1
|
Ma Y, Chen J, Song Z, Wang W, Cao Y, Yu Q. Preparation and characterization of chitosan/polyvinyl alcohol/Ginkgo biloba leaf extract composite film and its effect on chilled beef preservation. Int J Biol Macromol 2025; 305:141124. [PMID: 39965703 DOI: 10.1016/j.ijbiomac.2025.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Bioactive composite films containing varying concentrations (0 %, 2 %, 6 %, and 10 %) of the Ginkgo biloba leaf extract (GBLE) were prepared using chitosan (CS) and polyvinyl alcohol (PVA) as substrates and applied to preserve chilled beef. The thickness, density, mechanical properties, barrier properties, antioxidant activity, and thermal stability of the developed composite films significantly increased as the GBLE concentration increased (P < 0.05). Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction confirmed that GBLE was primarily integrated into the film matrix through hydrogen bonding and exhibited good compatibility. Compared with control films, the active composite films significantly inhibited color deterioration and microbial growth in chilled beef during storage, delayed fat and protein oxidation, improved chilled beef quality, and extended shelf life to 12 days. These findings suggest that GBLE/CS/PVA composite films hold great potential as active packaging materials for food preservation.
Collapse
Affiliation(s)
- Yabin Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhua Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Charles AL, Nero Z, Sulmartiwi L, Triningtyas PH, Putra NR, Abdillah AA, Alamsjah MA. Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties. Int J Biol Macromol 2025; 292:139161. [PMID: 39730049 DOI: 10.1016/j.ijbiomac.2024.139161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato. The results showed CJP improved tensile strength from 1.84 to 9.35 MPa and lowered moisture content from 33.44 to 18.92 %, and revealed compatibility within a semi-crystalline film matrix of high thermal stability, which depicted smooth surface areas and opacity suitable for packaging. The findings demonstrated faster biodegradability rates in soils (14-35 days) than water tests (152-180 days). Furthermore, coating significantly delayed weight loss while preserving visible color and flesh quality of the cherry tomato. In conclusion, the CJP-based biocomposite films presented a potential biodegradable eco-friendly alternative to the food packaging industry.
Collapse
Affiliation(s)
- Albert Linton Charles
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Zoannie Nero
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology,1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Laksmi Sulmartiwi
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Putranti Hikmah Triningtyas
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Nanda Rizki Putra
- Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia
| | - Annur Ahadi Abdillah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Study Program of Fisheries Product Technology, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Yap XY, Khalid M, Raju G, Gew LT, Yow YY. Synergistic effects of starch and carrageenan from Kappaphycus alvarezii in composite film formation: Physicochemical and degradable properties. Int J Biol Macromol 2024; 278:135205. [PMID: 39256129 DOI: 10.1016/j.ijbiomac.2024.135205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Rising concerns around plastic pollution from single-use plastic (SUPs), especially food packaging, have driven interest in sustainable alternatives. As such, algae biomass has gained attention for bioplastic production due to algae's rapid growth and abundant polysaccharides. This research focuses on extracting carrageenan from Kappaphycus alvarezii, extensively cultivated in Sabah, Malaysia, and utilizing it in combination with starch and glycerol to develop algae-based films. The physicochemical properties and degradation rate of these films were evaluated, revealing that the addition of carrageenan enhanced overall thermal stability meanwhile increasing water solubility, water content but reducing the degradation rate and swelling degree. This is primarily due to the crystalline structures of carrageenan, which provide a more rigid arrangement compared to the network of starch polymers. However, the incorporation of starch into the blends has enhanced the elongation and surface morphology, resulting in more balanced properties. Overall, these carrageenan films displayed impressive thermal, mechanical, and biodegradability characteristics, establishing their viability as substitutes for conventional plastics.
Collapse
Affiliation(s)
- Xing Yee Yap
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Gunasunderi Raju
- School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Lai Ti Gew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia; Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
4
|
Istiqomah A, Prasetyo WE, Firdaus M, Kusumaningsih T. Antibacterial evaluation of garlic extracts on chitosan/starch packaging film using response surface methodology and its application for shelf-life extension of bell peppers (Capsicum annuum). J Food Sci 2024; 89:6523-6538. [PMID: 39223764 DOI: 10.1111/1750-3841.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
In this study, garlic extract (GE) was assessed as a potential additive in chitosan/starch (Ch/De) coatings, focusing on phenolic and flavonoid content analyses and antibacterial properties. Using response surface methodology approach, an optimization method was employed to achieve the optimal antibacterial formulation, with Ch, De, and GE identified as key variables in the Design of Experiment. Fourier transform infrared spectroscopy and X-ray diffraction analyses elucidated interactions among these primary components within the films, while thermogravimetric analysis confirmed the enhanced thermal stability of GE-coated film formulations (Ch/De/GE). The Ch/De/GE exhibited antibacterial efficacy against Escherichia coli (ATCC 25922) with an inhibition zone of 7.2 mm at optimized concentrations of 2% w/v Ch, 1.5% w/v starch, and 0.5% v/v GE. In silico molecular docking studies provided insights into GE's inhibitory role as an antibacterial agent. Evaluation of green and yellow bell peppers (Capsicum annuum) over 18 days showed that coated peppers maintained better visual appearance and mass stability, with a weight loss decrease of 40.54%-48.96%, compared to uncoated ones. Additionally, the Ch/De/GE coating effectively inhibited bacterial growth, reducing it by 1-1.23 log CFU, during the storage period. In conclusion, the Ch/De/GE coating effectively extends the shelf-life of bell peppers and maintains their quality, demonstrating its potential for use in food packaging to preserve perishable items. PRACTICAL APPLICATION: The optimized chitosan/starch/garlic extract (Ch/De/GE) film developed in this study shows promising potential for application in the food packaging industry, particularly in extending the shelf life of perishable items like bell peppers. Its enhanced antibacterial properties, along with its ability to maintain visual appearance and reduce weight loss, make it an effective natural preservative that could replace synthetic additives in food packaging. By incorporating this biodegradable film into packaging solutions, producers can offer safer, more sustainable products that meet consumer demand for natural and environmentally friendly options.
