1
|
Padró-Villegas L, Gómez-Gaviria M, Martínez-Duncker I, López-Ramírez LA, Martínez-Álvarez JA, Niño-Vega GA, Mora-Montes HM. Sporothrix brasiliensis Gp70 is a cell wall protein required for adhesion, proper interaction with innate immune cells, and virulence. Cell Surf 2025; 13:100139. [PMID: 39866864 PMCID: PMC11763198 DOI: 10.1016/j.tcsw.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Sporothrix brasiliensis is one of the leading etiological agents of sporotrichosis, a cutaneous and subcutaneous mycosis worldwide distributed. This organism has been recently associated with epidemic outbreaks in Brazil. Despite the medical relevance of this species, little is known about its virulence factors, and most of the information on this subject is extrapolated from Sporothrix schenckii. Here, we generated S. brasiliensis mutants, where GP70 was silenced. In S. schenckii, this gene encodes a glycoprotein with adhesive properties required for virulence. The S. brasiliensis GP70 silencing led to an abnormal cellular phenotype, with smaller, round yeast-like cells that aggregate. Cell aggregation was disrupted with glucanase, suggesting this phenotype is linked to changes in the cell wall. The cell wall characterization confirmed changes in the structural polysaccharide β-1,3-glucan, which increased in quantity and exposure at the cell surface. This was accompanied by a reduction in protein content and N-linked glycans. Mutant strains with high GP70-silencing levels showed minimal levels of 3-carboxy-cis,cis-muconate cyclase activity, this glycoprotein's predicted enzyme function, and decreased ability to bind laminin and fibronectin. These phenotypical changes coincided with abnormal interaction with human peripheral blood mononuclear cells, where production of IL-1β, IL-17, and IL-22 was reduced and the strong dependence on cytokine stimulation via mannose receptor was lost. Phagocytosis by monocyte-derived macrophages was increased and virulence attenuated in a Galleria mellonella larvae. In conclusion, Gp70 is an abundant cell wall glycoprotein in S. brasiliensis that contributes to virulence and proper interaction with innate immnune cells.
Collapse
Affiliation(s)
- Leonardo Padró-Villegas
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor. 62209, Mexico
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto, Mexico
| |
Collapse
|
2
|
Costa ADC, Fernandes MR, Nobre AFD, Rocha MG, Mesquita JRLD, Freire RS, Monteiro AJ, Silveira Vieira R, Brilhante RSN. In vitro study of essential oils encapsulated in chitosan microparticles against Histoplasma capsulatum and their pathogenicity in Caenorhabditis elegans. BIOFOULING 2025; 41:181-196. [PMID: 39911016 DOI: 10.1080/08927014.2025.2453184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 02/07/2025]
Abstract
Histoplasmosis, caused by Histoplasma capsulatum, poses risks for immunocompromised individuals. With limited therapeutic options, this study explores microparticles as antimicrobial delivery systems for Cymbopogon flexuosus and Pelargonium graveolens essential oils against H. capsulatum. The broth microdilution assay showed MICs of 32 to 128 µg/mL in filamentous phase and 8 to 64 µg/mL in yeast phase. Combining microparticles with antifungal drugs demonstrated synergistic effects in both filamentous and yeast-like forms with amphotericin B or itraconazole. Chitosan microparticles reduced H. capsulatum biofilm biomass and metabolic activity by about 60% at 512 µg/mL. In vivo evaluation with Caenorhabditis elegans showed H. capsulatum caused over 90% mortality. These findings highlight the potential use of chitosan microparticles as a delivery system for essential oils against H. capsulatum, especially in combination with other compounds.
