1
|
Zhou X, Zou B, Chen Q, Yang G, Lai Q, Wang X. Construction of bilayer biomimetic periosteum based on SLA-3D printing for bone regeneration. Colloids Surf B Biointerfaces 2025; 246:114368. [PMID: 39547008 DOI: 10.1016/j.colsurfb.2024.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
An ideal biomimetic periosteum should have excellent biocompatibility to promote osteoclast adhesion and improve osseointegration, which is significant in promoting bone regeneration. In this work, a bionic artificial periosteum printed by the SLA-3D printing was prepared, consisting of a poly (ethylene glycol) diacrylate (PEGDA)/chitosan/tricalcium phosphate (TCP) fibrous layer and a gelatin methacryloyl (GelMA)/ammonium molybdate (Mo) cambium layer. Distinct surface characteristics were achieved on both sides of the biomimetic periosteum. Among them, the fibrous layer has high mechanical properties and low porosity, which is conducive to preventing the pulling of muscle tissues and the invasion of soft tissues. The cambium layer has a porous structure and bioactive factors that can effectively promote osteogenic differentiation of preosteoblasts. Combined with mild photothermal therapy triggered by NIR light, the biomimetic periosteum could promote bone regeneration at both the chemical and physical levels. This 3D-printed bilayer hydrogel can provide a promising strategy for preparing advanced tissue-engineered periosteum with excellent physical and bone regeneration properties.
Collapse
Affiliation(s)
- Xingguo Zhou
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, Jinan 250061, China; Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Bin Zou
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, Jinan 250061, China.
| | - Qinghua Chen
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, Jinan 250061, China
| | - Gongxian Yang
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, Jinan 250061, China
| | - Qingguo Lai
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China; Research Center of 3D Printing in Stomatology of Shandong University, China
| | - Xinfeng Wang
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan 250061, China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, Jinan 250061, China
| |
Collapse
|
2
|
Maier MA, dos Santos Adrego F, Jung SA, Boos AM, Pich A. Mechano-Triggered Release of Biomolecules from Supramolecular Hyaluronic Acid Hydrogels. ACS APPLIED POLYMER MATERIALS 2024; 6:13841-13854. [DOI: 10.1021/acsapm.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Michael A. Maier
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Fábio dos Santos Adrego
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Shannon A. Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Anja M. Boos
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Maastricht Institute for Biobased Materials, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
3
|
Lee SY, Phuc HD, Um SH, Mongrain R, Yoon JK, Bhang SH. Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases. J Tissue Eng 2024; 15:20417314241282476. [PMID: 39345255 PMCID: PMC11437565 DOI: 10.1177/20417314241282476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Huynh Dai Phuc
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montréal, QC, Canada
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Liang L, Li X, Tan Z, Liu M, Qiu Y, Yu Q, Yu C, Yao M, Guo B, Yao F, Che P, Zhang H, Li J. Injectable spontaneously formed asymmetric adhesive hydrogel with controllable removal for wound healing. J Mater Chem B 2023; 11:10845-10858. [PMID: 37937417 DOI: 10.1039/d3tb02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Healing large-scale wounds has been a long-standing challenge in the field of biomedicine. Herein, we propose an injectable oxidated sodium alginate/gelatin/3,3'-dithiobis(propionic hydrazide)-aurum (Alg-CHO/gelatin/DTPH-Au) hydrogel filler with asymmetric adhesion ability and removability, which is formed by the Schiff-base reaction between aldehyde-based sodium alginate and multi-amino crosslinkers (gelatin and DTPH), combined with the coordination interaction between Au nanoparticles and disulfide bond of DTPH. Consequently, the prepared Alg-CHO/gelatin/DTPH-Au hydrogel exhibits high mechanical properties and injectable behaviors owing to its multiple-crosslinked interactions. Moreover, because various types of interaction bonding form on the contact side with the tissue, denser crosslinking of the upper layer relative to the lower layer occurs. Combined with the temperature difference between the upper and lower surfaces, this results in asymmetric adhesive properties. Owing to the photothermal effect, the reversible coordination interaction between Au nanoparticles and DTPH and the change in the triple helix structure of gelatin to a coil structure impart the filler-phased removability and antibacterial ability. The choice of all natural polymers also allows for favorable degradability of the wound filler and outstanding biocompatibility. Based on these features, this versatile wound filler can achieve a wide range of applications in the field of all-skin wound repair.