1
|
Akdaşçi E, Duman H, Eker F, Bechelany M, Karav S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:126. [PMID: 39852740 PMCID: PMC11768082 DOI: 10.3390/nano15020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products. Within the context of the antibacterial mechanism of chitosan and chitosan NPs, we present a review that provides an overview of the synthesis methods, including novel procedures, and compiles the applications that have been developed in the field of biomedicine. These applications include wound healing, drug delivery, dental treatment, water purification, agriculture, and food preservation. In addition to this, we focus on the mechanisms of action and the factors that determine the antibacterial activity of chitosan and its derivatives. In conjunction with this line of inquiry, researchers are strongly urged to concentrate their efforts on developing novel and ground-breaking applications of chitosan NPs.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| | - Mikhael Bechelany
- European Institute for Membranes (IEM), UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (H.D.); (F.E.)
| |
Collapse
|
2
|
Eze FN, Jayeoye TJ, Eze RC, Ovatlarnporn C. Construction of carboxymethyl chitosan/PVA/chitin nanowhiskers multicomponent film activated with Cotylelobium lanceolatum phenolics and in situ SeNP for enhanced packaging application. Int J Biol Macromol 2024; 255:128073. [PMID: 37972834 DOI: 10.1016/j.ijbiomac.2023.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/28/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
This work focused on the construction of bioactive packaging films based on carboxymethyl chitosan and poly(vinyl alcohol) (CMP) as polymeric matrix and fortified with chitin nanowhiskers, Cotylelobium lanceolatum phenolic extract (CL) and in situ synthesized nano selenium. Extensive morphological, microstructural, physical and mechanical analysis revealed that the nanofillers were well-dispersed and integrated into CMP matrix. Incorporation of the extract and nano selenium produced excellent UV blocking properties without seriously compromising the transparency of the composite (CMP/CNW/CLNS1) film. Moreover, blending of CMP with the filler materials significantly elevated (p < 0.05) the surface hydrophobicity (WCA by 35.4°), water barrier (by 53.86 %), tensile strength (from 29.35 to 33.09 MPa), elongation at break (from 64.28 to 96.48 %), and thermal properties of the resultant CMP/CNW/CLNS1 film, with concomitant reduction in water solubility and swellability. Furthermore, the CMP/CNW/CLNS films exhibited remarkable improvement in antioxidant properties. When used for packaging of peeled fresh garlic cloves, the CMP/CNW/CLNS1 film pouch, not the plain CMP or CMP/CNW film pouches, inhibited weight loss, oxidative browning, and the emergence of black mold on the packaged cloves. The developed CMP/CNW/CLNS1 film demonstrated enhanced capacity to safeguard the quality of packaged food and improved shelf life. Therefore, the present study suggests that incorporation of CNW/CLNS into carboxymethyl chitosan/PVA films is a suitable and facile strategy for the fabrication of films with improved mechanical, physico-chemical and functional properties with great potential for application as a sustainable active packaging material in the food industry.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand
| | - Chitchamai Ovatlarnporn
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
3
|
Gopalakrishnan S, Kannan P, Balasubramani K, Rajamohan N, Rajasimman M. Sustainable remediation of toxic congo red dye pollution using bio based carbon nanocomposite: Modelling and performance evaluation. CHEMOSPHERE 2023; 343:140206. [PMID: 37734504 DOI: 10.1016/j.chemosphere.2023.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Remediation of synthetic dyes found in aqueous environment poses a serious challenge for treatment due to their resistance to chemical and biological degradation. This research study investigated the application of Chitosan-ZnO-Seaweed bio nanocomposite in the remediation of congo red. The novel bionanocomposite was characterised by FTIR, SEM, TEM, EDS and XRD studies. The FTIR spectra and SEM images indicated the adsorption of congo red onto the synthesized bionanocomposite. The batch wise experimental studies were done to explore the influence of process variables on removal of congo red from synthetic wastewater and to determine optimized conditions. Under optimized conditions of pH 3, temperature 40 °C, initial congo red concentration 50 mg/L, bionanocomposite quantity 0.03 g/L and interaction period 30 min, the bionanocomposite removed 95.64% of congo red. Thermodynamic studies were carried out and the parameters, ΔH° and ΔS° were found to be 38.386 kJ/mol and 0.1451 kJ/mol. K, respectively. The isotherm and kinetic study showed that monolayer Langmuir model was obeyed (R2 = 0.968) and the experimental value of congo red adsorption correlated well with pseudo second order model (R2 = 0.9938) respectively. The maximum adsorption capacity was found to be 303.03 mg/g. Protonated amino group of chitosan, hydroxyl group of seaweed accounts for congo red adsorption along with zinc oxide.