Collapse
Affiliation(s)
- Annisa Istiqomah
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemical Engineering, Collage of Engineering, National Taiwan University, Taipei, Taiwan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Wahyu Eko Prasetyo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Maulidan Firdaus
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Triana Kusumaningsih
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
5
|
Hu F, Song YZ, Thakur K, Zhang JG, Khan MR, Ma YL, Wei ZJ. Blueberry anthocyanin based active intelligent wheat gluten protein films: Preparation, characterization, and applications for shrimp freshness monitoring. Food Chem 2024; 453:139676. [PMID: 38776795 DOI: 10.1016/j.foodchem.2024.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The aim of this study was to prepare active intelligent gluten protein films using wheat gluten protein (WG) and apple pectin (AP) as film-forming matrices, and blueberry anthocyanin extract (BAE) as a natural indicator. SEM and FT-IR analyses demonstrated the successful immobilization of BAE in the film matrix by hydrogen bonding interactions and its compatibility with WG and AP. The resultant WG-AP/BAE indicator films demonstrated notable antioxidant activity, color stability, barrier qualities, pH and ammonia response sensitivity, and mechanical properties. Among them, WG-AP/BAE5 exhibited the best mechanical properties (TS: 0.83 MPa and EB: 242.23%) as well as the lowest WVP (3.92 × 10-8 g.m/m2.Pa.s), and displayed high sensitivity to volatile ammonia. In addition, WG-AP/BAE5 showed a color shift from purplish red to green to yellowish green, demonstrating the monitoring of shrimp freshness in real time. Consequently, this study offers a firm scientific foundation for the development of active intelligent gluten protein films and their use in food freshness assessments.
Collapse
Affiliation(s)
- Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yu-Zhu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
6
|
Li Y, Duan Q, Yue S, Alee M, Liu H. Enhancing mechanical and water barrier properties of starch film using chia mucilage. Int J Biol Macromol 2024; 274:133288. [PMID: 38908643 DOI: 10.1016/j.ijbiomac.2024.133288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biodegradable packaging materials are increasingly being investigated due to rising concerns about food safety and environmental conservation. This study examines the incorporation of chia mucilage (CM) into starch-based films using the casting method, aiming to understand its effects on the structure and functionality of the films. CM, an anionic heteropolysaccharide, is hypothesized to enhance the mechanical and barrier properties of the films through polymer interactions and hydrogen bonding. Our findings confirm that CM incorporation results in films with uniformly smooth surfaces, indicating high compatibility and homogeneity within the starch matrix. Notably, CM improves film transparency and crystallinity. Mechanical assessments show a remarkable elevation in tensile strength, soaring from 5.21 MPa to 12.38 MPa, while elongation at break decreases from 61.73 % to 31.42 %, indicating a trade-off between strength and flexibility. Additionally, water solubility decreases from 57.97 % to 41.40 %, and water vapor permeability is reduced by 30 % with CM loading. These results highlight the role of CM in facilitating the formation of a dense, interconnected polymeric network within the starch matrix. Given the soluble dietary fiber nature of CM, the CS/CM (corn starch/chia mucilage) blended films are expected to be safe for food packaging and applicable as edible films with health benefits.
Collapse
Affiliation(s)
- Yuxia Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuke Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou, China.
| |
Collapse
|
7
|
Dordevic D, Gablo N, Zelenkova L, Dordevic S, Tremlova B. Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties. Foods 2024; 13:1833. [PMID: 38928775 PMCID: PMC11202819 DOI: 10.3390/foods13121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Coffee ranks as the second most consumed beverage globally, and its popularity is associated with the growing accumulation of spent coffee grounds (SCG), a by-product that, if not managed properly, constitutes a serious ecological problem. Analyses of SCG have repeatedly shown that they are a source of substances with antioxidant and antimicrobial properties. In this study, we assessed SCG as a substrate for the production of edible/biodegradable films. The κ-carrageenan was utilized as a base polymer and the emulsified SCG oil as a filler. The oil pressed from a blend of Robusta and Arabica coffee had the best quality and the highest antioxidant properties; therefore, it was used for film production. The film-forming solution was prepared by dissolving κ-carrageenan in distilled water at 50 °C, adding the emulsified SCG oil, and homogenizing. This solution was cast onto Petri dishes and dried at room temperature. Chemical characterization showed that SCG increased the level of polyphenols in the films and the antioxidant properties, according to the CUPRAC assay (CC1 23.90 ± 1.23 µmol/g). SCG performed as a good plasticizer for κ-carrageenan and enhanced the elongation at the break of the films, compared with the control samples. The solubility of all SCG films reached 100%, indicating their biodegradability and edibility. Our results support the application of SCG as an active and easily accessible compound for the food packaging industry.
