1
|
Xin W, Zhou Y, Xiong W, Yao Y, Zhang J, Wang L. Characterisation of microcrystalline cellulose derived from wheat bran and evaluation of its ice recrystallisation inhibiting activity. Food Res Int 2025; 208:116212. [PMID: 40263793 DOI: 10.1016/j.foodres.2025.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
To enrich the comprehensive utilization of wheat bran and enhance the overall industrial value, wheat bran microcrystalline cellulose(MCC) was prepared and characterized through acid hydrolysis as a stabilizer in frozen food. MCC was extracted using hydrochloric acid and sulfuric acid acidolysis, with treatment durations of 60, 90, 120, and 150 min. The extracted MCC was characterized through Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, static light scattering, and thermogravimetric analysis. Furthermore, its ability to inhibit ice recrystallization was evaluated using an ice recrystallization inhibition test. The results indicated that rod-shaped wheat bran (WB) MCC was successfully prepared under various acid digestion conditions, with an average particle size of 80-138 μm. Notably, H2SO4-150 exhibited the smallest particle size at 80.8 μm. FTIR analysis revealed that the MCC preserved the fundamental chemical structure of cellulose. XRD analysis demonstrated that the crystal structure of MCC was typical of type I cellulose, the MCC obtained after 120 min of sulfuric acid treatment exhibited the highest degree of crystallinity (43.93 %). Specifically, HCl-120 demonstrated superior thermal stability, whereas HCl-90 and H2SO4-90 showed the strongest ice recrystallization inhibition (IRI) activity. Therefore, this study offers significant insights into the preparation and application of MCC as a frozen food stabilizer.
Collapse
Affiliation(s)
- Wang Xin
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yurong Zhou
- Harbin University of Commerce, Harbin 150028, China
| | - Wenfei Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Yijun Yao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jing Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
2
|
Qiu WP, Su HZ, Hu TG, Su H, Li N, Lai LS, Zhu JL, Zhao YL, Xu ZL, Wang H, Wen P. Biodegradable taro stem cellulose aerogel: A simple approach for adsorbing microplastics and dyestuffs contaminants. J Colloid Interface Sci 2025; 679:358-374. [PMID: 39366265 DOI: 10.1016/j.jcis.2024.09.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Water pollution and agricultural waste are pressing global issues. Herein, a biomass aerogel derived from waste taro stem microcrystalline cellulose (TS-MCC) was fabricated, in which, the effects of cellulose amount, cross-linker content, pre-freezing protocols on the aerogel's property were studied. The optimized TS-MCC2.0 aerogel exhibited a hierarchical porous structure with good mechanical property (65.04 kPa) and adsorption capacities, with the qm towards microplastics (Polystyrene, PS) and dye (Congo red, CR) being 418.6 mg/g and 951.51 mg/g at 298 K, respectively. Meanwhile, it exhibited good applicability under different pH (3-11) and ionic strength environments, as well as the retained notably simultaneous adsorption ability even under mixed contaminant systems. The mathematical models suggested that the adsorption of PS and CR both fitted pseudo-second-order kinetics, and the adsorption isotherms could be described by the Langmuir and Freundlich models, respectively. Hydrogen bonding, electrostatic attraction, and π-π interactions were inferred as the main adsorption mechanisms towards PS and CR according to Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy analysis. Moreover, the adsorption efficiencies were 92.37 % for PS and 88.34 % for CR after 5 reuse cycles. Therefore, this study provides a green aerogel sorbent for adsorbing microplastics and dyes contaminants.
Collapse
Affiliation(s)
- Wei-Peng Qiu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ze Su
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Teng-Gen Hu
- Sericultural Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Hao Su
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Li-Shan Lai
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jia-le Zhu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Li Zhao
- Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Zhen-Lin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Lingnan Modern Agricultural Science and Technology Guangdong Province Laboratory Heyuan Sub-center, Heyuan 517000, China.
| |
Collapse
|
3
|
Seki Y. Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:54-61. [PMID: 39637638 DOI: 10.1016/j.wasman.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
This study compares several methods, such as sodium chlorite, nitric acid, and hydrogen peroxide treatments with alkali pre-treatments, for efficiency of extracting cellulose from spent ground coffee. The extracted cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), thermogravimetric analysis (TGA), colour analysis, chemical composition, and particle size analysis. FTIR confirmed the removal of non-cellulosic components from coffee, which correlates with chemical composition and colour analysis results. The highest cellulose content (96.7 %) and the highest whiteness index (71.24) were obtained for the cellulose materials extracted using nitric acid-sodium chlorite and sodium chlorite with alkali pre-treatments, respectively. XRD data reveals that the treated coffee presented exhibited a higher crystallinity index compared to the untreated one. The highest increase in crystallinity index (from 54.9 % to 66.3 %) was achieved for the cellulose extracted using a 20 % hydrogen peroxide treatment with alkali pre-treatment. The maximum degradation temperature of the spent ground coffee increased from 292.0 to 310.5 °C after treatment with 10 wt% hydrogen peroxide and alkali pre-treatment. In summary, these findings highlight the great potential of spent ground coffee as a source of cellulose.
