1
|
Lu Q, Liao H, Jiang Z, Zhu Y, Han Y, Li L, Ni H, Li Q. Deglycosylation significantly affects the activity, stability and appropriate folding of recombinant Aspergillus niger α-L-rhamnosidase expressed in Pichia pastoris. Int J Biol Macromol 2025; 308:142531. [PMID: 40158561 DOI: 10.1016/j.ijbiomac.2025.142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Glycosylation plays a critical role in regulating activity, stability, and correct folding of enzymes. In this study, recombinant Aspergillus niger α-L-rhamnosidase (r-Rha1) was employed to explore the impact of glycosylation in Pichia pastoris on the enzymatic properties and protein folding. β-elimination reaction and deglycosylase treatment assays demonstrated that r-Rha1 undergoes primarily N-glycosylation. The deglycosylated r-Rha1 was prepared in two ways: treating with Endoglycosidase F1 after expression (referred to as r-Rha1-vitro), or inhibiting intracellular glycosylation using tunicamycin (referred to as r-Rha1-vivo). Deglycosylation resulted in a 0.22-fold decrease in activity for r-Rha1-vitro and due to its slower turnover rate, r-Rha1-vivo showed a 0.73-fold decrease in activity. r-Rha1-vitro maintained the similar optimal temperature as r-Rha1, r-Rha1-vivo displayed a 10 °C lower optimal temperature. Compared to the decreased extent of r-Rha1-vitro in t1/2 at 55 °C, 60 °C, and 65 °C and Tm, chemical interferent deglycosylation in vivo showed a more profound impact on r-Rha1. Analyses based on circular dichroism, fluorescence spectroscopy, and differential scanning calorimetry revealed significant changes in the structure and thermodynamic stability of r-Rha1-vivo, accounting for its marked decline in activity and stability. The significant and unpredictable structure changes of r-Rha1-vivo proved the essential role of glycosylation for appropriate folding in P. pastoris.
Collapse
Affiliation(s)
- Qihui Lu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Liao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yijuan Han
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|
2
|
Wang Z, Li C, Liu J, Liu Y, Sun L, Lyu Z. Random mutagenesis and semi-rational design enhance the tolerance of Metabacillus litoralis C44 α-L-rhamnosidase. Int J Biol Macromol 2025; 309:142971. [PMID: 40210072 DOI: 10.1016/j.ijbiomac.2025.142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Isoquercitrin is a flavonoid with wide range of physiological activities, which has significant applications in the pharmaceutical and nutraceutical industries, but faces challenges in industrial production due to its low yields and high production cost. Based on a comparison of homologous protein sequences, D222 and E486 were identified as active sites of the α-L-rhamnosidase MlRha4 derived from Metabacillus litoralis C44. Random mutagenesis of the α-L-rhamnosidase MlRha4 gene sequence from strain C44 was performed using error-prone PCR, and reverse mutation was performed on the inactive mutants, followed by semi-rational design, resulting in 11 positive mutants. Subsequent combinatorial mutagenesis yielded mutant R-28 (K89R-K70R-E475D) with a 70.6 % increase in enzyme activity. Compared with the wild-type MlRha4, the optimal reaction temperature of R-28 was increased by 5 °C, the optimal pH was increased from 7.5 to 8.0, the conversion rate of 10 g/L rutin for 24 h reached 100 %, and the maximum substrate concentration for the mutant enzyme R-28 was up to 300 g/L rutin. Molecular dynamics simulation of R-28 and MlRha4 revealed a more stable structure of R-28. The free energy analysis shows that R-28 has a higher affinity for rutin, which is consistent with the change of Km value. This work identified an α-L-rhamnosidase that operates effectively in weakly alkaline environments. Through random mutagenesis and semi-rational design, enzyme activity and tolerance were significantly improved, offering a reference for the industrial-scale production of isoquercetin from rutin.