Collapse
Affiliation(s)
- Sarojini Gopalakrishnan
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India.
| | - Pownsamy Kannan
- Department of Chemistry, V.S.B. College of Engineering Technical Campus, Coimbatore, India
| | - Kuppusamy Balasubramani
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley Campus, Coimbatore, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | | |
Collapse
|
4
|
Alioghli Ziaei A, Erfan-Niya H, Fathi M, Amiryaghoubi N. In situ forming alginate/gelatin hybrid hydrogels containing doxorubicin loaded chitosan/AuNPs nanogels for the local therapy of breast cancer. Int J Biol Macromol 2023; 246:125640. [PMID: 37394211 DOI: 10.1016/j.ijbiomac.2023.125640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this study, pH-sensitive in situ gelling hydrogels based on oxidized alginate and gelatin-containing doxorubicin (DOX) loaded chitosan/gold nanoparticles (CS/AuNPs) nanogels were fabricated via Schiff-base bond formation. The obtained CS/AuNPs nanogels indicated a size distribution of about 209 nm with a zeta potential of +19.2 mV and an encapsulation efficiency of around 72.6 % for DOX. The study of the rheological properties of hydrogels showed that the value of G' is higher than G″ for all hydrogels, which confirms the elastic behavior of hydrogels in the applied frequency range. The rheological and texture analysis demonstrated the higher mechanical properties of hydrogels containing β-GP and CS/AuNPs nanogels. The release profile of DOX after 48 h indicates the 99 % and 73 % release amount at pH = 5.8 and pH = 7.4, respectively. MTT cytotoxicity study showed that the prepared hydrogels are cytocompatible on MCF-7 cells. By the Live/Dead assay, it was demonstrated that the cultured cells on DOX-free hydrogels were almost alive in the presence of CS/AuNPs nanogels. However, the hydrogel-containing drug and free DOX in the same concentration caused high death of MCF-7 cells as expected, which showed the potential of the developed hydrogels for application in the local treatment of breast cancer.
Collapse
Affiliation(s)
- Anahita Alioghli Ziaei
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Post grafted gallic acid to chitosan-Ag hybrid nanoparticles via free radical-induced grafting reactions. Int J Biol Macromol 2023; 233:123395. [PMID: 36702225 DOI: 10.1016/j.ijbiomac.2023.123395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The present study proposes two unique systems using free radical-induced grafting reactions to combine Ag, chitosan (CS) and gallic acid (GA) into a single particulate nanostructure. GA-grafted-CS (GA-g-CS) was used to reduce Ag+ to Ag0, and producing Ag-GA-g-CSNPs (hybrid NPs I). Also, GA was grafted into CS-AgNPs, to form GA-g-CS AgNPs (hybrid NPs II). Although there were previous attempts to graft GA into CS, this is first time to graft GA into CS-AgNPs. The study aimed to enhance biocompatibility, antibacterial and antioxidant properties of CS-AgNPs via grafted GA. Grafting GA into CS-AgNPs was confirmed by UV-Vis, DLS, DSC/TGA, XRD, EDX and FTIR. The morphology and size of NPs were studied by TEM and SEM. The decrease of ζ-potential from +50 mV in CS-Ag NPs to +33 and + 29 mV, in the presented 2 nanoforms hybrid NPs I and II, respectively, is an indication for the successful GA graft. Among all samples, hybrid NPs II showed lower toxicity, higher antioxidant and antibacterial activity. The obtained results revealed that grafting GA to CS-AgNPs, as a new method to combine Ag, CS and GA in a uniparticulate structure, is a unique process which may deserve a more future consideration.