Collapse
Affiliation(s)
- Yasemin Seki
- Department of Textile Engineering. Dokuz Eylul University, Tınaztepe Campus, Buca, İzmir, Turkey
| |
Collapse
|
4
|
Liu Y, Ran J, Xu Z, Cheng H, Lin B, Deng T, Yi C. Preparation and characterization of microcrystalline cellulose from rice bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:218-226. [PMID: 39150228 DOI: 10.1002/jsfa.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Rice bran, a by-product of rice processing, has not been fully utilized except for the small amount used for raising animals. The raw material source requirements of microcrystalline cellulose are becoming increasingly extensive. However, the characteristics of preparing microcrystalline cellulose from rice bran have not been reported, which limits the application of rice bran. RESULTS Microcrystalline cellulose was obtained from rice bran by alkali treatment, delignification, bleaching and acid hydrolysis. The morphology, particle size distribution, degree of polymerization, crystallinity, and thermal stability of rice bran microcrystalline cellulose were analyzed. The chemical compositions, scanning electron microscopy and Fourier-transform infrared analysis for rice bran microcrystalline cellulose showed that the lignin and hemicellulose were successfully removed from the rice bran fiber matrix. The morphology of rice bran microcrystalline cellulose was shown to be of a short rod-shaped porous structure with an average diameter of 65.3 μm. The polymerization degree of rice bran microcrystalline cellulose was 150. The X-ray diffraction pattern of rice bran microcrystalline cellulose showed the characteristic peak of natural cellulose (type I), and its crystallization index was 71%. The rice bran microcrystalline cellulose may be used in biological composites with temperatures between 150 °C and 250 °C. CONCLUSION These results suggest the feasibility of using rice bran as a low-price source of microcrystalline cellulose. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanlan Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P. R. China
| | - Jingfeng Ran
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Ziyang Xu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P. R. China
| | - Benping Lin
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Tianran Deng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, P. R. China
| |
Collapse
|
5
|
Huamani-Palomino RG, Mayta S, Córdova BM, Yáñez-S M, Venâncio T, Rivera E, Quintana M. Study of the effect of bleaching agents on the crystalline index of cellulose-based materials derived from corn husk by CP/MAS 13C NMR and FT-IR spectroscopies. Carbohydr Polym 2024; 346:122593. [PMID: 39245485 DOI: 10.1016/j.carbpol.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
This work proposes an evaluation of the Crystalline Index (CrI) in function of the bleaching process employed during cellulose extraction from corn husk, for further characterization using CP/MAS 13C NMR, XRD, and FT-IR. In that sense, CrI values were calculated by FT-IR and the bands associated with the crystalline and amorphous regions were observed at 1424 cm-1 and 896 cm-1, respectively. Similarly, the signals due to ordered (89.1 ppm) and disordered (84.2 ppm) cellulose chains were detected by solid-state 13C NMR, while the Segal equation was only used for comparison purposes. Additionally, PCA studies showed consistent results attributed to the crystalline region in cellulose domains analyzed by both, FT-IR and solid-state 13C NMR. The results revealed the coexistence of cellulose I/cellulose II and its effect on CrI, as well as the incomplete mercerization process, in some cases non-cellulosic residues can cause an overestimation of CrI. Additionally, the thermal stability and the glass transition temperature were determined by TGA/DTA and DSC analyses. Finally, a partially fibrillated-network morphology with a diameter of 20.47 ± 2.77 μm was observed in cellulose bleached with peracetic acid, whereas organosolv method provides flexible and clean microfibrils with diameter sizes between 10 and 9 μm.
Collapse
Affiliation(s)
- Ronny G Huamani-Palomino
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru.
| | - Sergio Mayta
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru; Center for the Development of Advanced Materials and Nanotechnology, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| | - Bryan M Córdova
- Group of Biomaterials and Polymers, National University of Engineering (UNI), Av. Tupac Amaru 210, Lima, Peru
| | - Mauricio Yáñez-S
- Facultad de Recursos Naturales, Departamento de Cs. Biológicas y Químicas, Universidad Católica de Temuco, Campus San Juan Pablo II, Temuco, Chile
| | - Tiago Venâncio
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de Sao Carlos, São Carlos, São Paulo CP 676, 13565-905 São Carlos, São Paulo, Brazil
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - María Quintana
- Center for the Development of Advanced Materials and Nanotechnology, National University of Engineering, Av. Tupac Amaru 210, Lima, Peru
| |
Collapse
|
6
|
Narayanaperumal S, Divakaran D, Suyambulingam I, Singh MK, Sanjay MR, Siengchin S. Extraction of microcrystalline cellulose from Ficus benghalensis leaf and its characterization. Int J Biol Macromol 2024; 277:134394. [PMID: 39094858 DOI: 10.1016/j.ijbiomac.2024.134394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Microcrystalline cellulose (MCC) is a crucial component in various industries, including pharmaceuticals, culinary, and cosmetics. The growing demand for MCC has spurred research into extraction methods. This study focused on extracting MCC from Ficus benghalensis using acid hydrolysis to convert the alpha-cellulose content of its leaves into MCC. The solvent used in this process was recyclable for further use. The extracted MCC was characterized by its physicochemical properties, including density, yield percentage, and structural characteristics. The yield was approximately 39.68 %, and the density was low at 1.518 g/cm3, making it suitable for filler applications. Fourier transform spectroscopy and UV-visible analysis identified functional groups of cellulose. X-ray diffraction analysis revealed a crystallite size of 1.560 nm and a crystallinity index of 66.43 %, indicating suitability for related applications. ImageJ determined a mean particle size of 36.545 μm, while scanning electron microscopy showed distinct surface orientations. Atomic force microscopy revealed surface roughness, root mean square, ten-point average roughness, skewness, and kurtosis. Elemental analysis indicated high concentrations of carbon (20.1 %) and oxygen (34 %). Based on these physicochemical features, the extracted MCC could be a valuable source for applications such as filler in reinforcement technology and coating material in pharmaceutical products.
