1
|
Akalan M, Karakuş MŞ, Alaşalvar H, Karaaslan M, Başyiğit B. Facile synthesis of olive oil-incorporated oleofilms via high-power ultrasonic emulsification: A sustainable packaging model. Food Chem 2025; 473:142989. [PMID: 39862719 DOI: 10.1016/j.foodchem.2025.142989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.27 %-79.52 %), oil-binding capacity (68.38 %-97.47 %), and particle size (1364-3532 nm) tests were performed on the oleogels. Oleofilms (OF, OF20, OF40, OF60, OF80, and OF100) were then formulated using the respective oleogels. Their visual, surface, and cross-sectional images were evaluated. The thickness (0.18-0.25 mm) and water content (7.32 %-11.73 %) of oleofilms were investigated. Alterations in color and opacity (3.50-5.49) of the oleofilms were apparent. OF80 exhibited lower water (0.44 g.mm/m2.h.kPa)/oxygen permeability (peroxide value: 2.31-14.30 meq O2/kg), along with improved mechanical properties (tensile strength: 3.25 MPa; elongation at break: 128.23 %). OF80-coated pineapples demonstrated the highest resistance to spoilage.
Collapse
Affiliation(s)
- Merve Akalan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye
| | - Mehmet Şükrü Karakuş
- Harran University, Application and Research Center for Science and Technology, Şanlıurfa, Turkiye
| | - Hamza Alaşalvar
- Niğde Ömer Halisdemir University, Engineering Faculty, Food Engineering Department, Niğde, Turkiye
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkiye.
| |
Collapse
|
2
|
Farhan A, Fazial FF, Azfaralariff A, Costa MJ, Cerqueira MA. Production of polysaccharide and protein edible films: Challenges and strategies to scale-up. Int J Biol Macromol 2025; 307:141909. [PMID: 40068748 DOI: 10.1016/j.ijbiomac.2025.141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Polymeric films are among the main packaging materials used by food industry, and they can be produced using petrochemical-based polymers and biopolymers. Although the use of petrochemical-based polymers for food packaging is associated with a harmful impact on the environment, and human health through direct contact with food, the food industry cannot avoid their use due to the lack of fully viable alternatives. Therefore, there is an imperative need for potential food packaging alternatives made from natural, bio-based polymers that should be safe and biodegradable. In this group, edible polysaccharides and proteins present several advantages, making them green and safe alternatives. Therefore, several pilot and semi-commercial attempts have been made to commercialize the production of edible packaging materials. However, their industrial-scale production still presents big challenges. These challenges are related to the properties of edible biopolymers, such as low elasticity and high hygroscopicity, and, others are associated with the commercial-scale manufacturing technologies, which causes a slower implementation of edible films at the industrial level. This study aims to discuss edible films' main properties and limitations and propose possibilities for their industrial-scale production, focusing on maintaining their natural and ecofriendly food packaging with evolved functionalities.
Collapse
Affiliation(s)
- Abdulaal Farhan
- Food Science Department, College of Agriculture, Wasit University, Main Campus, Rabee District, University City, Al Kut, Wasit, Iraq.
| | - Farah Faiqah Fazial
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Uniciti Alam Campus, Sg Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| | - Ahmad Azfaralariff
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Maria J Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
3
|
Jiang S, Zhang J, Zhang M, Qian F, Mu G. Characteristics of whey protein concentrate/egg white protein composite film modified by transglutaminase and its application on cherry tomatoes. J Food Sci 2024; 89:9529-9542. [PMID: 39523686 DOI: 10.1111/1750-3841.17506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/04/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
In order to obtain food packaging film with better performance, whey protein concentrate (WPC) and egg white protein (EWP) were used as film-forming substrates, and its film properties were modified by transglutaminase (TG). Then the effect of TG on the mechanical, physical, barrier, and microstructural properties of the WPC/EWP composite biodegradable film was investigated, and its preliminary application potential was explored. Compared to WPC and EWP films, WPC/EWP composite film had higher transmittance, tensile strength (TS), and thermal stability. Fluorescence results showed that the film experienced fluorescence quenching after TG treatment. Fourier transform infrared and x-ray diffraction results showed that WPC and EWP had good compatibility in the biodegradable film, the hydrogen bond interaction of film was increased due to TG, resulting in an increase in TS. Meanwhile, the water vapor permeability and contact angle of WPC/EWP film treated with TG at 5 U/g protein increased by 28% and 76.1%, respectively. Besides, the WPC/EWP biodegradable film modified by TG (TG-W/E) was applied as a coating film on cherry tomatoes, effectively reducing the weight loss rate during storage from 14.2% to 10.8%. Furthermore, indexes, such as solid content, spoilage rate, hardness, pH, and lycopene, showed that the film had a good preservation effect on cherry tomatoes. To conclude, the appropriate addition of TG has a positive effect on the film properties of the WPC/EWP biodegradable film, which is beneficial to the development and utilization of protein-based film. WPC/EWP biodegradable film modified by TG has a great application prospect in extending the shelf life of fruit and vegetable.