Collapse
Affiliation(s)
- Anderson da Cunha Costa
- Department of Pathology and Legal Medicine, School of Medicine, One Health Microbiology Laboratory, Postgraduate Program in Medical Microbiology, Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mirele Rodrigues Fernandes
- Department of Pathology and Legal Medicine, School of Medicine, One Health Microbiology Laboratory, Postgraduate Program in Medical Microbiology, Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Augusto Feynman Dias Nobre
- Department of Pathology and Legal Medicine, School of Medicine, One Health Microbiology Laboratory, Postgraduate Program in Medical Microbiology, Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Gleiciane Rocha
- Department of Pathology and Legal Medicine, School of Medicine, One Health Microbiology Laboratory, Postgraduate Program in Medical Microbiology, Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Rosemeyre Souza Freire
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Andre Jalles Monteiro
- Department of Statistics and Applied Mathematics, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, One Health Microbiology Laboratory, Postgraduate Program in Medical Microbiology, Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Facchi SP, de Almeida DA, Abrantes KKB, Rodrigues PCDS, Tessmann DJ, Bonafé EG, da Silva MF, Gashti MP, Martins AF, Cardozo-Filho L. Ultra-Pressurized Deposition of Hydrophobic Chitosan Surface Coating on Wood for Fungal Resistance. Int J Mol Sci 2024; 25:10899. [PMID: 39456681 PMCID: PMC11507266 DOI: 10.3390/ijms252010899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Fungi (Neolentinus lepideus, Nl, and Trametes versicolor, Tv) impart wood rot, leading to economic and environmental issues. To overcome this issue, toxic chemicals are commonly employed for wood preservation, impacting the environment and human health. Surface coatings based on antimicrobial chitosan (CS) of high molar mass (145 × 105 Da) were tested as wood preservation agents using an innovative strategy involving ultra-pressurizing CS solutions to deposit organic coatings on wood samples. Before coating deposition, the antifungal activity of CS in diluted acetic acid (AcOOH) solutions was evaluated against the rot fungi models Neolentinus lepideus (Nl) and Trametes versicolor (Tv). CS effectively inhibited fungal growth, particularly in solutions with concentrations equal to or higher than 0.125 mg/mL. Wood samples (Eucalyptus sp. and Pinus sp.) were then coated with CS under ultra-pressurization at 70 bar. The polymeric coating deposition on wood was confirmed through X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) images, and water contact angle measurements. Infrared spectroscopy (FTIR) spectra of the uncoated and coated samples suggested that CS does not penetrate the bulk of the wood samples due to its high molar mass but penetrates in the surface pores, leading to its impregnation in wood samples. Coated and uncoated wood samples were exposed to fungi (Tv and Nl) for 12 weeks. In vivo testing revealed that Tv and Nl fungi did not grow on wood samples coated with CS, whereas the fungi proliferated on uncoated samples. CS of high molar mass has film-forming properties, leading to a thin hydrophobic film on the wood surface (water contact angle of 118°). This effect is mainly attributed to the high molar mass of CS and the hydrogen bonding interactions established between CS chains and cellulose. This hydrophobic film prevents water interaction, resulting in a stable coating with insignificant leaching of CS after the stability test. The CS coating can offer a sustainable strategy to prevent wood degradation, overcoming the disadvantages of toxic chemicals often used as wood preservative agents.
Collapse
Affiliation(s)
- Suelen P. Facchi
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Débora A. de Almeida
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Karen K. B. Abrantes
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Paula C. dos S. Rodrigues
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Dauri J. Tessmann
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| | - Elton G. Bonafé
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
| | - Marcelo F. da Silva
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
| | - Mazeyar P. Gashti
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| | - Alessandro F. Martins
- Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil; (D.A.d.A.); (E.G.B.); (M.F.d.S.)
- Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil
- National Institute for Materials Advancement (NIMA), Pittsburg State University (PSU), Pittsburg, KS 66762, USA
- Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS 66762, USA
| | - Lúcio Cardozo-Filho
- Graduate Program in Agronomy, State University of Maringá (UEM), Maringá 87020-900, Paraná, Brazil; (S.P.F.); (K.K.B.A.); (P.C.d.S.R.); (D.J.T.); (L.C.-F.)
| |
Collapse
|
4
|
Wang L, Pang Y, Xin M, Li M, Shi L, Mao Y. Effect of the structure of chitosan quaternary ammonium salts with different spacer groups on antibacterial and antibiofilm activities. Int J Biol Macromol 2024; 276:133777. [PMID: 38996880 DOI: 10.1016/j.ijbiomac.2024.133777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/30/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
In this study, three types of dodecyl chitosan quaternary ammonium salts, each with different spacer groups were synthesized. These chitosan derivatives are N',N'-dimethyl-N'-dodecyl-ammonium chloride-N-amino-acetyl chitosan (DMDAC), N'-dodecyl-N-isonicotinyl chitosan chloride (DINCC) and N',N'-dimethyl-N'-dodecyl-ammonium chloride-N-benzoyl chitosan (DMDBC). The synthesized products were characterized using Fourier transform infrared spectrometers, nuclear magnetic resonance, thermogravimetric analysis, and elemental analysis. The antibacterial and antibiofilm activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated. The experimental results indicated that the introduction of hydrophobic groups of spacer groups could enhance the antibacterial and antibiofilm activities of the chitosan derivatives. The antibacterial rates of the chitosan derivatives were over 90 % for both E. coli and S. aureus at a concentration of 0.5 mg/mL. The chitosan derivatives removed >50 % of the mature biofilm of E. coli and over 90 % of the mature biofilm of S. aureus at a concentration of 2.5 mg/mL. Further, the synthesized chitosan derivatives were determined to be non-toxic to L929 cells. Among them, DMDBC exhibited the most promising overall performance and show potential for wide-ranging applications in food preservation, disinfectants, medical, and other fields.