Collapse
Affiliation(s)
- Sunesh Narayanaperumal
- Department of Mechanical Engineering, Rohini College of Engineering and Technology, Palkulam, Kanyakumari, Tamil Nadu 629401, India
| | - Divya Divakaran
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Indran Suyambulingam
- Department of Mechanical Engineering and Centre for Research, Alliance College of Engineering and Design, Alliance University, Bengaluru 562106, Karnataka, India.
| | - Manoj Kumar Singh
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
7
|
Medarević D, Čežek M, Knežević A, Turković E, Barudžija T, Samardžić S, Maksimović Z. From Field to Pharmacy: Isolation, Characterization and Tableting Behaviour of Microcrystalline Cellulose from Wheat and Corn Harvest Residues. Pharmaceutics 2024; 16:1090. [PMID: 39204435 PMCID: PMC11359045 DOI: 10.3390/pharmaceutics16081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A lack of strategies for the utilization of harvest residues (HRs) has led to serious environmental problems due to an accumulation of these residues or their burning in the field. In this study, wheat and corn HRs were used as feedstock for the production of microcrystalline cellulose (MCC) by treatment with 2-8% sodium hydroxide, 10% hydrogen peroxide and further hydrolysis with 1-2 M hydrochloric acid. The changes in the FT-IR spectra and PXRD diffractograms after chemical treatment confirmed the removal of most of the lignin, hemicellulose and amorphous fraction of cellulose. A higher degree of crystallinity was observed for MCC obtained from corn HRs, which was attributed to a more efficient removal of lignin and hemicellulose by a higher sodium hydroxide concentration, which facilitates the dissolution of amorphous cellulose during acid hydrolysis. MCC obtained from HRs exhibited lower bulk density and poorer flow properties but similar or better tableting properties compared to commercial MCC (CeolusTM PH101). The lower ejection and detachment stress suggests that MCC isolated from HRs requires less lubricant compared to commercial MCC. This study showed that MCC isolated from wheat and corn HRs exhibits comparable tableting behaviour like commercial sample, further supporting this type of agricultural waste utilization.
Collapse
Affiliation(s)
- Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Maša Čežek
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandar Knežević
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia;
| | - Erna Turković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Tanja Barudžija
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Belgrade, Serbia
| | - Stevan Samardžić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
8
|
Gómez-García R, Sousa SC, Ramos ÓL, Campos DA, Aguilar CN, Madureira AR, Pintado M. Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules 2024; 29:3285. [PMID: 39064864 PMCID: PMC11279406 DOI: 10.3390/molecules29143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Residual melon by-products were explored for the first time as a bioresource of microcrystalline cellulose (MCC) obtention. Two alkaline extraction methods were employed, the traditional (4.5% NaOH, 2 h, 80 °C) and a thermo-alkaline in the autoclave (2% NaOH, 1 h, 100 °C), obtaining a yield of MCC ranging from 4.76 to 9.15% and 2.32 to 3.29%, respectively. The final MCCs were characterized for their chemical groups by Fourier-transform infrared spectroscopy (FTIR), crystallinity with X-ray diffraction, and morphology analyzed by scanning electron microscope (SEM). FTIR spectra showed that the traditional protocol allows for a more effective hemicellulose and lignin removal from the melon residues than the thermo-alkaline process. The degree of crystallinity of MCC ranged from 51.51 to 61.94% and 54.80 to 55.07% for the thermo-alkaline and traditional processes, respectively. The peaks detected in X-ray diffraction patterns indicated the presence of Type I cellulose. SEM analysis revealed microcrystals with rough surfaces and great porosity, which could remark their high-water absorption capacity and drug-carrier capacities. Thus, these findings could respond to the need to valorize industrial melon by-products as raw materials for MCC obtention with potential applications as biodegradable materials.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
- CIICYT—Centro de Investigación e Innovación Científica y Tecnológica, Unidad Camporredondo, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Sérgio C. Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Cristóbal N. Aguilar
- BBG-DIA—Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25730, Coahuila, Mexico
| | - Ana R. Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| |
Collapse