Collapse
Affiliation(s)
| | - Natalia Gablo
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (D.D.); (L.Z.); (S.D.); (B.T.)
| | | | | | | |
Collapse
|
8
|
Nayak B, Jain P, Kumar L, Mishra AA, Gaikwad KK. UV blocking edible films based on corn starch/moringa gum incorporated with pine cone extract for sustainable food packaging. Int J Biol Macromol 2024; 267:131545. [PMID: 38614168 DOI: 10.1016/j.ijbiomac.2024.131545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Corn starch (CS) is a good alternative to synthetic polymers due to its sustainability; nevertheless, because of its weak tensile strength, the matrix requires another polymer. Therefore, 0.5 % (w/v) moringa gum (MG) was added. The purpose of this study was to assess how pine cone extract (PCE) affected the physiochemical and mechanical properties of corn starch and moringa gum (CS/MG) films and their use as UV-blocking composites. The findings suggest that the PCE improved the elongation at break from 3.27 % to 35.2 % while greatly reducing the tensile strength. The hydrogen bonding between CS/MG and PCE was visible in the FTIR spectra. The XRD graph indicated that the films were amorphous. In comparison to CS/MG films, PCE-incorporated edible films demonstrated significant UV-blocking ability indicating their potential as sustainable packaging material for light-sensitive food products.
Collapse
Affiliation(s)
- Baneeprajnya Nayak
- Department of Processing and Food Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Prachi Jain
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Atul Anand Mishra
- Department of Processing and Food Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India.
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
9
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
10
|
Sun A, Yang D. Design of cationic surfactant reinforced carrageenan waterproof composite films and applied as water induced electricity generator. Int J Biol Macromol 2023; 253:126713. [PMID: 37673149 DOI: 10.1016/j.ijbiomac.2023.126713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Carrageenan (CR) is a renewable polysaccharide material for packaging application due to its good film-forming property, but its use can be limited by the water solubility. In this research, CR hydrogels were modified by quaternary ammonium surfactants with different length of hydrocarbon tails (n, 8≦n≦16) by adsorption method and waterproof films were obtained after drying. The composition and charge interaction of composite films was confirmed by FTIR. Both thermogravimetric analysis and energy dispersive spectrometer indicated that the surfactant ions replaced K+ to form complexes with CR. The X-ray diffraction revealed the decreased amorphous nature of composite films compared to neat CR film. Water-related physical properties, such as water content, weight percentage change after contact with water, water vapor transmission, and water contact angle were intimately related to n. When 8≦n≦14, the waterproof properties were enhanced with the increase of n. Meanwhile, the waterproof property of composite film was ascertained by the no leakage result in the boiling water packaging experiment. When n = 16, sandwich structure was found in the sectional micromorphology images, and water bag structure formed after immersed into water. By comparing the mechanical properties of the composite films in different condition, we found that quaternary ammonium surfactants improved significantly the tensile strength in water and increased elongation at break in dry state. The composite films can be used as water induced voltage generator for their polyelectrolyte nature. Benefiting from the high stability of the composite films in water, their water-induced voltage generation process had good recyclability. Due to the antimicrobial activity of the quaternary ammonium salts and the waterproof property, composite films were more stable and degraded more slowly than neat CR film in nature environment.
Collapse
Affiliation(s)
- Aijing Sun
- Department of Pharmacy, Fujian Vocational College of Bioengineering, Fuzhou 350000, China
| | - Duoping Yang
- The Center of Experiment, Fujian Police College, Fuzhou 350000, China.
| |
Collapse
|
11
|
Udo T, Mummaleti G, Mohan A, Singh RK, Kong F. Current and emerging applications of carrageenan in the food industry. Food Res Int 2023; 173:113369. [PMID: 37803710 DOI: 10.1016/j.foodres.2023.113369] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
Carrageenan, a polysaccharide derived from red algae, has a long history of use as a food additive in food. Carrageenan comes in three classes, κ-, ι-, and λ-carrageenan, with different properties attributed to their organosulfate substitution levels, and their interactions with other food components give rise to properties such as water holding, thickening, gelling, and stabilizing. Over the years, carrageenan has been used in wide variety of food products such as meat, dairy, and flour-based products, and their mechanisms and functions in these matrices have also been studied. With the emergence of novel food technologies, carrageenan's potential applications have been extensively explored alongside, including encapsulation, edible films/coatings, plant-based analogs, and 3D/4D printing. As the food technology evolves, the required functions of food ingredients have changed, and carrageenan is being investigated for its role in these new areas. However, there are many similarities in the use of carrageenan in both classic and emerging applications, and understanding the underlying principles of carrageenan will lead to a proper use of carrageenan in emerging food products. This review focuses on the potential of carrageenan as a food ingredient in these emerging technologies mainly based on papers published within the past five years, highlighting its functions and applications to better understand its role in food products.