Collapse
Affiliation(s)
- Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Yu Pang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Lulu Shi
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
5
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
6
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Tarek A, Tartor YH, Hassan MN, Pet I, Ahmadi M, Abdelkhalek A. Fighting Emerging Caspofungin-Resistant Candida Species: Mitigating Fks1-Mediated Resistance and Enhancing Caspofungin Efficacy by Chitosan. Antibiotics (Basel) 2024; 13:578. [PMID: 39061260 PMCID: PMC11274059 DOI: 10.3390/antibiotics13070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive candidiasis poses a worldwide threat because of the rising prevalence of antifungal resistance, resulting in higher rates of morbidity and mortality. Additionally, Candida species, which are opportunistic infections, have significant medical and economic consequences for immunocompromised individuals. This study explores the antifungal potential of chitosan to mitigate caspofungin resistance in caspofungin-resistant Candida albicans, C. krusei, and C. tropicalis isolates originating from human and animal sources using agar well diffusion, broth microdilution tests, and transmission electron microscope (TEM) analysis of treated Candida cells. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed to assess the expression of SAGA complex genes (GCN5 and ADA2) and the caspofungin resistance gene (FKS) in Candida species isolates after chitosan treatment. The highest resistance rate was observed to ketoconazole (80%) followed by clotrimazole (62.7%), fluconazole (60%), terbinafine (58%), itraconazole (57%), miconazole (54.2%), amphotericin B (51.4%), voriconazole (34.28%), and caspofungin (25.7%). Nine unique FKS mutations were detected, including S645P (n = 3 isolates), S645F, L644F, S645Y, L688M, E663G, and F641S (one isolate in each). The caspofungin minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values before chitosan treatment ranged from 2 to 8 µg/mL and 4 to 16 µg/mL, respectively. However, the MIC and MFC values were decreased after chitosan treatment (0.0625-1 µg/mL) and (0.125-2 µg/mL), respectively. Caspofungin MIC was significantly decreased (p = 0.0007) threefold following chitosan treatment compared with the MIC values before treatment. TEM analysis revealed that 0.5% chitosan disrupted the integrity of the cell surface, causing irregular morphologies and obvious aberrant changes in cell wall thickness in caspofungin-resistant and sensitive Candida isolates. The cell wall thickness of untreated isolates was 0.145 μm in caspofungin-resistant isolate and 0.125 μm in sensitive isolate, while it was significantly lower in chitosan-treated isolates, ranging from 0.05 to 0.08 μm when compared with the cell wall thickness of sensitive isolate (0.03 to 0.06 μm). Moreover, RT-qPCR demonstrated a significant (p < 0.05) decrease in the expression levels of histone acetyltransferase genes (GCN5 and ADA2) and FKS gene of caspofungin-resistant Candida species isolates treated with 0.5% chitosan when compared with before treatment (fold change values ranged from 0.001 to 0.0473 for GCN5, 1.028 to 4.856 for ADA2, and 2.713 to 12.38 for FKS gene). A comparison of the expression levels of cell wall-related genes (ADA2 and GCN5) between caspofungin-resistant and -sensitive isolates demonstrated a significant decrease following chitosan treatment (p < 0.001). The antifungal potential of chitosan enhances the efficacy of caspofungin against various caspofungin-resistant Candida species isolates and prevents the development of further antifungal resistance. The results of this study contribute to the progress in repurposing caspofungin and inform a development strategy to enhance its efficacy, appropriate antifungal activity against Candida species, and mitigate resistance. Consequently, chitosan could be used in combination with caspofungin for the treatment of candidiasis.