|
9
|
Palaniappan M. Sustainable microcrystalline cellulose extracted from biowaste Albezia lebeck L. leaves: Biomass exfoliation and physicochemical characterization. PHYSIOLOGIA PLANTARUM 2024; 176:e14447. [PMID: 39149796 DOI: 10.1111/ppl.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/17/2024]
Abstract
There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Vithya B, Saravanakumar SS, Senthamaraikannan P, Murugan R. Extraction and characterization of microcrystalline cellulose from Vachellia nilotica plant leaves: A biomass waste to wealth approach. PHYSIOLOGIA PLANTARUM 2024; 176:e14368. [PMID: 38837358 DOI: 10.1111/ppl.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Biobased waste utilization is an intriguing area of research and an ecologically conscious approach. Plant-based materials can be used to render cellulose, which is an eco-friendly material that can be used in numerous aspects. In the current investigation, cellulose was extracted from the leaves of the Vachellia nilotica plant via acid hydrolysis. The application of this research is specifically directed toward the utilization of undesirable plant sources. To validate the extracted cellulose, FT-IR spectroscopy was applied. The cellulose was measured to have a density of 1.234 g/cm3. The crystallinity index (58.93%) and crystallinity size (11.56 nm) of cellulose are evaluated using X-ray diffraction spectroscopy analysis. The highest degradation temperature (320.8°C) was observed using thermogravimetry and differential scanning calorimetry curve analysis. The analysis of particle size was conducted utilizing images captured by scanning electron microscopy. Particle size of less than 30 μm was found and they exhibit non-uniform orientation. Additionally, atomic force microscopy analysis shows an improved average surface roughness (Ra), which increases the possibility of using extracted cellulose as reinforcement in biofilms.
Collapse
Affiliation(s)
- B Vithya
- Department of Civil Engineering, Seikaluthur Kamatchi Amman Polytechnic College, Manamadurai, Tamil Nadu, India
| | - S S Saravanakumar
- Department of Mechatronics Engineering, K.S.Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - P Senthamaraikannan
- Department of Mechanical Engineering, K.S.R College of Engineering, Tiruchengode, Tamil Nadu, India
| | - R Murugan
- Department of Mechanical Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Wu Y, Luo C, Li L, Jiang Y, Yu J, Wang T, Lu J, Cao X, Ke W, Li S. Cellulose separation from ramie bone by one step process with green hydrogen peroxide-citric acid. Int J Biol Macromol 2024; 267:131444. [PMID: 38588840 DOI: 10.1016/j.ijbiomac.2024.131444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Ramie bone (RB), an agricultural waste generated in the textile industry, is a vastly productive renewable natural resource with the potential to be used as a source of cellulose. In this study, ramie bone cellulose (RB-CE) was obtained in one step using a simple and ecologically friendly hydrogen peroxide-citric acid (HPCA) treatment procedure that avoided the use of halogenated reagents and strong acids while also streamlining the treatment processes. Various analytical methods were used to investigate the chemical composition and structure, crystallinity, morphology, thermal properties, surface area and hydration properties of cellulose separated at different treatment temperatures. HPCA successfully removed lignin and hemicellulose from RB, according to chemical composition analysis and FTIR. RB-CE had a type I cellulose crystal structure, and the crystallinity improved with increasing treatment temperature, reaching 72.51 % for RB-CE90. The RB-CE showed good thermal stability with degradation temperatures ranging from 294.2 °C to 319.1 °C. Furthermore, RB-CE had a high water/oil binding capacity, with RB-CE90 having WHC and OBC of 9.68 g/g and 7.24 g/g, respectively. The current work serves as a model for the environmentally friendly and convenient extraction of cellulose from biomass, and the cellulose obtained can be employed in the field of food and composite materials.
Collapse
Affiliation(s)
- Yuyang Wu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chunxu Luo
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Liqiong Li
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yixuan Jiang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jinhan Yu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tianjiao Wang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiarun Lu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xinwang Cao
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.
| | - Wei Ke
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.