Collapse
Affiliation(s)
- Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Jiaxin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Mengyuan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
4
|
Li N, Zhang X, Zhu J, Li Y, Liu R, Zhang P, Wei S, Fu X, Peng X. Optimization and Preparation of Ultrasound-Treated Whey Protein Isolate Pickering Emulsions. Foods 2024; 13:3252. [PMID: 39456318 PMCID: PMC11506998 DOI: 10.3390/foods13203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to create Pickering emulsions with varying oil fractions and assess the impact of ultrasonic treatment on the properties of Whey Protein Isolates (WPIs). At 640 W for 30 min, ultrasound reduced WPI aggregate size, raised zeta potential, and improved foaming, emulsifying, and water-holding capacities. FTIR analysis showed structural changes, while fluorescence and hydrophobicity increased, indicating tertiary structure alterations. This suggests that sonication efficiently modifies WPI functionality. Under ideal conditions, φ = 80 emulsions were most stable, with no foaming or phase separation. Laser scanning revealed well-organized emulsions at φ = 80. This study provides a reference for modifying and utilizing WPI.
Collapse
Affiliation(s)
- Nan Li
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Xiaotong Zhang
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Juan Zhu
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Yinta Li
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Rong Liu
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Peng Zhang
- College of Pharm, Yantai University, Yantai 264005, China;
| | - Suzhen Wei
- Weihai Key Laboratory of Medical Conditioning Functional Food Processing Technology, Weihai Ocean Vocational College, Weihai 264300, China; (Y.L.); (R.L.); (S.W.)
| | - Xuejun Fu
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China; (N.L.); (X.Z.); (J.Z.); (X.F.)
| |
Collapse
|
5
|
Gao Q, Yang YQ, Nie HN, Wang BQ, Peng X, Wang N, Li JK, Rao JJ, Xue YL. Investigating the impact of ultrasound on the structural, physicochemical, and emulsifying characteristics of Dioscorin: Insights from experimental data and molecular dynamics simulation. Food Chem 2024; 453:139581. [PMID: 38754354 DOI: 10.1016/j.foodchem.2024.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and β-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hao-Nan Nie
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Bing-Qing Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jiang-Kuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
6
|
Kim TK, Kim YJ, Kang MC, Cha JY, Kim YJ, Choi YJ, Jung S, Choi YS. Effects of myofibril-palatinose conjugate as a phosphate substitute on meat emulsion quality. Heliyon 2024; 10:e28315. [PMID: 38586345 PMCID: PMC10998059 DOI: 10.1016/j.heliyon.2024.e28315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
The objective of this study was to investigate a replacement for phosphate in meat products. Protein structural modification was employed in this study, and grafted myofibrillar protein (MP) with palatinose was added to meat emulsion without phosphate. Here, 0.15% of sodium polyphosphate (SPP) was replaced by the same (0.15%) concentration and double (0.3%) the concentration of grafted MP. Although the thermal stability was decreased, the addition of transglutaminase could increase stability. The rheological properties and pH also increased with the addition of grafted MP and transglutaminase. The addition of grafted protein could be perceived by the naked eye by observing a color difference before cooking, but it was not easy to detect after cooking. The cooking loss, emulsion stability, water holding capacity, lipid oxidation, and textural properties improved with the addition of grafted MP. However, the excessive addition of grafted MP and transglutaminase was not recommended to produce a high quality of phosphate replaced meat emulsion, and 0.15% was identified as a suitable addition ratio of grafted MP.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yoo-Jeong Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| |
Collapse
|
7
|
Pawariya V, De S, Dutta J. Synthesis and characterization of citric acid-modified chitosan Schiff base with enhanced antibacterial properties for the elimination of Bismarck Brown R and Rhodamine B dyes from wastewater. Int J Biol Macromol 2024; 264:130664. [PMID: 38453113 DOI: 10.1016/j.ijbiomac.2024.130664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In this study, a new chitosan Schiff base with surface modification using citric acid was synthesized for efficient removal of pernicious dyes, namely Bismarck Brown R (BBR) and Rhodamine B (RhB), from wastewater. The physicochemical properties of the modified chitosan Schiff base were comprehensively investigated. Adsorption studies demonstrated that BBR adsorption occurred through monolayer formation, while RhB adsorption proceeded via multilayer formation on the heterogeneous surface. The synthesized adsorbent exhibited exceptional dye removal efficiency, with a Langmuir saturation capacity of 348 ± 11.0 mg.g-1 for BBR and 145 ± 18.44 mg.g-1 for RhB. Isotherm data fitting revealed consistency with the Langmuir isotherm model for BBR and the Freundlich isotherm model for RhB. Notably, the modified chitosan Schiff base showcased enhanced antibacterial properties, effectively inhibiting both gram-positive and gram-negative bacteria. The study's findings underscore the potential of this novel chitosan-based Schiff base as an efficient adsorbent for the removal of various dyes from wastewater, emphasizing its versatility and practical applicability in water treatment processes.