Collapse
Affiliation(s)
- Aya Tarek
- Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed N. Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| |
Collapse
|
8
|
Wang L, Xin M, Li M, Zhang T, Pang Y, Mao Y. Preparation of biguanidine quaternary ammonium salts grafted chitosan with enhanced antibacterial and antibiofilm activities. Carbohydr Res 2024; 538:109078. [PMID: 38513462 DOI: 10.1016/j.carres.2024.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
N-(4-N'-pyridine-benzylcarbonyl chloride) chitosan (CBPyC), N-p-biguanidine benzoyl chitosan (CSBG), and N-(p-biguanidine -1-pyridine-4-benzylcarbonyl chloride) chitosan (CSQPG) were synthesized. The structures of prepared chitosan derivatives were characterized using nuclear magnetic resonance spectroscopy (NMR) and ultraviolet-visible (UV-vis) spectroscopy, and the degree of substitution was determined through elemental analysis (EA) and evaluated on the basis of the integral values in 1H NMR. The antibacterial activities of chitosan derivatives against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated in vitro using antibacterial rate, minimal inhibitory concentration and minimum bacterial concentration assays. The antibiofilm activity was also assessed using the crystal violet assay. CSQPC exhibited higher antibacterial and antibiofilm activities against E. coli and S. aureus compared to CBPyC and CSBG. The antibacterial rate of CSQPG against E. coli and S. aureus at a concentration of 0.5 mg/mL was 43.3% and 100%, respectively. The biofilm inhibition rate of CSQPG at 0.5 MIC against E. coli and S. aureus was 56.5% and 69.1%, respectively. At a concentration of 2.5 mg/mL, the biofilm removal rates of E. coli and S. aureus were 72.9% and 90.1%, respectively. The antibacterial and antibiofilm activities of CSQPG were better than CSBG and CBPyC, and the combination of guanidine and quaternary ammonium further improved the positive charge density of chitosan and enhanced its antibacterial activity.
Collapse
Affiliation(s)
- Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen, 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen, 361021, PR China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen, 361021, PR China.
| | - Tao Zhang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen, 361021, PR China
| | - Yu Pang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen, 361021, PR China
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
9
|
Tian D, Qiao Y, Peng Q, Xu X, Shi B. Anti-biofilm mechanism of a synthetical low molecular weight poly-d-mannose on Salmonella Typhimurium. Microb Pathog 2024; 187:106515. [PMID: 38160987 DOI: 10.1016/j.micpath.2023.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
In this study, a low molecular weight poly-d-mannose (LMWM) was separated from a mixed polysaccharide synthesized previously. Monosaccharide composition, Fourier-Transform infrared spectroscopy (FT-IR), periodate oxidation and smith degradation were determined. After safety evaluation, the inhibition of LMWM on the different biofilm formation stages of Salmonella enterica serovar Typhimurium (S. Typhimurium) was tested in vitro. Furthermore, the effect of LMWM on the adhesion of S. Typhimurium to Caco-2 cells and cell surface hydrophobicity (CSH) were observed. Results indicated that LMWM was a homopolysaccharide without cytotoxicity and hemolysis, containing both α-mannose and β-mannose. It showed obvious anti-biofilm activity on S. Typhimurium and mainly activated on the initial adhesion and formation stage, even better than the commercial S. cerevisiae mannan (CM). LMWM inhibited the adhesion of S. Typhimurium on Caco-2 cells with the inhibition rate of 61.04 % at 2 mg/ml. Meanwhile, LMWM decreased the hydrophobicity of S. Typhimurium cell surface. In conclusion, the inhibitory effect on S. Typhimurium biofilm was not caused by bacteriostatic or bactericidal activity of LMWM. The specific anti-adhesion and the decrease of bacterial CSH by LMWM may closely relate to anti-biofilm mechanism. This study provides some supports for the application of LMWM as antibiotics alternative on S. Typhimurium in the future.
Collapse
Affiliation(s)
- Dandan Tian
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
10
|
Brilhante RSN, Costa ADC, de Mesquita JRL, dos Santos Araújo G, Freire RS, Nunes JVS, Nobre AFD, Fernandes MR, Rocha MFG, Pereira Neto WDA, Crouzier T, Schimpf U, Viera RS. Antifungal Activity of Chitosan against Histoplasma capsulatum in Planktonic and Biofilm Forms: A Therapeutic Strategy in the Future? J Fungi (Basel) 2023; 9:1201. [PMID: 38132801 PMCID: PMC10744476 DOI: 10.3390/jof9121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Anderson da Cunha Costa
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | | | - Gessica dos Santos Araújo
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Rosemeyre Souza Freire
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - João Victor Serra Nunes
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - Augusto Feynman Dias Nobre
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Mirele Rodrigues Fernandes
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Marcos Fábio Gadelha Rocha
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Waldemiro de Aquino Pereira Neto
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Ulrike Schimpf
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Rodrigo Silveira Viera
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60440-900, CE, Brazil;
| |
Collapse
|
11
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Garcia LGS, Rocha MGD, Freire RS, Nunes PIG, Nunes JVS, Fernandes MR, Pereira-Neto WA, Sidrim JJC, Santos FA, Rocha MFG, Rodrigues LKA, Vieira RS, Brilhante RSN. Chitosan microparticles loaded with essential oils inhibit duo-biofilms of Candida albicans and Streptococcus mutans. J Appl Oral Sci 2023; 31:e20230146. [PMID: 37729259 PMCID: PMC10519671 DOI: 10.1590/1678-7757-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.