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Min Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qingyu Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Kuznetsova YL, Gushchina KS, Lobanova KS, Chasova VO, Egorikhina MN, Grigoreva AO, Malysheva YB, Kuzmina DA, Farafontova EA, Linkova DD, Rubtsova YP, Semenycheva LL. Scaffold Chemical Model Based on Collagen-Methyl Methacrylate Graft Copolymers. Polymers (Basel) 2023; 15:2618. [PMID: 37376264 DOI: 10.3390/polym15122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Polymerization of methyl methacrylate (MMA) in aqueous collagen (Col) dispersion was studied in the presence of tributylborane (TBB) and p-quinone: 2,5-di-tert-butyl-p-benzoquinone (2,5-DTBQ), p-benzoquinone (BQ), duroquinone (DQ), and p-naphthoquinone (NQ). It was found that this system leads to the formation of a grafted cross-linked copolymer. The inhibitory effect of p-quinone determines the amount of unreacted monomer, homopolymer, and percentage of grafted poly(methyl methacrylate) (PMMA). The synthesis combines two approaches to form a grafted copolymer with a cross-linked structure-"grafting to" and "grafting from". The resulting products exhibit biodegradation under the action of enzymes, do not have toxicity, and demonstrate a stimulating effect on cell growth. At the same time, the denaturation of collagen occurring at elevated temperatures does not impair the characteristics of copolymers. These results allow us to present the research as a scaffold chemical model. Comparison of the properties of the obtained copolymers helps to determine the optimal method for the synthesis of scaffold precursors-synthesis of a collagen and poly(methyl methacrylate) copolymer at 60 °C in a 1% acetic acid dispersion of fish collagen with a mass ratio of the components collagen:MMA:TBB:2,5-DTBQ equal to 1:1:0.015:0.25.
Collapse
Affiliation(s)
- Yulia L Kuznetsova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ksenya S Gushchina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Karina S Lobanova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Victoria O Chasova
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Alexandra O Grigoreva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Yulia B Malysheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Daria A Kuzmina
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Ekaterina A Farafontova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Daria D Linkova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Yulia P Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 603005 Nizhny Novgorod, Russia
| | - Luydmila L Semenycheva
- Faculty of Chemistry, National Research Lobachevsky State University of Nizhny Novgorod, 23, Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Rajabimashhadi Z, Gallo N, Salvatore L, Lionetto F. Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers (Basel) 2023; 15:544. [PMID: 36771844 PMCID: PMC9920587 DOI: 10.3390/polym15030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Fish collagen garnered significant academic and commercial focus in the last decades featuring prospective applications in a variety of health-related industries, including food, medicine, pharmaceutics, and cosmetics. Due to its distinct advantages over mammalian-based collagen, including the reduced zoonosis transmission risk, the absence of cultural-religious limitations, the cost-effectiveness of manufacturing process, and its superior bioavailability, the use of collagen derived from fish wastes (i.e., skin, scales) quickly expanded. Moreover, by-products are low cost and the need to minimize fish industry waste's environmental impact paved the way for the use of discards in the development of collagen-based products with remarkable added value. This review summarizes the recent advances in the valorization of fish industry wastes for the extraction of collagen used in several applications. Issues related to processing and characterization of collagen were presented. Moreover, an overview of the most relevant applications in food industry, nutraceutical, cosmetics, tissue engineering, and food packaging of the last three years was introduced. Lastly, the fish-collagen market and the open technological challenges to a reliable recovery and exploitation of this biopolymer were discussed.