Collapse
Affiliation(s)
- Varun Pawariya
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon-122413, Haryana, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Silchar-788010, Assam, India
| | - Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon-122413, Haryana, India.
| |
Collapse
|
8
|
Zhang W, Hedayati S, Tarahi M, Can Karaca A, Hadidi M, Assadpour E, Jafari SM. Advances in transglutaminase cross-linked protein-based food packaging films; a review. Int J Biol Macromol 2023; 253:127399. [PMID: 37827415 DOI: 10.1016/j.ijbiomac.2023.127399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Pushed by the environmental pollution and health hazards of plastic packaging, the development of biodegradable food packaging films (FPFs) is a necessary and sustainable trend for social development. Most protein molecules have excellent film-forming properties as natural polymer matrices, and the assembled films have excellent barrier properties, but show defects such as low water resistance and poor mechanical properties. In order to improve the performance of protein-based films, transglutaminase (TG) is used as a safe and green cross-linking (CL) agent. This work covers recent developments on TG cross-linked protein-based FPFs, mainly comprising proteins of animal and plant origin, including gelatin, whey protein, zein, soy proteins, bitter vetch protein, etc. The chemical properties and reaction mechanism of TG are briefly introduced, focusing on the effects of TG CL on the physicochemical properties of different protein-based FPFs, including barrier properties, water resistance, mechanical properties and thermal stability. It is concluded that the addition of TG can significantly improve the physical and mechanical properties of protein-based films, mainly improving their water resistance, barrier, mechanical and thermal properties. It is worth noting that the effect of TG on the properties of protein-based films is not only related to the concentration of TG added, but also related to CL temperature and other factors. Moreover, TG can also be used in combination with other strategies to improve the properties of protein-based films.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Ren X, Wang J, Rashid A, Hou T, Ma H, Liang Q. Characterization of Nano-SiO 2/Zein Film Prepared Using Ultrasonic Treatment and the Ability of the Prepared Film to Resist Different Storage Environments. Foods 2023; 12:3056. [PMID: 37628055 PMCID: PMC10453136 DOI: 10.3390/foods12163056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
This study has developed, ultrasound-assisted, a novel food packaging film (U-zein/SiO2) for food packaging applications. Incorporating an optimal concentration of 18 mg/mL of nano-SiO2 and subjecting the film to 10 min of ultrasonic treatment resulted in a remarkable increase of 32.89% in elongation at break and 55.86% in tensile strength. In addition, the incorporation of nano-SiO2 effectively reduces the water content and solubility of the composite film, resulting in improved water/oxygen barrier properties. These physiochemical properties were further improved with the application of ultrasound. The analysis of attenuated total reflectance-Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electronic microscope demonstrated that the ultrasound treatment improved the hydrogen bonds, improved thermal stability, molecular arrangement, structure stability, and intermolecular compatibility of the composite film, resulting in enhanced physio-mechanical properties of the film. In addition, the ultrasound treatment led to a smoother film surface and reduced the pores on the film's cross-section. Moreover, the U-zein/SiO2 film exhibited excellent mechanical and water/oxygen barrier properties in different storage environments over a period of 30 days. These results offer sound theoretical support for the practical application of the prepared preservative film.
Collapse
Affiliation(s)
- Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
- Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
| | - Ting Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
- Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang 212013, China
- Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China (J.W.); (A.R.); (T.H.); (H.M.)
- Jiangsu Provincial Key Laboratory for Physical Processing of Agricultural Products, Zhenjiang 212013, China
| |
Collapse
|
10
|
Zhang L, Zhang J, Wen P, Xu H, Cui G, Wang J. Effect of high-intensity ultrasonic time on structural, mechanical, and physicochemical properties of β-conglycinin (7S)- Transglutaminase (TGase) composite edible films. ULTRASONICS SONOCHEMISTRY 2023; 98:106478. [PMID: 37354763 PMCID: PMC10331306 DOI: 10.1016/j.ultsonch.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
The β-conglycinin (7S) was pre-treated with high-intensity ultrasonic (HIU) and subsequently formed into composite edible films with the transglutaminase (TGase) method. Effects of HIU pretreatment time (0, 5, 10, 15, and 20 min) on the conformation of 7S and structural and application properties of 7S-TGase films were evaluated. The analysis of 7S conformation results revealed that HIU pretreatment for 0-10 min significantly dissociated the 7S, exposed internal hydrophobic groups of protein, increased its intermolecular hydrogen bonds, and altered the protein secondary and tertiary structure. The structural properties of films were evaluated by SEM, XRD, and ATR-FTIR. SEM showed that HIU reduced film wrinkles and cracks and improved unevenness. XRD and ATR-FTIR indicated that the film obtained an enlarged crystallinity, and the amide I and amide II regions of films were peak-shifted which is usually associated with the formation of covalent bonds. Notably, analysis of intermolecular force showed that HIU facilitated the formation of hydrogen bonds, hydrophobic interactions, and ε-(γ-glutamyl) lysine bonds in 7S-TGase films. The above structural changes in 7S and films were beneficial for the application properties of films. Results indicated that 10 min HIU pretreatment effectively improved the mechanical properties and water resistance, reduced water vapor permeability and oxygen permeability, and decreased the opacity of 7S-TGase films. However, the color of the film was not affected by the HIU, with an overall bright and yellowish color.