| | - Shengyu Li
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
12
|
Sachcha IH, Paddar K, Minar MM, Rahman L, Hasan SK, Akhtaruzzaman M, Billah MT, Yasmin S. Development of eco-friendly biofilms by utilizing microcrystalline cellulose extract from banana pseudo-stem. Heliyon 2024; 10:e29070. [PMID: 38623235 PMCID: PMC11016604 DOI: 10.1016/j.heliyon.2024.e29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Banana pseudo-stem, often considered as an underutilized plant part was explored as a potential reinforced material to develop an eco-friendly biofilm for food packaging applications. In this study, Microcrystalline cellulose (MCC) was extracted from banana pseudo-stem by alkali and acid hydrolysis treatment. The extracted MCC was used as a reinforced material in different concentrated polyvinyl alcohol (PVA) matrix alone as well as both PVA and Carboxymethyl Cellulose (CMC) matrix to develop biofilm by solvent casting method. The synthesized MCC powder was characterized by scanning electron microscope to ensure its microcrystalline structure and to observe surface morphology. The biofilms composed of MCC, PVA, and CMC were assessed through Fourier-transform infrared spectroscopy (FTIR), mechanical properties, water content, solubility, swelling degree, moisture barrier property (Water Vapor Permeability - WVP), and light barrier property (Light Transmission and Transparency). The FTIR analysis showed the rich bonding between the materials of the biofilms. The film incorporating a combination of PVA, CMC, and MCC (S6) exhibited the highest tensile strength at 26.67 ± 0.152 MPa, making it particularly noteworthy for applications in food packaging. MCC incorporation increased the tensile strength. The WVP content of the films was observed low among the MCC-induced films which is parallel to other findings. The lowest WVP content was showed by 1% concentrated PVA with MCC (S4) (0.223 ± 0.020 10-9 g/Pahm). The WVP content of S6 film was also considerably low. MCC-incorporated films also acted as a good UV barrier. Transmittance of the MCC induced films at UV range were observed on average 38% (S2), 36% (S4) and 6% (S6) which were almost 6% lower than the control films. The S6 film demonstrated the lowest swelling capacity (1.42%) and water content, indicating a significantly low solubility of the film. The film formulated with mixing of PVA, CMC and MCC (S6) was ahead in terms of food packaging characteristics than other films. Also, the outcomes of this study point out that MCC can be a great natural resource for packaging applications and in that regard, banana pseudo-stem proves to be an excellent source for waste utilization.
Collapse
Affiliation(s)
- Ishmam Haque Sachcha
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Kushal Paddar
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Minhajul Matin Minar
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Latifur Rahman
- Sonali Bag Research Laboratory, Bangladesh Jute Mills Corporation, Dhaka, 1000, Bangladesh
| | - S.M. Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Md Akhtaruzzaman
- Department of Agro Product Processing Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Mir Tuhin Billah
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Sabina Yasmin
- Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| |
Collapse
|
13
|
Wu Y, Luo C, Wang T, Yang Y, Sun Y, Zhang Y, Cui L, Song Z, Chen X, Cao X, Li S, Cai G. Extraction and characterization of nanocellulose from cattail leaves: Morphological, microstructural and thermal properties. Int J Biol Macromol 2024; 255:128123. [PMID: 37981275 DOI: 10.1016/j.ijbiomac.2023.128123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Hydrogen peroxide combined with acid treatment demonstrates its respective characteristics for the separation of lignocellulosic biomass. Herein, holocellulose was extracted from Cattail leaves (CL) by a two-step treatment with alkali and hydrogen peroxide-acetic acid (HPAA). Then carboxylated nanocellulose was hydrolyzed with a mixed organic/inorganic acid. The chemical composition of the holocellulose and the physicochemical properties of the separated carboxylated nanocellulose were comparable. Carboxyl groups were introduced on the nanocellulose as a result of the esterification process with citric acid (CA), which endows the nanocellulose with high thermal stability (315-318 °C) and good light transmission (>80 %). Furthermore, morphological analyses revealed that nanocellulose had a spider-web-like structure with diameter between 5 and 20 nm.
Collapse
Affiliation(s)
- Yuyang Wu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chunxu Luo
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tianjiao Wang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuhang Yang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuchi Sun
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yang Zhang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Liqian Cui
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zican Song
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaofeng Chen
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xinwang Cao
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Shengyu Li
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.
| | - Guangming Cai
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
14
|
Nieto N, Porte J, Saurel D, Djuandhi L, Sharma N, Lopez-Urionabarrenechea A, Palomares V, Rojo T. Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries. CHEMSUSCHEM 2023:e202301053. [PMID: 37532675 DOI: 10.1002/cssc.202301053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Over the last years, hard carbon (HC) has been the most promising anode material for sodium-ion batteries due to its low voltage plateau, low cost and sustainability. In this study, biomass waste (spent coffee grounds, sunflower seed shells and rose stems) was investigated as potential material for hard carbon preparation combining a two-step method consisting of on hydrothermal carbonization (HTC), to remove the inorganic impurities and increase the carbon content, and a subsequent pyrolysis process. The use of HTC as pretreatment prior to pyrolysis improves the specific capacity in all the materials compared to the ones directly pyrolyzed by more than 100 % at high C-rates. The obtained capacity ranging between 210 and 280 mAh g-1 at C/15 is similar to the values reported in literature for biomass-based hard carbons. Overall, HC obtained from sunflower seed shell performs better than that obtained from the other precursors with an initial Coulombic efficiency (ICE) of 76 % and capacities of 120 mAh g-1 during 1000 cycles at C with a high capacity retention of 86-93 %.