Collapse
|
6
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
7
|
Ranjithkumar R, Van Nguyen C, Wong LS, Thiruvengadam Nandagopal JG, Djearamane S, Palanisamy G, Bharathi D, Lee J. Chitosan functionalized bismuth oxychloride/zinc oxide nanocomposite for enhanced photocatalytic degradation of Congo red. Int J Biol Macromol 2023; 225:103-111. [PMID: 36481334 DOI: 10.1016/j.ijbiomac.2022.11.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
The industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route. The physiochemical characterization revealed that the synthesized nanocomposite have crystalline, agglomerated spherical along with rod shaped morphology and size range from 35 to 160 nm. FTIR peaks at 825, 727, 662 and 622 cm-1 specified the presence of BiO and ZnO bonds, whereas peak at 1635 cm-1 revealed the existence of amine groups which confirms the presence of CS in the synthesized CS-BiOCl/ZnO nanocomposite. Catalytic property of synthesized nanocomposite was evaluated by the degradation of Congo red (CR) under UV-light irradiation. CR dye degradation percentage was found to be 93 % within a short period of 40 min by utilizing UV-light. Furthermore, reusability of CS-BiOCl/ZnO photocatalyst was also investigated, and it remained significant photocatalytic activity after three consecutive cycles. Hence, the results obtained in this study revealed that CS-BiOCl/ZnO nanocomposite can be used as a potential photocatalyst to remediate organic pollutants in various industries.
Collapse
Affiliation(s)
- Rajamani Ranjithkumar
- Medicinal Chemistry, Hi-tech Agriculture & Bioactive Compounds Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Chi Van Nguyen
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | | | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India; Viyen Biotech LLP, Coimbatore 034, Tamilnadu, India.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
8
|
Elhabak M, Ibrahim S, Ibrahim RR. Intra-vaginal Gemcitabine-Hybrid Nanoparticles for effective cervical cancer treatment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mi XJ, Choi HS, Park HR, Kim YJ. Structural characterization and anti-inflammatory properties of green synthesized chitosan/compound K‑gold nanoparticles. Int J Biol Macromol 2022; 213:247-258. [PMID: 35640850 DOI: 10.1016/j.ijbiomac.2022.05.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
Abstract
Ginsenoside compound K (CK) has been shown to exhibit anti-inflammatory properties. In this study, to encourage biomedical applications of biosynthesized gold nanoparticles (AuNPs) with anti-inflammatory effects, AuNPs loaded with ginsenoside compound K were prepared using a self-assembly technique with chitosan as the carrier. Optimal conditions for chitosan-ginsenoside CK‑gold nanoparticles (CS-CK-AuNPs) formation were monitored using UV-Vis absorption spectroscopy. The physicochemical characterization of CS-CK-AuNPs was performed using FE-TEM, FE-SEM, XRD, DLS, FTIR and NMR techniques. In the stability test, CS-CK-AuNPs did not show any significant changes up to 4 weeks. Fluorescence imaging demonstrated that CS-CK-AuNPs promoted cellular uptake in vitro, but did not exhibit significant cytotoxicity at concentrations below 40 μg/mL. Additionally, the CS-CK-AuNPs inhibited NO production, and reduced the expression and secretion of inflammatory cytokines (IL-1β, IL-6, and TNF-α) via inhibition of the nuclear factor-kappaB (NF-κB) pathway in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Thus, CS-CK-AuNPs are novel candidates for developing anti-inflammatory agent. This study also confirms the superiority of chitosan AuNPs as oral delivery vehicles for inflammation-related diseases.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Gyeonggi-do, South Korea
| | - Han Sol Choi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Gyeonggi-do, South Korea
| | - Hye-Ryung Park
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Gyeonggi-do, South Korea.
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. CRYSTALS 2022. [DOI: 10.3390/cryst12050589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Numerous specialists and academics have backed the improved physicochemical characteristics of metal substrate (Ag, Au) based composite nanoparticles for a number of applications, including pharmaceuticals, optoelectronics, and environmental impact. Insights of Ag and Au NPs-based nanomaterials will be discussed, as well as important production, physicochemical, and biotechnological characteristics. The plasmon capacities of Ag and Au NPs, along with their customisable form, scale, and surface modification could be described by specified geometries and constituent contents. It was revealed that interaction dynamics of Ag and Au implanted nanomaterials with dopants/defects ratios seem to be more effective in stimulating pathogens by interrupting biochemical reactions. As a result, we focus on defect science in Ag and Au-based nanoscale materials, taking into account surface morphology, ionic packing, and chemical phase assessment. This chapter will cover the important optical, geometrical, and physicochemical features of Ag and Au nanomaterials, and their pharmacological significance.