Collapse
Affiliation(s)
- Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Rakesh K Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Zhao P, Yan X, Cheng M, Wang Y, Wang Y, Wang K, Wang X, Wang J. Effect of Pickering emulsion on the physical properties, microstructure and bioactivity of corn starch/cassia gum composite films. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Zheng BD, Yu YZ, Yuan XL, Chen XS, Yang YC, Zhang N, Huang YY, Ye J, Xiao MT. Sodium alginate/carboxymethyl starch/κ-carrageenan enteric soft capsule: Processing, characterization, and rupture time evaluation. Int J Biol Macromol 2023:125427. [PMID: 37330088 DOI: 10.1016/j.ijbiomac.2023.125427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Although gelatin has good characteristics in preparing soft capsules, its noticeable shortcomings force researchers to further develop substitutes for gelatin soft capsules. In this paper, sodium alginate (SA), carboxymethyl starch (CMS) and κ-carrageenan (κ-C) were used as matrix materials, and the formula of the co-blended solution was screened through rheological method. In addition, films of the different blends were characterized by thermogravimetry analysis, SEM, FTIR, X-ray, water contact angle and mechanical properties. The results showed that κ-C had strong interaction with CMS and SA and the mechanical properties of capsule shell were greatly improved by the addition of κ-C. When the ratio of CMS/SA/κ-C was 2:0.5:1.5, the microstructure of the film was more dense and uniform. In addition, this formula had the best mechanical properties and adhesion properties, and was more suitable for the production of soft capsules. Finally, a novel plant soft capsule was successfully prepared by dropping method, and its appearance and rupture properties met the requirements of enteric soft capsules. In simulated intestinal juice, the soft capsule was almost completely degraded within 15 min, and it was superior to the gelatin soft capsule. Therefore, this study provides an alternative formula for preparing enteric soft capsules.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Yi-Zhu Yu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xiao-Lu Yuan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xi-Sheng Chen
- Sinopharm Xingsha Pharmaceutical Co., Ltd., Xiamen 361026, China
| | - Yu-Cheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
14
|
Oraç A, Konak Göktepe Ç, Demirci T, Akın N. Biodegradable Edible Film Based on Basil Seed Gum: The Effect of Gum and Plasticizer Concentrations. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023. [DOI: 10.1007/s10924-023-02923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 09/01/2023]
|
15
|
Karami A, Ghanbarzadeh B, Fakhri LA, Falcone PM, Hosseini M. Physico-Mechanical Optimization and Antimicrobial Properties of the Bionanocomposite Films Containing Gallic Acid and Zinc Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111769. [PMID: 37299672 DOI: 10.3390/nano13111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/12/2023]
Abstract
The mechanical and physical properties of the bionanocomposite films based on κ-carrageenan (KC)-gelatin (Ge) containing zinc oxide nanoparticles (ZnONPs) and gallic acid (GA) were optimized using the response surface method, and the optimum amounts of 11.19 wt% GA and 1.20 wt% ZnONPs were obtained. The results of XRD, SEM, and FT-IR tests showed the uniform distribution of the ZnONPs and GA in the film microstructure, and suitable interactions between biopolymers and these additives, which led to increasing the structural cohesion of the biopolymer matrix and improving the physical and mechanical properties of the KC-Ge-based bionanocomposite. In the films containing gallic acid and ZnONPs, an antimicrobial effect was not observed against E. coli; however, the GA-loaded and optimum films show an antimicrobial effect against S. aureus. The optimum film showed a higher inhibition effect against S. aureus compared to the ampicillin- and gentamicin-loaded discs.
Collapse
Affiliation(s)
- Azin Karami
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
- Department of Food Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Northern Cyprus, Turkey
| | - Leila Abolghasemi Fakhri
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz P.O. Box 51666-16471, Iran
| | - Pasquale M Falcone
- Department of Agricultural, Food and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Para-Veterinary, Ilam University, Ilam P.O. Box 69315-516, Iran
| |
Collapse
|
16
|
Cahyana Y, Verrell C, Kriswanda D, Aulia GA, Yusra NA, Marta H, Sukri N, Esirgapovich SJ, Abduvakhitovna SS. Properties Comparison of Oxidized and Heat Moisture Treated (HMT) Starch-Based Biodegradable Films. Polymers (Basel) 2023; 15:polym15092046. [PMID: 37177193 PMCID: PMC10180903 DOI: 10.3390/polym15092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Starch-based biodegradable films have been studied for a long time. To improve starch properties and to increase film characteristics, starch is commonly modified. Amongst different types of starch modifications, oxidation and heat moisture treatment are interesting to explore. Unfortunately, review on these modifications for film application is rarely found, although these starch modifications provide interesting results regarding the starch and film properties. This paper aims to discuss the progress of research on oxidized and heat moisture-treated-starch for edible film application. In general, both HMT and oxidation modification on starch lead to an increase in film's tensile strength and Young's modulus, suggesting an improvement in film mechanical properties. The elongation, however, tends to decrease in oxidized starch-based film, hence more brittle film. Meanwhile, HMT tends to result in a more ductile film. The drawback of HMT film is its lower transparency, while the opposite is observed in oxidized films. The observation on WVP (water vapor permeability) of HMT starch-based film shows that the trend of WVP is not consistent. Similarly, an inconsistent trend of WVP is also found in oxidized starch films. This suggests that the WVP parameter is very sensitive to intrinsic and extrinsic factors. Starch source and its concentration in film, film thickness, RH (relative humidity) of film storage, oxidation method and its severity, plasticizer type and its concentration in film, and crystallinity value may partly play roles in determining film properties.
Collapse
Affiliation(s)
- Yana Cahyana
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Christoper Verrell
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dodo Kriswanda
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Ghina Almira Aulia
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Namira Azkia Yusra
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Herlina Marta
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Nandi Sukri
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | | | | |
Collapse
|
17
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Wigati LP, Wardana AA, Tanaka F, Tanaka F. Application of pregelatinized corn starch and basil essential oil edible coating with cellulose nanofiber as Pickering emulsion agent to prevent quality-quantity loss of mandarin orange. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Oraç A, Göktepe ÇK, Demirci T, Akin N. Biodegradable edible film based on basil seed gum: the effect of gum and plasticizer concentrations.. [DOI: 10.21203/rs.3.rs-2626369/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
In this research, edible films produced from basil seed gum (BSG) with 3 different gum (0.5%, 1%, 1.5%) and plasticizer concentrations (1%, 3%, 5%) were developed, and the physical, thermal, barrier and microstructural properties of these films were measured. As a result of XRD, AFM, DSC, and FT-IR spectroscopy analyses, it was concluded that the mechanical and barrier properties and thermal stability of BSG-based films are quite good. The increase in gum and glycerol concentrations increased the crystallinity also strengthened the mechanical and barrier properties of the film. Also, films with low gum and high glycerol ratio have almost smooth surfaces and appropriate transparency for packaging applications. As the glycerol and BSG concentration increased, WVP values of the films increased. The complete dissolution of this film in the soil within 60 days, even at the highest gum concentration, showed that this material could be considered eco-friendly packaging. For this reason, it is thought that BSG-based films and coatings with suitable gum and plasticizer concentrations can be a potential packaging material for foods since they can be obtained at low cost, have a very good barrier, thermal and structural properties, and are edible and biodegradable.