Collapse
Affiliation(s)
- Nekane Nieto
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Julien Porte
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Damien Saurel
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA) Parque Tecnológico de Álava, Albert Einstein 48, 01510, Miñano, Spain
| | - Lisa Djuandhi
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Lopez-Urionabarrenechea
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Verónica Palomares
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Teófilo Rojo
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| |
Collapse
|
15
|
Debnath B, Duarah P, Purkait MK. Microwave-assisted quick synthesis of microcrystalline cellulose from black tea waste (Camellia sinensis) and characterization. Int J Biol Macromol 2023:125354. [PMID: 37321438 DOI: 10.1016/j.ijbiomac.2023.125354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Tea wastes generated in the industries during tea production processes show excellent potential to be used as a renewable, abundant, and cheap source for the extraction of microcrystalline cellulose. In the current work, MCC was isolated from black tea waste through microwave heating instead of using conventional heating and avoiding the traditional acid hydrolysis method. Microwave increased the reaction speed significantly and resulted in very quick delignification and bleaching of black tea waste to isolate MCC in white powdered form. FTIR, XRD, FESEM, and TGA analysis were then carried out to investigate the chemical functionality, crystallinity, morphology, and thermal properties, respectively, of the synthesized tea waste MCC. The characterization results demonstrated that cellulose with a short rough fibrous structure having an average particle size of around 23 μm was extracted. The results of FTIR and XRD demonstrated unequivocally that all amorphous non-cellulosic compounds had been eliminated. The microwave-extracted black tea waste MCC showed 89.77 % crystallinity and good thermal properties, indicating that it could be a promising filler material for preparing polymer composites. Therefore, microwave-assisted delignification and bleaching can be used as a suitable, energy-efficient, time-saving and low-cost method for extracting MCC from the black tea waste produced in tea factories.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
Liu A, Wu H, Naeem A, Du Q, Ni B, Liu H, Li Z, Ming L. Cellulose nanocrystalline from biomass wastes: An overview of extraction, functionalization and applications in drug delivery. Int J Biol Macromol 2023; 241:124557. [PMID: 37094644 DOI: 10.1016/j.ijbiomac.2023.124557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Cellulose nanocrystals (CNC) have been extensively used in various fields due to their renewability, excellent biocompatibility, large specific surface area, and high tensile strength. Most biomass wastes contain significant amounts of cellulose, which forms the basis of CNC. Biomass wastes are generally made up of agricultural waste, and forest residues, etc. CNC can be produced from biomass wastes by removing the non-cellulosic components through acid hydrolysis, enzymatic hydrolysis, oxidation hydrolysis, and other mechanical methods. However, biomass wastes are generally disposed of or burned in a random manner, resulting in adverse environmental consequences. Hence, using biomass wastes to develop CNC-based carrier materials is an effective strategy to promote the high value-added application of biomass wastes. This review summarizes the advantages of CNC applications, the extraction process, and recent advances in CNC-based composites, such as aerogels, hydrogels, films, and metal complexes. Furthermore, the drug release characteristics of CNC-based material are discussed in detail. Additionally, we discuss some gaps in our understanding of the current state of knowledge and potential future directions of CNC-based materials.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Abid Naeem
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qing Du
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Bin Ni
- First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou 341000, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Research Center for Differentiation and Department of TCM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
17
|
Dumkor T, Poompradub S. Microcrystalline cellulose from Para rubber leaves as an additive for superabsorbent polymers. Int J Biol Macromol 2023; 233:123556. [PMID: 36746303 DOI: 10.1016/j.ijbiomac.2023.123556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
This study prepared microcrystalline cellulose (MCC) from the Para rubber leaves (RL) via mechanical and chemical treatments in order to reduce the amount of waste RL by making it a value added product. The obtained MCC had a cellulose content of 61 % with a high crystallinity index of 67.35 %. The MCC-graft-polyacrylate (MCC-g-PA) was then prepared using N,N'-methylenebisacrylamide (MBA) at 0.05 wt% of acrylic acid via radical polymerization, and was then used as an additive in PA superabsorbent polymers (SAP). The presence of 0.05 g MCC-g-PA in PA (0.1 g) was found to exhibit a 1.17-fold greater water absorbency than the neat PA SAP, which was due to the increased level of hydroxyl and carboxylate groups from the added MCC-g-PA. The MCC-g-PA/PA SAP exhibited a similar reusability to the commercial SAP and could be degraded via cellulase and laccase enzymes.