Collapse
Affiliation(s)
- Ziqiang Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| | - Chunhui Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| | - Jian Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| | - Yue Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China
| | - Lei Sun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China; Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, China.
| | - Zhitang Lyu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China; Engineering Research Center of Microbial Breeding and Conservation, Baoding 071002, Hebei Province, China.
| |
Collapse
|
3
|
Jiang M, Zhu L, Xie S, Ren Z, Chen X, Liu M, Yin G. Transcriptome Profiling, Cloning, and Characterization of AnGlu04478, a Ginsenoside Hydrolyzing β-Glucosidase from Aspergillus niger NG1306. Curr Microbiol 2024; 82:56. [PMID: 39718650 PMCID: PMC11668888 DOI: 10.1007/s00284-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.5 kDa, pI = 5.1), as a participant in the ginsenosides biotransformation process. This gene was cloned and expressed in Escherichia coli BL21 Transetta (DE3). The AnGlu04478 protein was purified using a Ni2+ column, and its enzymatic properties were characterized. Purified AnGlu04478 exhibited a specific activity of 32.97 U/mg when assayed against pNPG. Under optimal conditions (pH 4.5, temperature 40 °C), the kinetic parameters, Km and Vmax, for pNPG were 1.55 mmol/L and 0.014 mmol/min, respectively. Cu2+ displayed an inhibitory effect on AnGlu04478, whereas Ca2+, Co2+, and Ni2+ ions had minimal impact. The enzyme showed tolerance to ethanol and was largely unaffected by glucose feedback inhibition. Testing with ginsenosides as substrates revealed selective hydrolysis at the C3 position of ginsenosides Rb1, Rb2, Rb3, and Rc, with the metabolic pathway delineated as Rb1 → GypXVII, Rb2 → C-O, Rb3 → C-Mx1 → C-Mx, and Rc → C-Mc1. The conversion rates of ginsenosides Rb1, Rb2, Rb3, and Rc varied from 2.58 to 20.63%. With 0.5 U purified enzyme and 0.5 mg total ginsenosides, incubated at 40 °C for 12 h, the conversion rates were 42.6% for GypXVII, 10.4% for C-O, 6.27% for C-Mx1, 26.96% for C-Mx, and 90% for Rc. These results suggest that AnGlu04478 displays substrate promiscuity as a β-glucosidase, thus broadening the potential for ginsenoside biotransformation.
Collapse
Affiliation(s)
- Mingxing Jiang
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Ling Zhu
- College of Biological Resources and Food Engineering, Qujing Normal University, 222 San Jiang Road, Qujing, 655000, Yunnan, China
| | - Shuhan Xie
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Zhen Ren
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Xiu Chen
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Minjiao Liu
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China
| | - Genshen Yin
- College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China.
| |
Collapse
|
4
|
Lin Y, Cai Y, Li H, Li L, Jiang Z, Ni H. Efficiency enhancement in Aspergillus niger α-L-rhamnosidase reverse hydrolysis by using a tunnel site rational design strategy. Enzyme Microb Technol 2024; 180:110484. [PMID: 39079223 DOI: 10.1016/j.enzmictec.2024.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 07/14/2024] [Indexed: 09/15/2024]
Abstract
There has been ongoing interest in improving the efficiency of glycoside hydrolase for synthesizing glycoside compounds through protein engineering, given the potential applications of glycoside compounds. In this study, a strategy of modifying the substrate access tunnel was proposed to enhance the efficiency of reverse hydrolysis catalyzed by Aspergillus niger α-L-rhamnosidase. Analysis of the tunnel dynamics identified Tyr299 as a key modifiable residue in the substrate access tunnel. The location of Tyr299 was near the enzyme surface and at the outermost end of the substrate access tunnel, suggested its role in substrate recognition and throughput. Based on the properties of side chains, six mutants were designed and expressed by Pichia pastoris. Compared to WT, the reverse hydrolysis efficiencies of mutants Y299P and Y299W were increased by 21.3 % and 11.1 %, respectively. The calculation results of binding free energy showed that the binding free energy was inversely proportional to the reverse hydrolysis efficiency. Further, when binding free energy levels were comparable, the mutants with shorter side chains displayed a higher reverse hydrolysis efficiency. These results proved that substrate access tunnel modification was an effective method to improve the reverse hydrolysis efficacy of α-L-rhamnosidase and also provided new insights for modifying other glycoside hydrolases.