Collapse
|
20
|
Jiang C, Liu T, Wang S, Zou Y, Cao J, Wang C, Hang C, Jin L. Antioxidant and ammonia-sensitive films based on starch, κ-carrageenan and Oxalis triangularis extract as visual indicator of beef meat spoilage. Int J Biol Macromol 2023; 235:123698. [PMID: 36801294 DOI: 10.1016/j.ijbiomac.2023.123698] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
In this study, we first investigated the rheological property of sweet potato starch (SPS), κ-carrageenan (KC) and Oxalis triangularis extract (OTE) blends and found that the blends exhibited high apparent viscosity with an apparent shear thinning behavior. And then films based on SPS, KC and OTE were developed and their structural and functional properties were studied. The physico-chemical test results showed that OTE exhibited different colors in solutions with different pH values and the incorporation with OTE and KC could significantly increase the thickness, water vapor permeability, light barrier ability, tensile strength and elongation at break as well as the pH- and ammonia-sensitive properties of the SPS film. The structural property test results showed that some intermolecular interactions between OTE and SPS/KC occurred in SPS-KC-OTE films. Finally, the functional properties of SPS-KC-OTE films were examined and SPS-KC-OTE films showed significant DPPH radical scavenging activity as well as a visible color change in response to changes in beef meat freshness. Our results suggested that the SPS-KC-OTE films could be used as an active and intelligent food packaging material in food industry.
Collapse
Affiliation(s)
- Changxing Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| | - Tingting Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, PR China
| | - Siyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yufei Zou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Junjie Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Caixia Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Chenzhu Hang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Lanfei Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| |
Collapse
|
21
|
Tafa KD, Satheesh N, Abera W. Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon 2023; 9:e13160. [PMID: 36793972 PMCID: PMC9922979 DOI: 10.1016/j.heliyon.2023.e13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The non-biodegradable synthetic plastic is one of the greatest challenges facing the food packaging business since it seriously harms the environment. To solve this problem, non-biodegradable plastic may be disposed of more affordably and with less harm on the environment by using edible starch-based biodegradable film. Therefore, the present study was focused on the development and optimization of tef starch based edible films based on mechanical properties. In this study response surface methodology was employed by considering 3-5g of tef starch, 0.3-0.5% of agar and 0.3-0.5% of glycerol. The prepared film showed the tensile strength of 17.97-24.25 Mpa, elongation break of 1.21-2.03%, elastic modulus of 17.58-108.69 MPa, puncture force of 2.55-15.02 N, puncture formation of 9.59-14.95 mm. The findings showed that as glycerol concentrations in the film-forming solution increased, the prepared tef starch edible films' tensile strength, elastic modulus, and puncture force declined while their elongation at break and puncture deformation increased. Tef starch edible films' mechanical characteristics, including as tensile strength, elastic modulus, and puncture force, were increased by the increase of agar concentration. The optimized (from 5 gm tef starch, 0.4 g agar and 0.3% glycerol) tef starch edible film exhibited higher tensile strength, elastic modulus, and puncture force while lower elongation at break and puncture deformation. The composite edible film based tef starch with agar exhibited good mechanical properties and can be suggested for application in food industry as food packaging.
Collapse
Affiliation(s)
- Kenenisa Dekeba Tafa
- Department of Food Process Engineering, College of Engineering and Technology, Wolkite University, Wolkite, Ethiopia
| | - Neela Satheesh
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar, Ethiopia
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Worku Abera
- Department of Food Process Engineering, College of Engineering and Technology, Wolkite University, Wolkite, Ethiopia
| |
Collapse
|
22
|
Wang C, Cao J, Liu T, Jin L, Hang C, Zhang C, Qian X, Jiang D, Jiang C. Preparation and characterization of antioxidant and pH-sensitive films based on arrowhead (Sagittaria sagittifolia) starch, κ-carrageenan and black chokeberry (Aronia melanocarpa) extract for monitoring spoilage of chicken wings. Int J Biol Macromol 2023; 224:544-555. [PMID: 36273549 DOI: 10.1016/j.ijbiomac.2022.10.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
In this study, we firstly developed an antioxidant and pH-sensitive film based on arrowhead starch (AS), κ-carrageenan (KC) and black chokeberry extract (BCE) and its physical and structural properties were investigated. We found BCE showed different colors in different pH solutions and incorporation with KC and BCE could significantly decrease light transmittance, increase thickness, elongation at break and pH-sensitive property of AS film. The results of structural property assay indicated that there were some intermolecular interactions between BCE and AS/KC in AS-KC-BCE films. Secondly, we investigated the rheological property of AS, AS-KC and AS-KC-BCE suspensions and found the suspensions showed an obvious shear-thinning behavior with high apparent viscosity. Finally, the functional properties of AS-KC-BCE films were investigated and AS-KC-BCE films showed strong scavenging activity on DPPH free radical and presented visible colour changes in response to the changes of the chicken wing qualities. The results suggest that AS-KC-BCE films can be used in active and intelligent packaging of food industry.