Collapse
Affiliation(s)
- Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| | | | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Ecotekne Center, 73100 Lecce, Italy
| |
Collapse
|
8
|
Peng X, Cui Y, Chen J, Gao C, Yang Y, Yu W, Rai K, Zhang M, Nian R, Bao Z, Sun Y. High-Strength Collagen-Based Composite Films Regulated by Water-Soluble Recombinant Spider Silk Proteins and Water Annealing. ACS Biomater Sci Eng 2022; 8:3341-3353. [PMID: 35894734 DOI: 10.1021/acsbiomaterials.2c00416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider silk has attracted extensive attention in the development of high-performance tissue engineering materials because of its excellent physical properties, biocompatibility, and biodegradability. Although high-molecular-weight recombinant spider silk proteins can be obtained through metabolic engineering of host bacteria, the solubility of the recombinant protein products is always poor. Strong denaturants and organic solvents have thus had to be exploited for their dissolution, and this seriously limits the applications of recombinant spider silk protein-based composite biomaterials. Herein, through adjusting the temperature, ionic strength, and denaturation time during the refolding process, we successfully prepared water-soluble recombinant spider major ampullate spidroin 1 (sMaSp1) with different repeat modules (24mer, 48mer, 72mer, and 96mer). Then, MaSp1 was introduced into the collagen matrix for fabricating MaSp1-collagen composite films. The introduction of spider silk proteins was demonstrated to clearly alter the internal structure of the composite films and improve the mechanical properties of the collagen-based films and turn the opaque protein films into transparency ones. More interestingly, the composite film prepared with sMaSp1 exhibited better performance in mechanical strength and cell adhesion compared to that prepared with water-insoluble MaSp1 (pMaSp1), which might be attributed to the effect of the initial dissolved state of MaSp1 on the microstructure of composite films. Additionally, the molecular weight of MaSp1 was also shown to significantly influence the mechanical strength (enhanced to 1.1- to 2.3-fold) and cell adhesion of composite films, and 72mer of sMaSp1 showed the best physical properties with good bioactivity. This study provides a method to produce recombinant spider silk protein with excellent water solubility, making it possible to utilize this protein under environmentally benign, mild conditions. This paves the way for the application of recombinant spider silk proteins in the development of diverse composite biomaterials.
Collapse
Affiliation(s)
- Xinying Peng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Jinhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Cungang Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yang Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Wenfa Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Kamal Rai
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Ming Zhang
- Qingdao Youheng Biotechnology Co., Ltd., No. 130 Jiushui East Road, Qingdao 266199, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Zixian Bao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| |
Collapse
|
9
|
Xu X, Sui B, Liu X, Sun J. A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: Construction and pleiotropic immunomodulatory effects. Bioact Mater 2022; 25:701-715. [PMID: 37056268 PMCID: PMC10086766 DOI: 10.1016/j.bioactmat.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the lack of an ideal material for TMJ (temporomandibular joint) disc perforation and local inflammation interfering with tissue regeneration, a functional TGI/HA-CS (tilapia type I gelatin/hyaluronic acid-chondroitin sulfate) double network hydrogel was constructed in this paper. It was not only multiply bionic in its composition, structure and mechanical strength, but also endowed with the ability to immunomodulate microenvironment and simultaneously induce in situ repair of defected TMJ discs. On the one hand, it inhibited inflammatory effects of inflammasome in macrophages, reduced the extracellular matrix (ECM)-degrading enzymes secreted by chondrocytes, reversed the local inflammatory state, promoted the proliferation of TMJ disc cells and induced fibrochondrogenic differentiation of synovium-derived mesenchymal stem cells (SMSCs). On the other hand, it gave an impetus to repairing a relatively-large (6 mm-sized) defect in mini pigs' TMJ discs in a rapid and high-quality manner, which suggested a promising clinical application.
Collapse
Affiliation(s)
| | | | | | - Jiao Sun
- Corresponding author. No. 427, Ju-men Road, Shanghai, 200023, PR China.
| |
Collapse
|
10
|
Chen H, Xue L, Gong G, Pan J, Wang X, Zhang Y, Guo J, Qin L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-021-00075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCollagen, the main component of mammal skin, has been traditionally used in leather manufacturing for thousands of years due to its diverse physicochemical properties. Collagen is the most abundant protein in mammals and the main component of the extracellular matrix (ECM). The properties of collagen also make it an ideal building block for the engineering of materials for a range of biomedical applications. Reproductive medicine, especially human fertility preservation strategies and reproductive organ regeneration, has attracted significant attention in recent years as it is key in resolving the growing social concern over aging populations worldwide. Collagen-based biomaterials such as collagen hydrogels, decellularized ECM (dECM), and bioengineering techniques including collagen-based 3D bioprinting have facilitated the engineering of reproductive tissues. This review summarizes the recent progress in applying collagen-based biomaterials in reproductive. Furthermore, we discuss the prospects of collagen-based materials for engineering artificial reproductive tissues, hormone replacement therapy, and reproductive organ reconstruction, aiming to inspire new thoughts and advancements in engineered reproductive tissues research.