Collapse
Affiliation(s)
- Lan Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jixin Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Pingping Wen
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Huiqing Xu
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China.
| | - Guiyou Cui
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jun Wang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
11
|
Dursun Capar T. Characterization of sodium alginate-based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Aguirre-Loredo RY, Fonseca-García A, Calambas HL, Salazar-Arango A, Caicedo C. Improvements of thermal and mechanical properties of achira starch/chitosan/clay nanocomposite films. Heliyon 2023; 9:e16782. [PMID: 37292352 PMCID: PMC10245066 DOI: 10.1016/j.heliyon.2023.e16782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Thermoplastic biofilms were developed from achira starch, chitosan and nanoclays using the solvent-casting method. To obtain the filmogenic solutions, different sonication times (0, 10, 20 and 30 min) were considered in order to evaluate the incidence of this parameter on the chemical and physico-mechanical properties of the bionanocomposite films. The chemical analysis using FTIR spectroscopy showed strong intermolecular interactions between the components with increasing sonication times. The results for tensile strength and elongation were satisfactory for films with 20 min of sonication with increases of 154% and 161%, respectively. Morphological analysis showed greater homogeneity, while thermal analysis showed that sonication favoured the plasticization process and thus, the production of homogeneous materials. The water absorption and wettability tests showed less hydrophilic materials allowing these new materials to be considered for use as coatings or packaging for the food sector.
Collapse
Affiliation(s)
- Rocio Yaneli Aguirre-Loredo
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
- Investigadoras por México CONACYT-CIQA, Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
| | - Abril Fonseca-García
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
- Investigadoras por México CONACYT-CIQA, Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila 25294, Mexico
| | - Heidy Lorena Calambas
- Grupo de Investigación en Desarrollo de Materials y Productos, Centro Nacional de Asistencia Técnica a la Industria (ASTIN), SENA, Cali, 760003, Colombia
| | - Alejandra Salazar-Arango
- Facultad de Ingeniería, Unidad Central del Valle del Cauca (UCEVA), Carrera 17a 48-144, Tuluá 763022, Colombia
| | - Carolina Caicedo
- Facultad de Ingeniería, Unidad Central del Valle del Cauca (UCEVA), Carrera 17a 48-144, Tuluá 763022, Colombia
| |
Collapse
|
13
|
Zhang L, Zhang J, Wen P, Xu J, Xu H, Cui G, Wang J. Effect of High-Intensity Ultrasound Pretreatment on the Properties of the Transglutaminase (TGase)-Induced β-Conglycinin (7S) Gel. Foods 2023; 12:foods12102037. [PMID: 37238854 DOI: 10.3390/foods12102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we investigated the effects of different high-intensity ultrasound (HIU) pretreatment times (0-60 min) on the structure of β-conglycinin (7S) and the structural and functional properties of 7S gels induced by transglutaminase (TGase). Analysis of 7S conformation revealed that 30 min HIU pretreatment significantly induced the unfolding of the 7S structure, with the smallest particle size (97.59 nm), the highest surface hydrophobicity (51.42), and the lowering and raising of the content of the α-helix and β-sheet, respectively. Gel solubility showed that HIU facilitated the formation of ε-(γ-glutamyl)lysine isopeptide bonds, which maintain the stability and integrity of the gel network. The SEM revealed that the three-dimensional network structure of the gel at 30 min exhibited filamentous and homogeneous properties. Among them, the gel strength and water-holding capacity were approximately 1.54 and 1.23 times higher than those of the untreated 7S gels, respectively. The 7S gel obtained the highest thermal denaturation temperature (89.39 °C), G', and G″, and the lowest tan δ. Correlation analysis demonstrated that the gel functional properties were negatively correlated with particle size and the α-helix, while positively with Ho and β-sheet. By contrast, gels without sonication or with excessive pretreatment showed a large pore size and inhomogeneous gel network, and poor properties. These results will provide a theoretical basis for the optimization of HIU pretreatment conditions during TGase-induced 7S gel formation, to improve gelling properties.