Collapse
Affiliation(s)
- Caixia Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Junjie Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Tingting Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, PR China
| | - Lanfei Jin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Chenzhu Hang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Chenchen Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Xiaoyan Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Dingyun Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Changxing Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| |
Collapse
|
23
|
Process optimization and characterization of composite biopolymer films obtained from fish scale gelatin, agar and chitosan using response surface methodology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Biodegradable Active Packaging Material Containing Grape Seed Ethanol Extract and Corn Starch/κ-Carrageenan Composite Film. Polymers (Basel) 2022; 14:polym14224857. [PMID: 36432984 PMCID: PMC9697555 DOI: 10.3390/polym14224857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
An active film composed of corn starch/κ-carrageenan and ethanolic grape seed extract (0, 1, 3, and 5 wt% of GSE on corn starch basis) were successfully prepared using the solvent casting technique. The effects of the different concentrations of ethanolic grape seed extract (GSE) on the physicochemical properties, antioxidant properties, and antibacterial properties of CS/κC films were analyzed. The results showed that the addition of GSE inhibited the recrystallization of starch in the composite film. The glass transition temperature of composite film is 121.65 °C. With the addition of GSE, the surface roughness of the composite film increased, and the cross-section displayed a stratification phenomenon. Meanwhile, when GSE was added to the composite film, the tensile strength of the composite film decreased (3.50 ± 0.27 MPa), the elongation at break increased (36.87 ± 2.08%), and the WVP increased (1.58 ± 0.03 g mm/m2·d· kPa). With the increase of the concentration of GSE in the composite film, the a* value and b* value of the composite film increase, the L* value decreases, and the opacity increases. The lipid oxidation test proved that the composite films containing 1% GSE has a significant inhibitory effect on the oxidation of lard (p < 0.05). The above results indicate that the GSE can be used as a food-grade packaging material and has a good application prospect in the food industry.
Collapse
|
25
|
Development of edible films based on anchote (Coccinia abyssinica) starch: process optimization using response surface methodology (RSM). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Cheng C, Chen S, Su J, Zhu M, Zhou M, Chen T, Han Y. Recent advances in carrageenan-based films for food packaging applications. Front Nutr 2022; 9:1004588. [PMID: 36159449 PMCID: PMC9503319 DOI: 10.3389/fnut.2022.1004588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
In order to solve the increasingly serious environmental problems caused by plastic-based packaging, carrageenan-based films are drawing much attentions in food packaging applications, due to low cost, biodegradability, compatibility, and film-forming property. The purpose of this article is to present a comprehensive review of recent developments in carrageenan-based films, including fabrication strategies, physical and chemical properties and novel food packaging applications. Carrageenan can be extracted from red algae mainly by hydrolysis, ultrasonic-assisted and microwave-assisted extraction, and the combination of multiple extraction methods will be future trends in carrageenan extraction methods. Carrageenan can form homogeneous film-forming solutions and fabricate films mainly by direct coating, solvent casting and electrospinning, and mechanism of film formation was discussed in detail. Due to the inherent limitations of the pure carrageenan film, physical and chemical properties of carrageenan films were enhanced by incorporation with other compounds. Therefore, carrageenan-based films can be widely used for extending the shelf life of food and monitoring the food freshness by inhibiting microbial growth, reducing moisture loss and the respiration, etc. This article will provide useful guidelines for further research on carrageenan-based films.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Mingrui Zhou
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Tianming Chen
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Characterization and application of a coating of starch extracted from avocado (Persea americana L. cv. Hass) seeds as an alternative to reduce acrylamide content in French fries. Food Sci Biotechnol 2022; 31:1547-1558. [PMID: 36278139 PMCID: PMC9582065 DOI: 10.1007/s10068-022-01140-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022] Open
Abstract
AbstractThe starch extracted from avocado (Persea americana L. cv. Hass) seeds was characterized and used in the preparation of an edible coating to reduce the oil uptake and acrylamide content in French fries. Starch characterization was carried out using Differential Scanning Calorimetry, Fourier transform infrared spectrophotometry, gelatinization, and scanning electron microscopy. Uncoated (UFF) and coated (CFF) French fries were compared and evaluated for moisture, water activity (Aw), fat, color, firmness, acrylamide content, and sensorial analysis. The extracted starch presented a high crystalline structure and good stability to mechanical work and heat treatments. The CFF French fries showed significantly higher Aw, color parameter a*, but lower luminosity and acrylamide content than UFF samples. Similarly, the CFF samples tended to decrease the fat content, although without statistical differences. Avocado seed starch can be an economical and technically feasible alternative to the food industry as an effective coating to reduce acrylamide content in French fries.