Collapse
Affiliation(s)
| | | | | | - Paulo Iury Gomes Nunes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Mirele Rodrigues Fernandes
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Waldemiro Aquino Pereira-Neto
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - José Júlio Costa Sidrim
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| | - Flavia Almeida Santos
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Fisiologia e Farmacologia, Laboratório de Produtos Naturais, Ceará, Brasil
| | | | - Lidiany Karla Azevedo Rodrigues
- Universidade Federal do Ceará, Faculdade de Farmácia, Odontologia e Enfermagem, Departamento de Odontologia Restauradora, Ceará, Brasil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Centro Especializado em Micologia Médica, Ceará, Brasil
| |
Collapse
|
13
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
14
|
Xavier MO, Poester VR, Trápaga MR, Stevens DA. Sporothrix brasiliensis: Epidemiology, Therapy, and Recent Developments. J Fungi (Basel) 2023; 9:921. [PMID: 37755029 PMCID: PMC10532502 DOI: 10.3390/jof9090921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Sporotrichosis caused by Sporothrix brasiliensis is an emergent mycosis that is now a worldwide concern. One important step to sporotrichosis control is its correct treatment. However, limitations abound; thus, new antifungals, mainly focused on S. brasiliensis, are urgently needed. We performed a systematic review (following the PRISMA guideline) focused on (1) the global distribution of human and animal sporotrichosis by S. brasiliensis, especially outside of Brazil; (2) appraising therapies tested against this pathogen. We identified sporotrichosis caused by S. brasiliensis reported in five countries (Paraguay, Chile, Argentina, the United Kingdom, and the United States) in addition to Brazil, occurring on three continents, highlighting the epidemiological scenario in Argentina with an important increase in reported cases in recent years. Regarding the antifungal activity of drugs, 25 articles described the in vitro action of 20 unique chemicals and eight repurposed drugs against S. brasiliensis. Only five studies reported in vivo activity against S. brasiliensis (five drugs) using invertebrate and vertebrate models. Sporotrichosis caused by S. brasiliensis has a global impact and it is no longer specifically a Brazilian problem. We review the need for understanding the disease epidemiology, education of clinicians and of the populace, organization of health care delivery to respond to a spreading epidemic, and research on therapy for sporotrichosis.
Collapse
Affiliation(s)
- Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil; (M.O.X.); (V.R.P.); (M.R.T.)
- Laboratório de Micologia, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil; (M.O.X.); (V.R.P.); (M.R.T.)
- Laboratório de Micologia, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil
| | - Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil; (M.O.X.); (V.R.P.); (M.R.T.)
- Laboratório de Micologia, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-190, RS, Brazil
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, Villagómez-Castro JC, López-Romero E. Fungal Glycosidases in Sporothrix Species and Candida albicans. J Fungi (Basel) 2023; 9:919. [PMID: 37755027 PMCID: PMC10532485 DOI: 10.3390/jof9090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that participate in many biological processes of fungi and other organisms by hydrolyzing glycosidic linkages in glycosides. They play fundamental roles in the degradation of carbohydrates and the assembly of glycoproteins and are important subjects of studies in molecular biology and biochemistry. Based on amino acid sequence similarities and 3-dimensional structures in the carbohydrate-active enzyme (CAZy), they have been classified in 171 families. Members of some of these families also exhibit the activity of trans-glycosydase or glycosyl transferase (GT), i.e., they create a new glycosidic bond in a substrate instead of breaking it. Fungal glycosidases are important for virulence by aiding tissue adhesion and colonization, nutrition, immune evasion, biofilm formation, toxin release, and antibiotic resistance. Here, we review fungal glycosidases with a particular emphasis on Sporothrix species and C. albicans, two well-recognized human pathogens. Covered issues include a brief account of Sporothrix, sporotrichosis, the different types of glycosidases, their substrates, and mechanism of action, recent advances in their identification and characterization, their potential biotechnological applications, and the limitations and challenges of their study given the rather poor available information.