Collapse
Affiliation(s)
- Lan Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jixin Zhang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Pingping Wen
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jingguo Xu
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Huiqing Xu
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Guiyou Cui
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| | - Jun Wang
- Tourism and Cuisine College, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
14
|
Mahdi AA, Al-Maqtari QA, Al-Ansi W, Hu W, Hashim SBH, Cui H, Lin L. Replacement of polyethylene oxide by peach gum to produce an active film using Litsea cubeba essential oil and its application in beef. Int J Biol Macromol 2023; 241:124592. [PMID: 37116846 DOI: 10.1016/j.ijbiomac.2023.124592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
This study evaluated the effects of adding various concentrations (0 %, 1 %, 2 %, and 3 %) of peach gum (PG) to films made from polyethylene oxide (PEO) combined with Litsea cubeba essential oil (LCEO) to be utilized as active packaging for food in the future. The findings showed that the film containing PG 2 % concentration had the best physic-mechanical properties. In films made with PG, the glass transition temperature was significantly improved. Combining PG and PEO resulted in films that were brighter in color, had lower WVP values, and had the lowest water activity. Furthermore, XRD demonstrated that PG additions were compatible with the film of PEO blended with LCEO. The PG films formulated with PG presented high antioxidant and antibacterial activity against Staphylococcus aureus and E. coli. Wrapping beef with P2G2 film led to maintaining its quality with suitable levels of pH, TBARS, and TVB-N. This also decreased the number of E. coli and S. aureus in beef throughout the storage period. The results indicate that adding PG to PEO films enhances their suitability for food preservation.
Collapse
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Qais Ali Al-Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Waleed Al-Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
15
|
Characterization of Rice Protein Hydrolysate/Chitosan Composite Films and Their Bioactivities Evaluation When Incorporating Curcumin: Effect of Genipin Concentration. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Kang L, Liang Q, Chen H, Zhou Q, Chi Z, Rashid A, Ma H, Ren X. Insights into ultrasonic treatment on the properties of pullulan/oat protein/nisin composite film:mechanical, structural and physicochemical properties. Food Chem 2023; 402:134237. [DOI: 10.1016/j.foodchem.2022.134237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
17
|
Kang L, Liang Q, Rashid A, Qayum A, Chi Z, Ren X, Ma H. Ultrasound-assisted development and characterization of novel polyphenol-loaded pullulan/trehalose composite films for fruit preservation. ULTRASONICS SONOCHEMISTRY 2023; 92:106242. [PMID: 36459903 PMCID: PMC9712991 DOI: 10.1016/j.ultsonch.2022.106242] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 05/23/2023]
Abstract
A novel food packaging film was developed by incorporating a tea polyphenols-loaded pullulan/trehalose (TP@Pul/Tre) into a composite film with ultrasound-assisted treatment of dual-frequency (20/35 kHz, 40 W/L) for 15 min to assess the physicochemical and mechanical properties of a composite film. The optimized ultrasound-assisted significantly increases elongation at break, tensile strength, and improves the composite film's UV/water/oxygen barrier properties. Structure analysis using attenuated total reflectance-Fourier transform infrared, X-ray diffraction and thermal stability revealed that these improvements were achieved through ultrasound-enhanced H-bonds, more ordered molecular arrangements, and good intermolecular compatibility. Besides, the ultrasound-assisted TP@Pul/Tre film has proven to have good antibacterial performance against Escherichia coli and Staphylococcus aureus, with approximately 100 % lethality at 4 h and 8 h, respectively. Moreover, the ultrasound-assisted TP@Pul/Tre film effectively delayed moisture loss, oxidative browning, decay, and deterioration in fresh-cut apples and pears, thereby extending their shelf life. Thus, ultrasound has proved to be an effective tool for improving the quality of food packaging films, with a wide range of applications.