Collapse
|
28
|
Lin X, Chen S, Wang R, Li C, Wang L. Fabrication, characterization and biological properties of pectin and/or chitosan-based films incorporated with noni (Morinda citrifolia) fruit extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Effects of low industrial-grade seaweed (LIGS) in natural rubber latex foam (NRLF). J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Development of anchote (Coccinia abyssinica) starch-based edible film: response surface modeling and interactive analysis of composition for water vapor permeability. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Kang J, Jia X, Wang N, Xiao M, Song S, Wu S, Li Z, Wang S, Cui SW, Guo Q. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Sood A, Saini C. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Dong M, Tian L, Li J, Jia J, Dong Y, Tu Y, Liu X, Tan C, Duan X. Improving physicochemical properties of edible wheat gluten protein films with proteins, polysaccharides and organic acid. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Kumar R, Najda A, Duhan JS, Kumar B, Chawla P, Klepacka J, Malawski S, Kumar Sadh P, Poonia AK. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles against Phytopathogenic Fungi. Polymers (Basel) 2021; 14:41. [PMID: 35012063 PMCID: PMC8747246 DOI: 10.3390/polym14010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymeric Chitosan-Carrageenan nanocomposites 66.6-231.82 nm in size containing the chemical fungicide mancozeb (nano CSCRG-M) were synthesized following a green chemistry approach. The physicochemical study of nanoparticles (NPs) was accomplished using a particle size analyzer, SEM and FTIR. TEM exhibited clover leaf-shaped nanoparticles (248.23 nm) with mancozeb on the inside and entrapped outside. Differential scanning calorimetry and TGA thermogravimetry exhibited the thermal behaviour of the nanoform. Nano CSCRG-1.5 at 1.5 ppm exhibited 83.1% inhibition against Alternaria solani in an in vitro study and performed as well as mancozeb (84.6%). Complete inhibition was exhibited in Sclerotinia sclerotiorum at 1.0 and 1.5 ppm with the nanoformulation. The in vivo disease control efficacy of mancozeb-loaded nanoparticles against A. solani in pathogenized plants was found to be relatively higher (79.4 ± 1.7) than that of commercial fungicide (76 ± 1.1%) in pot conditions. Nanomancozeb showed superior efficacy for plant growth parameters, such as germination percentage, root-shoot ratio and dry biomass. The nanoformulation showed higher cell viability compared to mancozeb in Vero cell cultures at 0.25 and 0.50 mg/mL in the resazurin assay. CSCRG-0.5 showed slow-release behavior up to 10 h. Thus, these green nano-based approaches may help combat soil and water pollution caused by harmful chemical pesticides.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, Haryana, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland;
| | - Seweryn Malawski
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Głęboka Street, 20-400 Lublin, Poland;
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Anil Kumar Poonia
- Department of Molecular Biology, Biotechnology & Bioinformatics, CCS HAU, Hisar 125004, Haryana, India;
| |
Collapse
|
35
|
Development and Characterization of Active Native and Cross-Linked Pearl Millet Starch-Based Film Loaded with Fenugreek Oil. Foods 2021; 10:foods10123097. [PMID: 34945648 PMCID: PMC8700877 DOI: 10.3390/foods10123097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, cross-linked pearl millet starch and fenugreek oil was used to develop active starch edible films to overcome the limitations of native starch and to substitute artificial preservatives with natural one. The starch was cross-linked at three levels (1%, 3% and 5%) using sodium trimetaphosphate (STMP), and physicochemical properties were studied. Moreover, a comparative study was conducted among four samples of films prepared using native starch, cross-linked starch, and native and cross-linked starch loaded with fenugreek oil for physical, thermal, mechanical, morphological, and antibacterial properties. The solubility, swelling, and amylose content of native and modified starch varied from 11.25–12.75%, 12.91–15.10 g/g, and 8.97–16.55%, respectively. The values of these parameters were reduced as the concentration of STMP increased. Cross-linked starch films showed lower moisture, solubility, water vapor permeability(WVP), and elongation at break (EB) values while having higher thickness, opacity, thermal, and tensile strength values. The microscopic images of cross-linked starch films showed smooth surfaces and the absence of ridges, pores, and cracks. The films loaded with fenugreek oil showed different results; the moisture content, water solubility, and tensile strength were decreased while thickness, opacity, WVP, and EB were increased. The onset temperature and peak temperature were lower, while enthalpy of gelatinization was increased to a greater extent than films without oil. The addition of fenugreek oil to films showed a good inhibition area of 40.22% for native+oil films and 41.53% for cross-linked+oil films % against Escherichia coli. This study confirmed the successful utilization of fenugreek oil as a very effective antimicrobial agent in preparing edible films.
Collapse
|
36
|
Daza LD, Eim VS, Váquiro HA. Influence of Ulluco Starch Concentration on the Physicochemical Properties of Starch-Chitosan Biocomposite Films. Polymers (Basel) 2021; 13:polym13234232. [PMID: 34883736 PMCID: PMC8659859 DOI: 10.3390/polym13234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
This work aimed to prepare ulluco starch (US)/chitosan (Ch) edible films and evaluate the effect of the concentration of US on their physicochemical properties. The use of edible films is a means of adding value to the ulluco crop and evaluating the viability of using new sources to produce packaging materials. Different samples were prepared at different US concentrations (2%, 3%, 4%, and 5% w/v) and a fixed chitosan concentration (1.5% w/v); then, samples were analyzed, considering their physical, mechanical, and thermal properties. The US/Ch edible films showed an increase in solubility from 17.5% to 21.7%, swelling power (SP) from 38.9% to 267%, tensile strength (TS) from 3.69 MPa to 10.7 MPa, Young modulus (YM) from 18.0 Pa to 652 Pa, and thermal stability as the US concentration increased. However, samples with low US concentrations showed higher elongation at break (EB) (36.6%) and better barrier properties (WVP) (5.61 × 10−11 g/m s Pa). The films evaluated in this work presented good physical, mechanical, and barrier properties, revealing their potential as packaging material ensuring food security, and demonstrating the technological potential of US.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
| | - Valeria Soledad Eim
- Departamento de Química, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Spain;
- Correspondence: (V.S.E.); (H.A.V.)