Collapse
Affiliation(s)
| | | | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
16
|
Almeida RR, Pinto NAR, Soares IC, Clarindo Ferreira LB, Lima LL, Leitão AA, Guimarães LGDL. Production and physicochemical properties of fungal chitosans with efficacy to inhibit mycelial growth activity of pathogenic fungi. Carbohydr Res 2023; 525:108762. [PMID: 36801499 DOI: 10.1016/j.carres.2023.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In order to enable the applicability of chitosan as an antifungal, soil fungi were isolated and identified, then used in its production. Fungal chitosan has several advantages, including lower toxicity, low cost, and high degree of deacetylation. These characteristics are essential for therapeutic applications. The results indicate high viability of the isolated strains to produce chitosan, obtaining a maximum yield of 40.59 mg chitosan/g of dry biomass. M. pseudolusitanicus L. was reported for the first time for production by chitosan. The chitosan signals were observed by ATR-FTIR and 13C SSNMR. Chitosans showed high degrees of deacetylation (DD), ranging from 68.8% to 88.5%. In comparison with the crustacean chitosan, Rhizopus stolonifer and Cunninghamella elegans presented lower viscometric molar masses (26.23 and 22.18 kDa). At the same time, the molar mass of chitosan Mucor pseudolusitanicus L. showed a value coincident with that assumed as low molar mass (50,000-150,000 g mol-1). Concerning the in vitro antifungal potential against the dermatophyte fungus Microsporum canis (CFP 00098), the fungal chitosans showed satisfactory antifungal activities, inhibiting mycelial growth by up to 62.81%. This study points to the potential of chitosans extracted from fungal cell walls for applications in the inhibition of the growth of (Microsporum canis) human pathogenic dermatophyte.
Collapse
Affiliation(s)
- Regiamara Ribeiro Almeida
- Federal University of São João del-Rei, Natural Science Department, CEP 36301160, São João del-Rei, MG, Brazil
| | | | - Isabela Carla Soares
- Federal University of São João del-Rei, Natural Science Department, CEP 36301160, São João del-Rei, MG, Brazil
| | | | - Larissa Lavorato Lima
- Federal University of Juiz de Fora, Chemistry Department, Institute of Exact Sciences, CEP 36036-900, Juiz de Fora, MG, Brazil
| | - Alexandre Amaral Leitão
- Federal University of Juiz de Fora, Chemistry Department, Institute of Exact Sciences, CEP 36036-900, Juiz de Fora, MG, Brazil
| | | |
Collapse
|
17
|
A New Approach in Meat Bio-Preservation through the Incorporation of a Heteropolysaccharide Isolated from Lobularia maritima L. Foods 2022; 11:foods11233935. [PMID: 36496743 PMCID: PMC9741361 DOI: 10.3390/foods11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, a new heteropolysaccharide extracted from Lobularia maritima (L.) Desv. (LmPS), a halophyte harvested in Tunisia, was evaluated as an antioxidant and antibacterial additive in the bio-preservation of raw minced meat. For antibacterial testing, Gram-positive bacteria such as Staphylococcus aureus ATCC and Listeria monocytogenes ATCC 19,117 and Gram-negative bacteria such as Salmonella enterica ATCC 43,972 and Escherichia coli ATCC 25,922 were used. The results indicate that this polymer had a significant antibacterial activity against foodborne pathogens. Additionally, the effects of LmPS at 0.15, 0.3 and 0.6% on refrigerated raw ground beef were investigated from a microbiological, chemical, and sensory perspective. Microbiological analysis of the meat showed that treatment with LmPS significantly (p < 0.05) improved its shelf life, while the biochemical analysis evidenced a significant (p < 0.05) decrease in lipid oxidation. LmPS at 0.6% significantly reduced by 61% and 48% metmyoglobin accumulation at the end of the storage period when compared to BHT and control samples, respectively. The chemometric approach highlighted the relationships among the different meat quality parameters. LmPS can be introduced in the food industry as a powerful natural additive and could be an alternative to synthetic antioxidant compounds.