Collapse
Affiliation(s)
- Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhuzhong Chi
- Jiangsu Nanxiang Agricultural Development Technology Co., Ltd, Danyang Huangtang City, Zhenjiang, Jiangsu 212327, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
18
|
Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Transglutaminase effect on the gelatin-films properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Jiang S, Zhang M, Jiang S, Tuo Y, Qian F, Mu G. Transglutaminase and hydroxypropyl methyl cellulose enhance mechanical properties of whey protein concentrate film. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shujuan Jiang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Mengyuan Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Shengnan Jiang
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yanfeng Tuo
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
22
|
Improvement in properties of edible film through non-thermal treatments and nanocomposite materials: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Cheng S, Li F, Mei X. Structure, mechanical and physical properties of hordein/chitosan composite films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Vargas VH, Flôres SH, Mercali GD, Marczak LDF. Effect of OHMIC heating and ultrasound on functional properties of biodegradable gelatin‐based films. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Victoria Hermes Vargas
- Department of Chemical Engineering Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | | |
Collapse
|
25
|
Pinem MP, Wardhono EY, Clausse D, Saleh K, Guénin E. Droplet behavior of chitosan film-forming solution on the solid surface. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
de Lima Brito I, Chantelle L, Magnani M, de Magalhães Cordeiro AMT. Nutritional, therapeutic and technological perspectives of Quinoa (
Chenopodium quinoa
Willd.): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabelle de Lima Brito
- Department of Management and Agroindustrial Technology, Center of Human, Social and Agrarian Sciences (CCHSA) Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Laís Chantelle
- Department of Chemistry, NPE‐LACOM Federal University of Paraíba (UFPB) João Pessoa Paraíba Brazil
| | - Marciane Magnani
- Department of Food Engineering, Tecnology Center (CT) Federal University of Paraíba João Pessoa Paraíba Brazil
| | | |
Collapse
|
27
|
Shen Y, Hong S, Li Y. Pea protein composition, functionality, modification, and food applications: A review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:71-127. [PMID: 35940709 DOI: 10.1016/bs.afnr.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demand for proteins continues to increase due to their nutritional benefits, the growing world population, and rising protein deficiency. Plant-based proteins represent a sustainable source to supplement costly animal proteins. Pea (Pisum sativum L.) is one of the most produced plant legume crops in the world and contributes to 26% of the total pulse production. The average protein content of pea is about 20%-25%. The commercial utilization of pea proteins is limited, partially due to its less desirable functionalities and beany off-flavor. Protein modification may change these properties and broaden the application of pea proteins in the food industry. Functional properties such as protein solubility, water and oil holding capacity, emulsifying/foaming capacity and stability, and gelation can be altered and improved by enzymatic, chemical, and physical modifications. These modifications work by affecting protein chemical structures, hydrophobicity/hydrophilicity balance, and interactions with other food constituents. Modifiers, reaction conditions, and degree of modifications are critical variables for protein modifications and can be controlled to achieve desirable functional attributes that may meet applications in meat analogs, baking products, dressings, beverages, dairy mimics, encapsulation, and emulsions. Understanding pea protein characteristics will allow us to design better functional ingredients for food applications.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Shan Hong
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
28
|
Advanced Technologies Applied to Enhance Properties and Structure of Films and Coatings: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02768-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
30
|
O-ATRP synthesized poly(β-pinene) blended with chitosan for antimicrobial and antioxidant bio-based films production. Int J Biol Macromol 2021; 193:425-432. [PMID: 34715201 DOI: 10.1016/j.ijbiomac.2021.10.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023]
Abstract
Antioxidant and antimicrobial activities are important characteristics of active film packaging designed to extend food preservation. In this study, functional bio-based films were produced using different concentrations of antioxidant poly(β-pinene) bio-oligomer synthesized via organocatalyzed atom transfer radical polymerization (O-ATRP) and blended with chitosan of different molecular weights. The structural, mechanical, thermal, solubility, antioxidant, and antimicrobial properties of the films were investigated. The poly(β-pinene)-chitosan blends presented significant pores and irregularities with the increase of poly(β-pinene) concentration over 30%. Chitosan molecular weight did not show any important influence in the physical properties of the blends. Poly(β-pinene) load decreased the materials' tensile strength and melting temperature, exhibiting a plasticizing effect on chitosan chains. The antioxidant and antimicrobial activities of the films were improved by poly(β-pinene) incorporation and mainly depended on its concentration. Therefore, the incorporation of poly(β-pinene) in chitosan films can be an alternative for active packaging production.
Collapse
|
31
|
Mi T, Zhang X, Liu P, Gao W, Li J, Xu N, Yuan C, Cui B. Ultrasonication effects on physicochemical properties of biopolymer-based films: A comprehensive review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34872394 DOI: 10.1080/10408398.2021.2012420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biopolymeric films manufactured from materials such as starch, cellulose, protein, chitosan, gelatin, and polyvinyl alcohol are widely applied due to their complete biodegradability. While biopolymer-based films exhibit good gas barriers and optical properties when used in packaging, poor moisture resistance and mechanical properties limit their further application. Ultrasonication is a promising, effective technology for resolving these shortcomings, with its high efficiency, environmentally friendly nature, and safety. This review briefly introduces basic ultrasonication principles and their main effects on mechanical properties, transparency, color, microstructure, water vapor permeability, and oxygen resistance. We also describe the thermal performance of biopolymeric films. While ultrasonication has many positive effects on the physicochemical properties of biopolymeric films, many factors influence their behavior during film preparation, including power density, amplitude, treatment time, frequency, and the inherent properties of the source materials. This review focuses on biopolymers as film-forming materials and comprehensively discusses the promotional effects of ultrasonication on their physicochemical properties.