Graphical abstract
Collapse
|
11
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
12
|
Sanz B, Albillos Sanchez A, Tangey B, Gilmore K, Yue Z, Liu X, Wallace G. Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. Biomedicines 2020; 9:16. [PMID: 33375335 PMCID: PMC7823301 DOI: 10.3390/biomedicines9010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Collagen is a major component of the extracellular matrix (ECM) that modulates cell adhesion, growth, and migration, and has been utilised in tissue engineering applications. However, the common terrestrial sources of collagen carry the risk of zoonotic disease transmission and there are religious barriers to the use of bovine and porcine products in many cultures. Marine based collagens offer an attractive alternative and have so far been under-utilized for use as biomaterials for tissue engineering. Marine collagen can be extracted from fish waste products, therefore industry by-products offer an economical and environmentally sustainable source of collagen. In a handful of studies, marine collagen has successfully been methacrylated to form collagen methacrylate (ColMA). Our work included the extraction, characterization and methacrylation of Red Snapper collagen, optimisation of conditions for neural cell seeding and encapsulation using the unmodified collagen, thermally cross-linked, and the methacrylated collagen with UV-induced cross-linking. Finally, the 3D co-axial printing of neural and skeletal muscle cell cultures as a model for neuromuscular junction (NMJ) formation was investigated. Overall, the results of this study show great potential for a novel NMJ in vitro 3D bioprinted model that, with further development, could provide a low-cost, customizable, scalable and quick-to-print platform for drug screening and to study neuromuscular junction physiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Wollongong, New South Wales 2500, Australia; (B.S.); (A.A.S.); (B.T.); (K.G.); (Z.Y.); (X.L.)
| |
Collapse
|
13
|
Ha JH, Shin HH, Choi HW, Lim JH, Mo SJ, Ahrberg CD, Lee JM, Chung BG. Electro-responsive hydrogel-based microfluidic actuator platform for photothermal therapy. LAB ON A CHIP 2020; 20:3354-3364. [PMID: 32749424 DOI: 10.1039/d0lc00458h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electrical stimuli play an important role in regulating the delivery of plasmonic nanomaterials with cancer targeting peptides. Here, we developed an electro-responsive hydrogel-based microfluidic actuator platform for brain tumor targeting and photothermal therapy (PTT) applications. The electro-responsive hydrogels consisted of highly conductive silver nanowires (AgNWs) and biocompatible collagen I gels. We confirmed that an electrically conductive hydrogel could be used as an effective actuator by applying an electrical signal in the microfluidic platform. Furthermore, we successfully demonstrated PTT efficacy for brain tumor cells using targetable Arg-Gly-Asp (RGD) peptide-conjugated gold nanorods (GNRs). Therefore, our electro-responsive hydrogel-based microfluidic actuator platform could be useful for electro-responsive intelligent nanomaterial delivery and PTT applications.
Collapse
Affiliation(s)
- Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fan X, Liang Y, Cui Y, Li F, Sun Y, Yang J, Song H, Bao Z, Nian R. Development of tilapia collagen and chitosan composite hydrogels for nanobody delivery. Colloids Surf B Biointerfaces 2020; 195:111261. [PMID: 32683236 DOI: 10.1016/j.colsurfb.2020.111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Recently, injectable hydrogels have shown great potential in cell therapy and drug delivery. They can easily fill in any irregular-shaped defects and remain in desired positions after implantation using minimally invasive strategies. Here, we developed hydrogels prepared from tilapia skin collagen and chitosan (HCC). The residual mass rate of HCC was affected by the pH at the time of preparation, which was 29.1 % at pH 7 in 36 h. By comparison, the residual mass ratios of HCC at pH values of 6 and 5 were only approximately 8.4 % and 0, respectively. In addition, the stability of HCC was also affected by the concentration of these two components. HCC10 catalyzed by 10 mg mL-1 tilapia skin collagen and 10 mg mL-1 chitosan was more stable than HCC5 catalyzed by 5 mg mL-1 tilapia skin collagen and 10 mg mL-1 chitosan; therefore, we studied that ability of HCC10 to deliver two model nanobodies: 2D5 and KPU. As the concentration of nanobodies increased, the cumulative release rate of 2D5 decreased, and the release rate of KPU increased. Meanwhile, the cumulative release rate of 2D5 was the highest (68.3 %) at pH 5.5, followed by pH 6.8 (56.4 %) and 7.4 (28.4 %). However, the cumulative release rates of KPU were similar at pH 5.5 (45.1 %), 6.8 (46.5 %), and 7.4 (44.9 %). HCC is biodegradable, and can facilitate the release nanobodies; thus, HCC could be developed into an intelligent responsive tumor treatment matrix for use in cancer therapy.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Beijing, 100049, China
| | - Yunlong Liang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China; University of Chinese Academy of Sciences, No. 19 (A) Yuquan Road, Beijing, 100049, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Junqing Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd., No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Zixian Bao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|