Collapse
|
18
|
Popescu PA, Palade LM, Nicolae IC, Popa EE, Miteluț AC, Drăghici MC, Matei F, Popa ME. Chitosan-Based Edible Coatings Containing Essential Oils to Preserve the Shelf Life and Postharvest Quality Parameters of Organic Strawberries and Apples during Cold Storage. Foods 2022; 11:3317. [PMID: 36359930 PMCID: PMC9657762 DOI: 10.3390/foods11213317] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/29/2023] Open
Abstract
Edible coatings and films have been researched for more than three decades due to their ability to be incorporated with different functional ingredients or compounds as an option to maintain the postharvest quality of fruits and vegetables. The aim of this study was to evaluate the effect of three types of chitosan-based (CH) edible coatings obtained from medium and high molecular weight chitosan, containing ascorbic or acetic acid and sea buckthorn or grape seed essential oils on the physical-chemical and microbiological properties of organic strawberries and apple slices during cold storage at 4 °C and 8 °C. Scanning electron microscope images showed both a smooth structure and a fracture and pore structure on strawberry coatings and a dense and smooth structure on the apple slices coatings. Further, the edible coatings managed to reduce the microbial load of yeasts and molds of the coated strawberries during the storage period. Overall, the treatments preserved the ascorbic acid, total polyphenol content, and antioxidant activity for all the tested samples compared to the control sample, throughout the storage period. In addition, the water activity (aw) of the coated samples presented lower values (0.96-0.98) than the control samples. The obtained results indicate that the developed chitosan-based edible coatings could maintain the postharvest parameters of the tested samples, also leading to their shelf-life prolongation.
Collapse
Affiliation(s)
- Paul-Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Laurentiu Mihai Palade
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6 Dinu Vintilă Street, District 2, 021102 Bucharest, Romania
| | - Ioana-Cătălina Nicolae
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Amalia Carmen Miteluț
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mihaela Cristina Drăghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| |
Collapse
|
19
|
Kulkarni P, Maniyar M, Nalawade M, Bhagwat P, Pillai S. Isolation, biochemical characterization, and development of a biodegradable antimicrobial film from Cirrhinus mrigala scale collagen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18840-18850. [PMID: 34704223 DOI: 10.1007/s11356-021-17108-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Collagen is a promising candidate for food and pharmaceutical applications due to its excellent biocompatibility, low antigenicity, and controlled biodegradability; however, its heavy price restricts its utilization. Fish scales generated during the processing are generally regarded as waste material and an environmental pollutant, though they are a promising source of collagen. In the present study, Cirrhinus mrigala scales were demineralized and extracted for acid-soluble collagen (ASC) using acetic acid, with a collagen yield of 2.7%. UV-Vis spectra, SDS-PAGE, FTIR analyses, and amino acid composition confirmed the type I nature of the collagen extracted. The denaturation temperature of the collagen was found to be 30.09 °C using differential scanning calorimetry (DSC). The collagen was highly soluble at acidic pH and lower NaCl concentrations while its solubility was lowered in alkaline conditions and NaCl concentrations above 0.5 M. The collagen exhibited good emulsifying potential with an emulsion activity index (EAI) and emulsion stability index (ESI) of 21.49 ± 0.22 m2 g-1 and 15.67 ± 0.13 min, respectively. Owing to the good physicochemical characteristics of the extracted collagen, collagen-chitosan-neem extract (CCN) films were prepared subsequently which showed good antimicrobial activity against Bacillus subtilis NCIM 2635, Staphylococcus aureus NCIM 2654, Escherichia coli NCIM 2832, and Pseudomonas aeruginosa NCIM 5032, suggesting the potential of collagen in the development of antimicrobial films. These results demonstrate that the collagen from fish waste could be valorized and used effectively along with chitosan and neem extract for the synthesis of novel biodegradable films with antimicrobial efficacy.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- SVERI's College of Pharmacy, Pandharpur, Maharashtra, 413 304, India
| | - Mithun Maniyar
- SVERI's College of Pharmacy, Pandharpur, Maharashtra, 413 304, India
| | - Megha Nalawade
- Department of Biochemistry, Shivaji University, Kolhapur, M.S., 416 004, India
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| |
Collapse
|
20
|
Ionescu OM, Iacob AT, Mignon A, Van Vlierberghe S, Baican M, Danu M, Ibănescu C, Simionescu N, Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int J Biol Macromol 2021; 193:996-1008. [PMID: 34756969 DOI: 10.1016/j.ijbiomac.2021.10.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Arn Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Mihaela Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Maricel Danu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Constanța Ibănescu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; "Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Lenuța Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania.