Collapse
Affiliation(s)
- Tipapan Dumkor
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Ramanathan G, Jeyakumar GFS, Sivagnanam UT, Fardim P. Biomimetic cellulose/collagen/silk fibroin as a highly interconnected 3D hybrid matrix for bone tissue engineering. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Cryo-Induced Cellulose-Based Nanogel from Elaeis guineensis for Antibiotic Delivery Platform. Int J Mol Sci 2023; 24:ijms24021230. [PMID: 36674748 PMCID: PMC9866051 DOI: 10.3390/ijms24021230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Cryo-induced hydrogel from cellulose is a new class of biomaterials for drug delivery, cell delivery, bone and skin tissue engineering for cell proliferation and regeneration applications. This research aimed to synthesize cryo-induced hydrogel from cellulose and carboxymethyl cellulose (CMC) produced from empty bunch's cell wall of Elaeis guineensis. First, the experiment was to produce cellulose-rich material using hot-compressed water extraction followed by alkaline delignification and bleaching with H2O2. The obtained bleached EFB cellulose was used as the substrate for CMC, and the optimal condition with the highest degree of carboxyl substitution (DS) of 0.75 was achieved when varying NaOH and monochloroacetic acid concentration as well as etherification temperature using fractional factorial design. For cryogelation study, hydrogels were synthesized from cellulose, CMC and beta-cyclodextrin (β-CD) by dissolving cellulose-based matrix in a NaOH/urea system, and the cellulose (CEL) solution was frozen spontaneously at -40 °C followed by high speed mixing to loosen cellulose fibrils. Epichlorohydrin (ECH) and Polyethylene glycol diglycidyl ether (PEGDE) were used as a cross-linker. First, the ratio of cellulose and CMC with different amounts of ECH was investigated, and subsequently the proper ratio was further studied by adding different crosslinkers and matrices, i.e., CMC and β-CD. From the result, the ECH crosslinked CMC-CEL (E-CMC-CEL) gel had the highest swelling properties of 5105% with the average pore size of lyophilized hydrogel of 300 µm. In addition, E-CMC-CEL gel had the highest loading and release capability of tetracycline in buffer solution at pH 7.4 and 3.2. At pH 7.4, tetracycline loading and release properties of E-CMC-CEL gel were 65.85 mg g-1 dry hydrogel and 46.48 mg g-1 dry hydrogel (70.6% cumulative release), respectively. However, at pH 3.2, the loading and release capabilities of Tetracycline were moderately lower at 16.25 mg g-1 dry hydrogel and 5.06 mg g-1 dry hydrogel, respectively. The findings presented that E-CMC-CEL hydrogel was a suitable material for antibiotic tetracycline drug carrying platform providing successful inhibitory effect on Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively.
Collapse
|
20
|
Debnath B, Duarah P, Haldar D, Purkait MK. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
21
|
Supercritical CO2-assisted impregnation of cellulose microparticles with R-carvone: Effect of process variables on impregnation yield. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Bangar SP, Harussani M, Ilyas R, Ashogbon AO, Singh A, Trif M, Jafari SM. Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Handoko F, Yusuf Y. Synthesis and Physicochemical Properties of Poly(vinyl) Alcohol Nanocomposites Reinforced with Nanocrystalline Cellulose from Tea ( Camellia sinensis) Waste. MATERIALS 2021; 14:ma14237154. [PMID: 34885307 PMCID: PMC8658244 DOI: 10.3390/ma14237154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to utilize cellulose from tea waste as nanocrystalline cellulose (NCC), which is used as a filler in poly(vinyl) alcohol (PVA) nanocomposites. To obtain the NCC, a chemical process was conducted in the form of alkali treatment, followed by bleaching and hydrolysis. Nanocomposites were formed by mixing PVA with various NCC suspensions. With chemical treatment, lignin and hemicellulose can be removed from the tea waste to obtain NCC. This can be seen in the functional groups of cellulose and the increase in crystallinity. The NCC had a mean diameter of 6.99 ± 0.50 nm. Furthermore, the addition of NCC to the PVA nanocomposite influenced the properties of the nanocomposites. This can be seen in the general increase in opacity value, thermal and mechanical properties, and crystallinity, as well as the decrease in the value of the swelling ratio after adding NCC. This study has revealed that NCC from tea waste can be used to improve the physicochemical properties of PVA film.
Collapse
|
25
|
Koschevic MT, Araújo RP, Garcia VA, Fakhouri FM, Oliveira KMP, Arruda EJ, Dufresne A, Martelli SM. Antimicrobial activity of bleached cattail fibers (
Typha domingensis
) impregnated with silver nanoparticles and benzalkonium chloride. J Appl Polym Sci 2021. [DOI: 10.1002/app.50885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marivane Turim Koschevic
- Environmental Science and Technology, Faculty of Exact Sciences and Technology Federal University of Grande Dourados Dourados Brazil
| | - Renata Pires Araújo
- Environmental Science and Technology, Faculty of Exact Sciences and Technology Federal University of Grande Dourados Dourados Brazil
| | | | - Farayde Matta Fakhouri
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Poly 2 Group, Department of Materials Science and Engineering Universitat Politécnica de Catalunya (UPC BarcelonaTech) Terrassa Spain
| | - Kelly Mari Pires Oliveira
- Environmental Science and Technology, Faculty of Exact Sciences and Technology Federal University of Grande Dourados Dourados Brazil
| | - Eduardo José Arruda
- Environmental Science and Technology, Faculty of Exact Sciences and Technology Federal University of Grande Dourados Dourados Brazil
| | - Alain Dufresne
- Grenoble INP, LGP2 University Grenoble Alpes Grenoble France
| | | |
Collapse
|
26
|
Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Sainorudin MH, Abdullah NA, Asmal Rani MS, Mohammad M, Mahizan M, Shadan N, Abd Kadir NH, Yaakob Z, El-Denglawey A, Alam M. Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies. NANOTECHNOLOGY REVIEWS 2021; 10:793-806. [DOI: 10.1515/ntrev-2021-0053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The present study focused on the preparation of microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) from pineapple (Ananas comosus L.) leaves using chemical treatments followed by acid hydrolysis. Pineapple leaves could be used in medical applications such as drug delivery carriers. Advanced spectroscopy techniques such as Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze the physical, chemical, and morphological features of the isolated MCC and NCC; the results indicated the needle-shaped form of nanostructures with good purity and high crystallinity index of 75.00 and 76.38%, respectively. In addition, inhibition of the treated MRC-5 cells with all the samples revealed that the percentage of cell viability was less than 30%, which is an interesting finding given their role in the cytotoxicity effect of MCC and NCC. It appears that MCC and NCC derived from pineapple leaves have lower toxicity. As a result, the developed MCC and NCC can be used in pharmaceutical applications as a novel drug delivery system. Molecular docking was performed to understand the non-bonding interaction of cellulose with human acid-beta-glucosidase (β-Glc) (PDB: 1OGS). The docking result shows that cellulose unit docked within the active pocket of the enzyme by forming hydrogen bonds against ASN19, THR21, and VAL17 with distances of 2.18, 1.93, and 2.92 Å, respectively, with binding energy (−5.0 kcal/mol) resulting in close interaction of cellulose unit with the receptor.