Collapse
|
11
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
12
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
13
|
Baghban N, Khoradmehr A, Nabipour I, Tamadon A, Ullah M. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. GOLD BULLETIN 2022; 55:53-63. [DOI: 10.1007/s13404-021-00304-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2025]
|
14
|
Al-Zahrani SS, Bora RS, Al-Garni SM. Antimicrobial activity of chitosan nanoparticles. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2027816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Samiyah Saeed Al-Zahrani
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Arts and Science, Albaha University, Albaha, Kingdom of Saudi Arabia
| | - Roop Singh Bora
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
| | - Saleh Mohammed Al-Garni
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Advancements in Fabrication and Application of Chitosan Composites in Implants and Dentistry: A Review. Biomolecules 2022; 12:biom12020155. [PMID: 35204654 PMCID: PMC8961661 DOI: 10.3390/biom12020155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/05/2023] Open
Abstract
Chitosan is a biopolymer that is found in nature and is produced from chitin deacetylation. Chitosan has been studied thoroughly for multiple applications with an interdisciplinary approach. Antifungal antibacterial activities, mucoadhesion, non-toxicity, biodegradability, and biocompatibility are some of the unique characteristics of chitosan-based biomaterials. Moreover, chitosan is the only widely-used natural polysaccharide, and it is possible to chemically modify it for different applications and functions. In various fields, chitosan composite and compound manufacturing has acquired much interest in developing several promising products. Chitosan and its derivatives have gained attention universally in biomedical and pharmaceutical industries as a result of their desired characteristics. In the present mini-review, novel methods for preparing chitosan-containing materials for dental and implant engineering applications along with challenges and future perspectives are discussed.
Collapse
|
16
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Matrix-dispersed magnetic molecularly-imprinted polyaniline for the effective removal of chlorpyrifos pesticide from contaminated water. RSC Adv 2021; 11:39768-39780. [PMID: 35494104 PMCID: PMC9044561 DOI: 10.1039/d1ra07833j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
We report a new adsorbent nanocomposite material based on matrix-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) in molecularly-imprinted polyaniline for the removal of chlorpyrifos (CPF), a hazardous organophosphate pesticide, from water. The synthesized magnetic molecularly-imprinted polymer (MMIP) was characterized by FTIR spectroscopy, XRD, magnetic susceptibility, DLS, zeta potential measurement, SEM and high-resolution TEM imaging. The average size of the naked SPIONs ranges from 15 to 30 nm according to the high-resolution TEM analysis. Moreover, the adsorption kinetics, thermodynamic parameters (ΔG, ΔH and ΔS), adsorption isotherms and rebinding conditions were investigated in detail. The proposed MMIP has an imprinting factor of 1.64. In addition, it showed a high experimental adsorption capacity of 1.77 mg g-1 and a removal efficiency of nearly 80%. The fabricated MMIP material demonstrated excellent magnetic susceptibility allowing for easy separation using an external magnetic field. The adsorption mechanism of CPF onto the MMIP adsorbent followed the second-order kinetics model and fitted to the Temkin adsorption isotherm. By studying the adsorption thermodynamics, negative ΔG values (-1.955 kJ mol-1 at room temperature) were obtained revealing that the adsorption process is spontaneous. Furthermore, the maximum adsorption capacity was obtained at room temperature (ca. 303 K), neutral pH and using a high CPF concentration.