Collapse
Affiliation(s)
- Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong, China
| | - Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Nuo Xu
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| |
Collapse
|
32
|
Cheng J, Cui L. Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film. ULTRASONICS SONOCHEMISTRY 2021; 80:105809. [PMID: 34715473 PMCID: PMC8556654 DOI: 10.1016/j.ultsonch.2021.105809] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 05/15/2023]
Abstract
Pea protein is a promising alternative to animal-based protein and the interest in its application in food industry has been rapidly growing. In this study, pea protein isolates (PPI) were used to form protein-based edible films and the effect of ultrasound treatment on the structure of PPI and the structural, optical, mechanical and physicochemical properties of PPI-films were investigated. Ultrasound induced unfolding of PPI and exposed interior hydrophobic groups to protein surface while both PPI dissociation and formation of large aggregates were observed, as confirmed by measuring intrinsic emission fluorescence, surface hydrophobicity, surface charge, and particle size distribution and polydispersity index, respectively. FE-SEM showed that ultrasound decreased the cracks and protein aggregates at the surface of PPI-film. The film structure was also investigated by FTIR, which showed peak shift in amide I and II region and noticeable difference of protein secondary structure as affected by ultrasound. As a result of such structural changes caused by ultrasound, the properties of PPI-films were improved. Results showed that ultrasound greatly improved the film transparency, significantly increased film tensile strength but not elongation at break, and decreased moisture content and water vapor permeability of the film. This study provided structural data as evidence for utilizing ultrasound technique to develop PPI-films with improved optical, mechanical and water barrier properties.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Leqi Cui
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
33
|
Chen K, Zhang M, Mujumdar AS, Wang H. Quinoa protein-gum Arabic complex coacervates as a novel carrier for eugenol: Preparation, characterization and application for minced pork preservation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Plant protein in material extrusion 3D printing: Formation, plasticization, prospects, and challenges. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours. Molecules 2021; 26:molecules26123738. [PMID: 34205277 PMCID: PMC8235767 DOI: 10.3390/molecules26123738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The possibility of using oilseed flours as a waste source for film-forming materials with a combination of soy protein isolate in preparation of edible films was evaluated. Physical, mechanical and barrier properties were determined as a function of the oilseed type: hemp, evening primrose, flax, pumpkin, sesame and sunflower. It was observed that the addition of oilseed flours increased the refraction and thus the opacity of the obtained films from 1.27 to 9.57 A mm−1. Depending on the type of flours used, the edible films took on various colors. Lightness (L*) was lowest for the evening primrose film (L* = 34.91) and highest for the soy protein film (L* = 91.84). Parameter a* was lowest for the sunflower film (a* = −5.13) and highest for the flax film (a* = 13.62). Edible films made of pumpkin seed flour had the highest value of the b* color parameter (b* = 34.40), while films made of evening primrose flour had the lowest value (b* = 1.35). All analyzed films had relatively low mechanical resistance, with tensile strength from 0.60 to 3.09 MPa. Films made of flour containing the highest amount of protein, pumpkin and sesame, had the highest water vapor permeability, 2.41 and 2.70 × 10−9 g·m−1 s−1 Pa−1, respectively. All the edible films obtained had high water swelling values from 131.10 to 362.16%, and the microstructure of the films changed after adding the flour, from homogeneous and smooth to rough. All blended soy protein isolate–oilseed flour films showed lower thermal stability which was better observed at the first and second stages of thermogravimetric analysis when degradation occurred at lower temperatures. The oilseed flours blended with soy protein isolate show the possibility of using them in the development of biodegradable films which can find practical application in the food industry.
Collapse
|
36
|
Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, shirani N, Musavi SH. Edible coating and films as promising packaging: a mini review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00979-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Kadimaliev DA, Parchaykina OV, Syusin IV, Chairkin IV, Malafeev AN, Devyatkin AA, Revin VV. Effect of Transglutaminase on the Properties of Films Prepared from Chitosan and Gelatin. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Vargas SA, Delgado-Macuil RJ, Ruiz-Espinosa H, Rojas-López M, Amador-Espejo GG. High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. ULTRASONICS SONOCHEMISTRY 2021; 70:105340. [PMID: 32942167 PMCID: PMC7786567 DOI: 10.1016/j.ultsonch.2020.105340] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
The aim of this work was to evaluate the influence of high-intensity ultrasound (HIUS) treatment on whey protein isolate (WPI) molecular structure as a previous step for complex coacervation (CC) with kappa-carrageenan (KC) and its influence on CC functional properties. Protein suspension of WPI (1% w/w) was treated with an ultrasound probe (24 kHz, 2 and 4 min, at 50 and 100% amplitude), non HIUS pretreated WPI was used as a control. Coacervation was achieved by mixing WPI and KC dispersions (10 min). Time and amplitude of the sonication treatment had a direct effect on the molecular structure of the protein, FTIR-ATR analysis detected changes on pretreated WPI secondary structure (1600-1700 cm-1) after sonication. CC electrostatic interactions were detected between WPI positive regions, KC sulfate group (1200-1260 cm-1), and the anhydrous oxygen of the 3,6 anhydro-D-galactose (940-1066 cm-1) with a partial negative charge. After ultrasound treatment, a progressive decrease in WPI particle size (nm) was detected. Rheology results showed pseudoplastic behavior for both, KC and CC, with a significant change on the viscosity level. Further, volume increment, stability, and expansion percentages of CC foams were improved using WPI sonicated. Besides, HIUS treatment had a positive effect on the emulsifying properties of the CC, increasing the time emulsion stability percentage. HIUS proved to be an efficient tool to improve functional properties in WPI-KC CC.