Collapse
Affiliation(s)
- Muhammad Hanif Sainorudin
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| | - Nur Athirah Abdullah
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| | - Mohd Saiful Asmal Rani
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia , 14300 Nibong Tebal , Penang , Malaysia
| | - Masita Mohammad
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| | - Munirah Mahizan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| | - Nursyazwani Shadan
- Faculty Science and Marine Environment, Universiti Malaysia Terengganu , 21030 Kuala Nerus , Terengganu , Malaysia
| | - Nurul Huda Abd Kadir
- Faculty Science and Marine Environment, Universiti Malaysia Terengganu , 21030 Kuala Nerus , Terengganu , Malaysia
| | - Zahira Yaakob
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , 43600 , Bangi , Selangor , Malaysia
| | - Adel El-Denglawey
- Department of Physics, College of University College at Turabah, Taif University , P.O. Box 11099 , Taif 21944 , Saudi Arabia
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University , 123 Dongdae-ro , Gyeongju-780-714 , Republic of Korea
| |
Collapse
|
28
|
Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers. 3 Biotech 2021; 11:334. [PMID: 34221805 DOI: 10.1007/s13205-021-02838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022] Open
Abstract
Banana pseudostem, a cellulose-rich by-product, is regarded as an important agricultural waste during the process of banana production. Microcrystalline cellulose was successfully prepared from banana pseudostem using acid hydrolysis method. Microcrystalline cellulose was characterized through various techniques such as XRD, TGA, SEM, FTIR and antioxidant activity to explore the possible applications in the pharmaceutical industries especially as a drug delivery vehicle. The investigation revealed that the derived microcrystalline cellulose is non-aggregated, short rods with high crystallinity index 67% and stable up to 347 °C. FTIR spectroscopy showed that hydrolysis treatments are efficient for the removal of lignin and hemicellulose content. Microcrystalline cellulose exhibited good antioxidant activity 90.29% at 100 μg/ml. In vitro studies for the drug release were carried out in simulated intestinal fluid (SIF) using Isoniazid drug. The study proves that microcrystalline cellulose can be directly obtained from banana pseudostem which is not only beneficial to reduce the cost of traditional microcrystalline cellulose but is also conducive to the value-added utilization of the pseudostem.
Collapse
|
29
|
Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydr Polym 2020; 250:116937. [DOI: 10.1016/j.carbpol.2020.116937] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
|
30
|
Oh Y, Park S, Jung D, Oh KK, Lee SH. Effect of hydrogen bond donor on the choline chloride-based deep eutectic solvent-mediated extraction of lignin from pine wood. Int J Biol Macromol 2020; 165:187-197. [PMID: 32991892 DOI: 10.1016/j.ijbiomac.2020.09.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
In this work, twenty-five kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) containing acid, hydroxyl, amide, and binary hydrogen bond donors (HBDs) were prepared and successfully used to pretreat pine wood powder. As a result of the pretreatment, the glucan content in the pretreated biomass was increased, whereas the contents of hemicellulose and lignin were significantly decreased. The biomass pretreatment efficiency of the DESs had improved with increasing the polarity and hydrogen bond acidity (α) of the DESs. Among the studied DESs, ChCl:lactic acid:formic acid (1:1:1) with the highest α value was the most efficient DES in extracting lignin from biomass. The pretreated biomass also showed an enhanced enzymatic saccharification yield owing to the decreased particle size of the biomass and reduced content of hemicellulose and lignin. During the pretreatment process of biomass using DESs, the extracted lignin could be recovered successfully, with a yield of up to 60% and purity of over 90%. The molecular weight of the extracted lignin was much lower than that of the native cellulolytic enzyme lignin. The DES used for pretreatment process could be also successfully reused with high recovery yield of DES and high retention of delignification capacity.
Collapse
Affiliation(s)
- Yujin Oh
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Dahun Jung
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Yongin 16890, Gyeonggi, South Korea
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|