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, Ibagué 730006, Colombia
- Correspondence: (V.S.E.); (H.A.V.)
| |
Collapse
|
37
|
Proso-Millet-Starch-Based Edible Films: An Innovative Approach for Food Industries. COATINGS 2021. [DOI: 10.3390/coatings11101167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present investigation searches for functional and antioxidant properties in proso millet starch and films. Proso millet starch was studied for its physical, chemical, morphological, and antioxidant properties. Furthermore, films were prepared from proso millet starch (native) and a starch–ĸ-carrageenan blend. Both films were characterized for moisture content, thickness, water-solubility, opacity, water vapor permeability, and textural and antioxidant properties. The amylose content, water absorption capacity, swelling, and solubility power of the proso millet starch were 19.19%, 87.5%, 15.32%, and 19%, respectively. Compared to aqueous extracts (0.68 mg GAE/g and 0.36 mg AAE/g), the total phenolics and total antioxidant capacity were observed to be higher in methanolic starch extracts (0.75 mg GAE/g and 0.41 mg AAE/g). Methanol extracts of native starch-based films showed higher antioxidant activity than the film prepared using a ĸ-carrageenan blend. The water vapor permeability and solubility of films prepared from native starch (2.38 g/Pa·s·m2 and 28%) were lower than those prepared using the ĸ-carrageenan blend (3.19 g/Pa·s·m2 and 42.05%). The findings may be of commercial interest to pharmaceutical and food industries in producing new antioxidant-rich drugs and food products.
Collapse
|
38
|
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach. Foods 2021; 10:foods10092181. [PMID: 34574290 PMCID: PMC8467936 DOI: 10.3390/foods10092181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on "starch food packaging" is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films' properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites.
Collapse
|
39
|
Henning FG, Ito VC, Demiate IM, Lacerda LG. Non-conventional starches for biodegradable films: A review focussing on characterisation and recent applications in food. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03797-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
42
|
Improve properties of sweet potato starch film using dual effects: Combination Mesona chinensis Benth polysaccharide and sodium carbonate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Mahajan P, Bera MB, Panesar PS, Chauhan A. Millet starch: A review. Int J Biol Macromol 2021; 180:61-79. [PMID: 33727186 DOI: 10.1016/j.ijbiomac.2021.03.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023]
Abstract
The demand for millets and their products is becoming popular globally due to their various health-promoting properties. The major constituent of the millet is its starch which contributes about 70% of total millet grain and decides the quality of millet-based food products. The application of starch for various purposes is dependent upon its physicochemical, structural, and functional properties. A native starch does not possess all the required properties for a specific use. However, product-specific properties can be achieved by modifying the structure of starches. Information deficit on millet starch has undermined its potential use in new food product design. The objective of this review is to examine the chemical composition, characterization, structural chemistry, digestibility, hydrolysis, and modification techniques of the millet starches. The review paper also discusses the various applications of native and modified starches in the food industry.
Collapse
Affiliation(s)
- Palak Mahajan
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Manab B Bera
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India.
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Anil Chauhan
- Department of Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, UP, India
| |
Collapse
|
44
|
Anis A, Pal K, Al-Zahrani SM. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers (Basel) 2021; 13:575. [PMID: 33672974 PMCID: PMC7917627 DOI: 10.3390/polym13040575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The wastage of food products is a major challenge for the food industry. In this regard, the use of edible films and coatings have gained much attention due to their ability to prevent the spoilage of the food products during handling, transport, and storage. This has effectively helped in extending the shelf-life of the food products. Among the various polymers, polysaccharides have been explored to develop edible films and coatings in the last decade. Such polymeric systems have shown great promise in microbial food safety applications. The inclusion of essential oils (EOs) within the polysaccharide matrices has further improved the functional properties of the edible films and coatings. The current review will discuss the different types of polysaccharides, EOs, methods of preparing edible films and coatings, and the characterization methods for the EO-loaded polysaccharide films. The mechanism of the antimicrobial activity of the EOs has also been discussed in brief.
Collapse
Affiliation(s)
- Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
45
|
Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydr Polym 2021; 260:117776. [PMID: 33712132 DOI: 10.1016/j.carbpol.2021.117776] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Pearl millet (Pennisetum glaucum (L.) R.Br.) is a sustainable and underutilized starch source, constituting up to 70 % starch in its grain. Pearl millet could be used as a cheaper source of starch as compared to other cereals for developing functional foods. This review is mainly focused on isolation methods, and chemical composition of the pearl millet starch (PMS). Techno-functional characteristics such as; gelatinization, pasting properties, solubility, swelling power, and digestibility to infer wider application of the PMS critically highlighted in the review. Native starches have limited functionalitiesfor food applications due to the instability in developed pastes and gels. A number of modifications (physical, mechanical and enzymatic) have been developed to increase the functionality and to obtain desired characteristics of PMS thus improving its utilization in food applications. Further, the utilization of native as well as modified PMS is also discussed comprehensively. In addition, a number of recommendations to further improve its functionality and increase its application are also discussed.
Collapse
|
46
|
Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydr Polym 2021; 251:117039. [DOI: 10.1016/j.carbpol.2020.117039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
|
47
|
Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Nogueira GF, de Oliveira RA, Velasco JI, Fakhouri FM. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers (Basel) 2020; 12:E2518. [PMID: 33126759 PMCID: PMC7692086 DOI: 10.3390/polym12112518] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.
Collapse
Affiliation(s)
| | | | - José Ignacio Velasco
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil
| |
Collapse
|
49
|
Jeya Jeevahan J, Chandrasekaran M, Venkatesan S, Sriram V, Britto Joseph G, Mageshwaran G, Durairaj R. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|