| |
Collapse
|
21
|
Wang Z, Sun Q, Zhang H, Wang J, Fu Q, Qiao H, Wang Q. Insight into antibacterial mechanism of polysaccharides: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
He N, Wang S, Lv Z, Zhao W, Li S. Low molecular weight chitosan oligosaccharides (LMW-COSs) prevent obesity-related metabolic abnormalities in association with the modification of gut microbiota in high-fat diet (HFD)-fed mice. Food Funct 2021; 11:9947-9959. [PMID: 33108433 DOI: 10.1039/d0fo01871f] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the two enzymatic low molecular weight chitosan oligosaccharides (LMW-COSs), LMW-COS-H and LMW-COS-L, were prepared with average MWs of 879.6 Da and 360.9 Da, respectively. Compared to LMW-COS-L, the LMW-COS-H was more effective in improving high-fat diet (HFD)-induced metabolic abnormalities, such as obesity, hyperlipidemia, low-grade inflammation and insulin resistance. The subsequent analysis of gut microbiota showed that the supplement of LMW-COSs caused overall structural and genus/species-specific changes in the gut microbiota, which were significantly correlated with the metabolic parameters. Specifically, both of the LMW-COSs significantly decreased the relative abundance of inflammatory bacteria such as Erysipelatoclostridium and Alistipes, whereas that of the beneficial intestinal bacteria (such as Akkermansia and Gammaproteobacteria) increased significantly. This study suggested that there were potential prebiotic functions of LMW-COSs in HFD fed mice, which regulated the dysfunctional gut microbiota, alleviated low-grade inflammation and maintained the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Ningning He
- College of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| | | | | | | | | |
Collapse
|
23
|
Li Q, Ren T, Perkins P, Hu X, Wang X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
25
|
Etchecopaz A, Toscanini MA, Gisbert A, Mas J, Scarpa M, Iovannitti CA, Bendezú K, Nusblat AD, Iachini R, Cuestas ML. Sporothrix Brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. J Fungi (Basel) 2021; 7:jof7030170. [PMID: 33652625 PMCID: PMC7996880 DOI: 10.3390/jof7030170] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Etchecopaz
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - María A. Toscanini
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Amelia Gisbert
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Javier Mas
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Miguel Scarpa
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - Cristina A. Iovannitti
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Karla Bendezú
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Alejandro D. Nusblat
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Ricardo Iachini
- Instituto de Zoonosis «Luis Pasteur», Buenos Aires C1405 DCD, Argentina;
| | - María L. Cuestas
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
- Correspondence: ; Tel.: +54-11-59509500 (ext. 2176/77)
| |
Collapse
|
26
|
Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. Int J Biol Macromol 2020; 166:621-632. [PMID: 33137389 DOI: 10.1016/j.ijbiomac.2020.10.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
The aim of the study was to produce and characterize chitosan microparticles loaded with essential oils (CMEOs), evaluate the essential oil (EO) release profile and the CMEOs' anti-Candida activity. The chitosan microparticles (CMs) loaded with lemongrass essential oil (LEO) and geranium essential oil (GEO) were produced by the spray-drying method and characterized regarding CMEO morphological and physicochemical parameters and EO encapsulation efficiency (EE) and release profile. The planktonic activity was quantified by broth microdilution, and the activity against biofilm was quantified by biomass formation measurement. The LEO and GEO compositions were analyzed by gas chromatography combined with mass spectrometry (GC/MS), finding the main components citral (83.17%) and citronellol (24.53%). The CMs and CMEOs showed regular distribution and spherical shape (1 to 15 μm), without any morphological and physical modifications after EO incorporation. EE% ranged from 12 to 39%. In vitro release tests demonstrated the EO release rates, after 144 h, were 33% and 55% in PBS and HCl media, respectively. The minimum inhibitory concentration (MIC) values for CMEOs were lower than for CMs and pure EOs (P < 0.05). The higher CMEO biofilm inhibition percentage demonstrates the efficiency of microparticles against Candida biofilm. These results indicate that CMEOs are promising compounds that have antibiofilm activity against C. albicans.
Collapse
|
27
|
Insight into Physicochemical, Rheological, and Antibacterial Properties of Chitosan Extracted from Antarctic krill: A Comparative Study. Molecules 2020; 25:molecules25184074. [PMID: 32906578 PMCID: PMC7571028 DOI: 10.3390/molecules25184074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, physicochemical, rheological, and antibacterial properties of chitosan (CS) extracted from white shrimp (WS), giant river prawn (GP), and Antarctic krill (AK) were investigated. The results demonstrated that molecular weight (MW) of commercial chitosan (CCS), WSCS, GPCS, and AKCS were 1175.8, 2130.4, 1293.3, and 1109.3 kDa with the degree of deacetylation (DDA) of 73.5, 74.1, 82.1, and 75.9%, respectively. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) were employed to study the structural differences of CS. Moreover, storage modulus (G′) and loss modulus (G″) of AKCS were lower than that of WSCS and GPCS, respectively, but higher than that of CCS. Minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of CS against Escherichia coli and Staphylococcus aureus were investigated at concentration between 0.0125 and 1 mg/mL. These results highlighted that AKCS with low viscoelastic properties had a potential application in food and pharmaceutical application.
Collapse
|