Collapse
Affiliation(s)
- Yanling Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yuchen Cai
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Han Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361021, China
| |
Collapse
|
5
|
Zhang L, Lin L, Hu Y, Wu D, Zhang Z, Chen C, Wang L, Li J. Debittering of Emblica ( Phyllanthus emblica L.) fruit powder: Preparation and biological activity. Food Chem X 2024; 21:100853. [PMID: 38282828 PMCID: PMC10818184 DOI: 10.1016/j.fochx.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 01/30/2024] Open
Abstract
Emblica, also known as Phyllanthus emblica L., is a drug homologous food that is rich in polyphenols with various biological activities. However, its bitterness and astringency pose a significant challenge to its utilization in food products. In this study, we aimed to identify the optimal conditions for debittering Emblica. Our findings revealed that the best debittering conditions were: temperature = 50 °C, pH = 4, α-l-rhamnosidase concentration 200 U/g, and time = 5 h. High-performance liquid chromatography (HPLC) and molecular docking analysis revealed that enzymatic hydrolysis partially removed bitterness compounds. The results of antioxidant activity, xanthine oxidase, and α-glucosidase inhibitory activity assays confirmed that the Emblica fruit powder still exhibited good biological activity after enzymatic debitterization. Moreover, gastric fluids treatment might contribute to the above enhancing effect of enzymatic hydrolysates of Emblica. This study provided a theoretical basis for promoting the processing and utilization of Emblica fruit powder, as well as understanding its biological activity.
Collapse
Affiliation(s)
- Lingyu Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Liting Lin
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yunxuan Hu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Dazhou Xinyan (Xiamen) Biotechnology Co., Ltd, Xiamen 361021, Fujian, China
| | - Daren Wu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Zhengxiao Zhang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Chaoxiang Chen
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Li Wang
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Marine Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
6
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Yao Y, Zheng S, Chi S, Chen F, Cai N, Cai Z, Li Z, Ni H. Characterization of the off-flavor from Pichia pastoris GS115 during the overexpression of an α-l-rhamnosidase. J Ind Microbiol Biotechnol 2023; 50:kuad035. [PMID: 37942557 PMCID: PMC10696632 DOI: 10.1093/jimb/kuad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The off-flavor of Pichia pastoris strains is a negative characteristic of proteins overexpressed with this yeast. In the present study, P. pastoris GS115 overexpressing an α-l-rhamnosidase was taken as the example to characterize the off-flavor via sensory evaluation, gas chromatography-mass spectrometer, gas chromatography-olfaction, and omission test. The result showed that the off-flavor was due to the strong sweaty note, and moderate metallic and plastic notes. Four volatile compounds, that is, tetramethylpyrazine, 2,4-di-tert-butylphenol, isovaleric acid, and 2-methylbutyric acid, were identified to be major contributors to the sweaty note. Dodecanol and 2-acetylbutyrolactone were identified to be contributors to the metallic and plastic notes, respectively. It is the first study on the off-flavor of P. pastoris strains, helping understand metabolites with off-flavor of this yeast. Interestingly, it is the first study illustrating 2-acetylbutyrolactone and dodecanol with plastic and metallic notes, providing new information about the aromatic contributors of biological products. IMPORTANCE The methylotrophic yeast Pichia pastoris is an important host for the industrial expression of functional proteins. In our previous studies, P. pastoris strains have been sniffed with a strong off-flavor during the overexpression of various functional proteins, limiting the application of these proteins. Although many yeast strains have been reported with off-flavor, no attention has been paid to characterize the off-flavor in P. pastoris so far. Considering that P. pastoris has advantages over other established expression systems of functional proteins, it is of interest to identify the compounds with off-flavor synthesized in the overexpression of functional proteins with P. pastoris strains. In this study, the off-flavor synthesized from P. pastoris GS115 was characterized during the overexpression of an α-l-rhamnosidase, which helps understand the aromatic metabolites with off-flavor of P. pastoris strains. In addition, 2-acetylbutyrolactone and dodecanol were newly revealed with plastic and metallic notes, enriching the aromatic contributors of biological products. Thus, this study is important for understanding the metabolites with off-flavor of P. pastoris strains and other organisms, providing important knowledge to improve the flavor of products yielding with P. pastoris strains and other organisms. ONE-SENTENCE SUMMARY Characterize the sensory and chemical profile of the off-flavor produced by one strain of P. pastoris in vitro.
