial laundry detergent supplemented with Lip486 was further improved. In addition, as one of the smallest lipases found to date, Lip486 also has the advantages of high yield, good stability and easy molecular modification. These characteristics reflect the good application prospects for Lip486 in the detergent and other industries in the future.
Collapse
Affiliation(s)
- Yue Xiao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yi-De Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ge Yuan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Run-Qian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.
- Guangdong Engineering Research Center for Mineral Oil Pesticides, Guangzhou, 510260, People's Republic of China.
| | - Gang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
5
|
Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK. Employment of polysaccharides in enzyme immobilization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Abol-Fotouh D, AlHagar OEA, Hassan MA. Optimization, purification, and biochemical characterization of thermoalkaliphilic lipase from a novel Geobacillus stearothermophilus FMR12 for detergent formulations. Int J Biol Macromol 2021; 181:125-135. [PMID: 33766593 DOI: 10.1016/j.ijbiomac.2021.03.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
This study was aimed to produce a high compatible thermoalkaliphilic lipase (TA) with detergents from new thermophilic bacterial strains utilizing fish wastes for industrial application. Among bacterial isolates, a new Geobacillus stearothermophilus FMR12 efficiently utilized fish wastes at a concentration of 20% (w/v), exhibiting highly lipolytic activity at extreme thermal and alkaline pH conditions. Optimized fermentation parameters of TA lipase production were ascertained, promoting the productivity of the TA lipase from 424 to 1038 U/ml. Purification results of TA lipase exposed prominent specific activity of 4788 U/mg, purification fold of 12.44, and 7.8% yield. The purified TA lipase demonstrated outstanding activity and stability in a temperature range of 40-95 °C and pH (4-11), revealing optimal activity at 70 °C and pH 9. The molecular weight of the enzyme was estimated to be 63 kDa. Compared to control, the TA lipase activity was promoted in the presence of calcium chloride. Likewise, Triton X-100 enhanced the activity of the TA lipase, recording 128% of the control enzyme. Interestingly, the TA lipase conserved higher than 90% of its activity after blending with commercial detergents, emphasizing its competence for detergent formulations.
Collapse
Affiliation(s)
- Deyaa Abol-Fotouh
- Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Ola E A AlHagar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Inshas, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
7
|
Characterization of a Novel Family IV Esterase Containing a Predicted CzcO Domain and a Family V Esterase with Broad Substrate Specificity from an Oil-Polluted Mud Flat Metagenomic Library. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two novel esterase genes, est2L and est4L, were identified from a previously constructed metagenomic library derived from an oil-polluted mud flat sample. The encoded Est2L and Est4L were composed of 839 and 267 amino acids, respectively, without signal peptides. Est2L was a unique fusion type of protein composed of two domains: a domain of the CzcO superfamily, associated with a cationic diffusion promoter with CzcD, and a domain of the acetylesterase superfamily, belonging to family IV with conserved motifs, such as HGG, GXSAG, and GXPP. Est2L was the first fused esterase with a CzcO domain. Est4L belonged to family V with GXS, GXSMGG, and PTL motifs. Native Est2L and Est4L were found to be in dimeric and tetrameric forms, respectively. Est2L and Est4L showed the highest activities at 60 °C and 50 °C, respectively, and at a pH of 10.0. Est2L preferred short length substrates, especially p-nitrophenyl (pNP)-acetate, with moderate butyrylcholinesterase activity, whereas Est4L showed the highest activity with pNP-decanoate and had broad specificity. Significant effects were not observed in Est2L from Co2+ and Zn2+, although Est2L contains the domain CzcD. Est2L and Est4L showed high stabilities in 30% methanol and 1% Triton X-100. These enzymes could be used for a variety of applications, such as detergent and mining processing under alkaline conditions.
Collapse
|
8
|
Abstract
Enzyme-mediated esterification reactions can be a promising alternative to produce esters of commercial interest, replacing conventional chemical processes. The aim of this work was to verify the potential of an esterase for ester synthesis. For that, recombinant lipolytic enzyme EST5 was purified and presented higher activity at pH 7.5, 45 °C, with a Tm of 47 °C. Also, the enzyme remained at least 50% active at low temperatures and exhibited broad substrate specificity toward p-nitrophenol esters with highest activity for p-nitrophenyl valerate with a Kcat/Km of 1533 s−1 mM−1. This esterase exerted great properties that make it useful for industrial applications, since EST5 remained stable in the presence of up to 10% methanol and 20% dimethyl sulfoxide. Also, preliminary studies in esterification reactions for the synthesis of methyl butyrate led to a specific activity of 127.04 U·mg−1. The enzyme showed higher esterification activity compared to other literature results, including commercial enzymes such as LIP4 and CL of Candida rugosa assayed with butyric acid and propanol which showed esterification activity of 86.5 and 15.83 U·mg−1, respectively. In conclusion, EST5 has potential for synthesis of flavor esters, providing a concept for its application in biotechnological processes.
Collapse
|
9
|
Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020. [DOI: 10.3390/catal10091032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipases are one of the most used enzymes in the pharmaceutical industry due to their efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial viewpoint, the selection of an efficient expression system and host for recombinant lipase production is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient expression systems to overproduce homologous or heterologous lipases often require the use of strong promoters and the co-expression of chaperones. Protein engineering techniques, including rational design and directed evolution, are the most reported strategies for improving lipase characteristics. Additionally, lipases can be immobilized in different supports that enable improved properties and enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and the application of lipases in the pharmaceutical industry.
Collapse
|
10
|
Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 2020; 42:107581. [DOI: 10.1016/j.biotechadv.2020.107581] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
|
11
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
12
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|