Collapse
Affiliation(s)
- Sara A Vargas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, México, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700 Tlaxcala Mexico
| | - R J Delgado-Macuil
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, México, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700 Tlaxcala Mexico
| | - H Ruiz-Espinosa
- Benemérita Universidad Autónoma de Puebla, México, Facultad de Ingeniería Química, Colegio de Ingeniería en Alimentos, 18 Sur y Avenida San Claudio, 72570 Puebla, Mexico
| | - M Rojas-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, México, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700 Tlaxcala Mexico
| | - G G Amador-Espejo
- CONACYT-Centro de Investigación en Biotecnología Aplicada IPN, México, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700 Tlaxcala, Mexico.
| |
Collapse
|
39
|
Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Giosafatto CVL, Fusco A, Al-Asmar A, Mariniello L. Microbial Transglutaminase as a Tool to Improve the Features of Hydrocolloid-Based Bioplastics. Int J Mol Sci 2020; 21:E3656. [PMID: 32455881 PMCID: PMC7279461 DOI: 10.3390/ijms21103656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
Several proteins from animal and plant origin act as microbial transglutaminase substrate, a crosslinking enzyme capable of introducing isopeptide bonds into proteins between the aminoacids glutamines and lysines. This feature has been widely exploited to modify the biological properties of many proteins, such as emulsifying, gelling, viscosity, and foaming. Besides, microbial transglutaminase has been used to prepare bioplastics that, because made of renewable molecules, are able to replace the high polluting plastics of petrochemical origin. In fact, most of the time, it has been shown that the microbial enzyme strengthens the matrix of protein-based bioplastics, thus, influencing the technological characteristics of the derived materials. In this review, an overview of the ability of many proteins to behave as good substrates of the enzyme and their ability to give rise to bioplastics with improved properties is presented. Different applications of this enzyme confirm its important role as an additive to recover high value-added protein containing by-products with a double aim (i) to produce environmentally friendly materials and (ii) to find alternative uses of wastes as renewable, cheap, and non-polluting sources. Both principles are in line with the bio-economy paradigm.
Collapse
Affiliation(s)
- C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
| | - Antonio Fusco
- Unità Operativa Struttura Complessa Medicina di Laboratorio, Presidio Ospedaliero Santa Maria di Loreto Nuovo, ASL Na1 Centro, 80145 Naples, Italy;
| | - Asmaa Al-Asmar
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
- Analysis, Poison control and Calibration Center (APCC), An-Najah National University, P.O. Box 7 Nablus, Palestine
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (C.V.L.G.); (A.A.-A.)
| |
Collapse
|
41
|
Kim TK, Yong HI, Jang HW, Kim YB, Choi YS. Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase. Foods 2020; 9:E591. [PMID: 32384629 PMCID: PMC7278604 DOI: 10.3390/foods9050591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
Global concern about food supply shortage has increased interest on novel food sources. Among them, edible insects have been studied as a potential major food source. This study aimed to improve the functional properties of protein solutions extracted from Protaetia brevitarsis (PB) by use of transglutaminase (TG) as a cross-linking agent. After various incubation times (10, 20, 30, 60, and 90 min) with TG, the protein solutions were assessed with regard to their amino acid composition, protein nutritional quality, pH, color (yellowness), molecular weight distribution, thermal stability, foam ability (capacity and stability), and emulsion ability (capacity and stability). Incubation with TG changed the amino acid composition of the proteins and shifted the molecular weight distribution towards higher values, while improving the rest of the aforementioned properties. Since the incubation time for 90 min decreased the protein functionality, the optimum incubation time for cross-linking PB-derived protein with TG is 60 min. The application of TG to edible insect proteins ultimately increases its functionality and allows for the development of novel insect processing technology.
Collapse
Affiliation(s)
| | | | | | | | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (H.I.Y.); (H.W.J.); (Y.-B.K.)
| |
Collapse
|