Collapse
Affiliation(s)
- YuXuan Yao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - ShengLan Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - ShiLin Chi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
| | - ZhenZhen Cai
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen, Fujian 361021, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, People's Republic of China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, People's Republic of China
- Xiamen Ocean Vocational College, Xiamen, Fujian 361021, People's Republic of China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen, Fujian 361021, People's Republic of China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
8
|
Yu B, Luo S, Ding Y, Gong Z, Nie T. Insights into glycosidic bond specificity of an engineered selective α-L-rhamnosidase N12-Rha via activity assays and molecular modelling. AMB Express 2022; 12:143. [DOI: 10.1186/s13568-022-01489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractαL-rhamnosidase (EC 3.2.1.40) has been widely used in food processing and pharmaceutical preparation. The recombinant α-L-rhamnosidase N12-Rha from Aspergillus niger JMU-TS528 had significantly higher catalytic activity on α-1,6 glycosidic bond than α-1,2 glycosidic bond, and had no activity on α-1,3 glycosidic bond. The activities of hydrolyzed hesperidin and naringin were 7240 U/mL and 945 U/mL, respectively, which are 10.63 times that of native α-L-rhamnosidase. The activity could maintain more than 80% at pH 3–6 and 40–60℃. Quantum chemistry calculations showed that charge difference of the C-O atoms of the α-1,2, α-1,3 and α-1,6 bonds indicated that α-1,6 bond is most easily broken and α-1,3 bond is the most stable. Molecular dynamics simulations revealed that the key residue Trp359 that may affect substrate specificity and the main catalytic sites of N12-Rha are located in the (α/α)6-barrel domain.
Collapse
|
9
|
Wang D, Zheng P, Chen P, Dan Wu. Engineering an α-L-rhamnosidase from Aspergillus niger for efficient conversion of rutin substrate. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang C, Xia N, Zhu S, Chen L, Chen L, Wang Z. Green synthesis of Hesperitin dihydrochalcone glucoside by immobilized α-l-rhamnosidase biocatalysis based on Fe3O4/MIL-101(Cr) metal-organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Zou Y, Li X, Xin X, Xu H, Mo L, Yu Y, Zhao G. Comparative transcriptomics to reveal the mechanism of enhanced catalytic activities of Aspergillus niger whole-cells cultured with different inducers in hydrolysis of citrus flavonoids. Food Res Int 2022; 156:111344. [DOI: 10.1016/j.foodres.2022.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
|
12
|
Peng L, Tan W, Lu Y, Yao A, Zheng D, Li L, Xiao J, Li L, Li Q, Zhou S, Zhan G. Convenient Immobilization of α‐L‐Rhamnosidase on Cerium‐based Metal‐Organic Frameworks Nanoparticles for Enhanced Enzymatic Activity and Recyclability. ChemCatChem 2021. [DOI: 10.1002/cctc.202101489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lingling Peng
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Wansen Tan
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Yuting Lu
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Ayan Yao
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Dayuan Zheng
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Le Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Jingran Xiao
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Lijun Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province Xiamen Fujian 361021 P. R. China
| | - Qingbiao Li
- College of Food and Biological Engineering Jimei University Xiamen Fujian 361021 P. R. China
| | - Shu‐feng Zhou
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Guowu Zhan
- College of Chemical Engineering Integrated Nanocatalysts Institute (INCI) Huaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
13
|
Li L, Li W, Gong J, Xu Y, Wu Z, Jiang Z, Cheng YS, Li Q, Ni H. An effective computational-screening strategy for simultaneously improving both catalytic activity and thermostability of α-l-rhamnosidase. Biotechnol Bioeng 2021; 118:3409-3419. [PMID: 33742693 DOI: 10.1002/bit.27758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Catalytic efficiency and thermostability are the two most important characteristics of enzymes. However, it is always tough to improve both catalytic efficiency and thermostability of enzymes simultaneously. In the present study, a computational strategy with double-screening steps was proposed to simultaneously improve both catalysis efficiency and thermostability of enzymes; and a fungal α-l-rhamnosidase was used to validate the strategy. As the result, by molecular docking and sequence alignment analysis within the binding pocket, seven mutant candidates were predicted with better catalytic efficiency. By energy variety analysis, A355N, S356Y, and D525N among the seven mutant candidates were predicted with better thermostability. The expression and characterization results showed the mutant D525N had significant improvements in both enzyme activity and thermostability. Molecular dynamics simulations indicated that the mutations located within the 5 Å range of the catalytic domain, which could improve root mean squared deviation, electrostatic, Van der Waal interaction, and polar salvation values, and formed water bridge between the substrate and the enzyme. The study indicated that the computational strategy based on the binding energy, conservation degree and mutation energy analyses was effective to develop enzymes with better catalysis and thermostability, providing practical approach for developing industrial enzymes.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Wenjing Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yanyan Xu
- Tan Kah Kee College, Xiamen University, Zhangzhou, China
| | - Zheyu Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|