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
17
|
Abd-Elsalam WH, Ibrahim RR. Span 80/TPGS modified lipid-coated chitosan nanocomplexes of acyclovir as a topical delivery system for viral skin infections. Int J Pharm 2021; 609:121214. [PMID: 34678396 DOI: 10.1016/j.ijpharm.2021.121214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023]
Abstract
Acyclovir (ACR) is considered the gold standard drug for the treatment of skin viral infections caused by the herpes simplex or varicella-zoster virus. However, topical therapy with ACR is hindered by its poor skin penetrability, thus necessitating high doses and frequent administrations. This study was proposed to formulate a modified lipid-coated chitosan nanocomplexes (LCNCs) of acyclovir (ACR), containing span 80 and TPGS, to boost the dermal delivery of ACR and improve the therapeutic outcomes. LCNCs were formulated through a self-assembly method, and the statistical analysis and the optimization were performed via a general 23 factorial design. Three formulation variables were selected; namely, the amount of chitosan (A), the amount of glyceryl monooleate (GMO) (B), and span 80: D-α-tocopheryl polyethylene glycol succinate (Vitamin ETPGSorTPGS) ratio (C). Four measured attributes were determined; viz., the particle size (PS) in nm, the polydispersity index (PDI), the zeta potential (ZP) in mV, and the entrapment efficiency percentages (EE%). The optimal formulation (LCNCs 8), formulated with 600 mg chitosan, 120 mg GMO, and 3:1 span 80: TPGS ratio, possessed PS of 177.50 ± 1.41 nm, PDI value of 0.28 ± 0.02, ZP of -10.70 ± 0.85 mV, and EE% of 77.20 ± 2.40 %, and was able to sustain ACR release over 24 h. Transmission electron microscopy displayed LCNCs architecture as a polymeric core of chitosan with a lipid coat of GMO, and the solid-state characterization results confirmed the dispersion of ACR in LCNCs. The ex vivo permeation study and the in vivo dermatokinetics profile verified the boosted accumulation of ACR in the skin via LCNCs, while the confocal laser scanning microscopy revealed the heightened penetrability of LCNCs. The topical application of LCNCs demonstrated a safe profile via the modified Draize test and histopathological examinations. Inclusively, ACR-loaded LCNCs could be a promising topical formulation with an advanced dermal delivery status for the treatment of skin viral infections.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Reem R Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan, Ain Helwan University, Cairo, Egypt
| |
Collapse
|
18
|
Sharaf SM, Al-Mofty SED, El-Sayed ESM, Omar A, Abo Dena AS, El-Sherbiny IM. Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. Int J Biol Macromol 2021; 193:2029-2037. [PMID: 34774591 DOI: 10.1016/j.ijbiomac.2021.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023]
Abstract
Every year, about 1 out of 9 get burnt in Egypt, with a mortality rate of 37%, and they suffer from physical disfigurement and trauma. For the treatment of second-degree burns, we aim at making a smart bandage provided with control of drug release (using chitosan nanoparticles) to enhance the healing process. This bandage is composed of natural materials; namely, cellulose acetate (CA), chitosan, and propolis (bee resin) as the loaded drug. Cellulose acetate nanofibers were deacetylated by NaOH after optimizing the reaction time and the concentration of NaOH solution, and the product was confirmed with FTIR analysis. Chitosan/propolis nanoparticles were prepared by ion gelation method with size ranging from 100 to 200 nm and a polydispersity index of 0.3. Chitosan/propolis nanoparticles were preloaded in the CA solution to ensure homogeneity. Loaded deacetylated cellulose nanofibers have shown the highest hydrophobicity measured by contact angle. Cytotoxicity of propolis and chitosan/propolis nanoparticles were tested and the experimental IC50 value was about 137.5 and 116.0 μg/mL, respectively, with p-value ≤0.001. In addition, chitosan/propolis nanoparticles loaded into cellulose nanofibers showed a cell viability of 89.46% in the cell viability test. In-vivo experiments showed that after 21 days of treatment with the loaded nanofibers repairing of epithelial cells, hair follicles and sebaceous glands in the skin of the burn wound were found in albino-mice model.
Collapse
Affiliation(s)
- Sommaya M Sharaf
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Saif El-Din Al-Mofty
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt
| | - El-Sayed M El-Sayed
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Amina Omar
- Physics Department, Biophysics Branch, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 of October City 12578, Giza, Egypt.
| |
Collapse
|
19
|
Madhan G, Begam AA, Varsha LV, Ranjithkumar R, Bharathi D. Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. Int J Biol Macromol 2021; 190:259-269. [PMID: 34419540 DOI: 10.1016/j.ijbiomac.2021.08.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
In this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD. Morphological analysis through FE-SEM and TEM showed a rod like appearance for ZnO NPs and agglomerated grains with rod shaped morphology was observed for the CS/ZnO nanocomposite. The peaks around 400-800 cm-1 in the IR spectrum of nanocomposite indicated the vibrations of metal-oxygen (ZnO), whereas bands at 1659 cm-1 and 1546 cm-1 indicated the presence of amine groups, which confirms the CS in the synthesized CS/ZnO nanocomposite. The CS/ZnO nanocomposite exhibited remarkable growth inhibition activity against B. subtilis and E. coli with 22 ± 0.3 and 16.5 ± 0.5 mm zone of inhibitions. In addition, CS/ZnO nanocomposite treated cotton fabrics also exhibited antibacterial activity against B. subtilis and E. coli. Furthermore, the ZnO NPs and nanocomposite showed time depended photodegradation activity and revealed 76% and 91% decomposition of CR under sunlight irradiation. In conclusion, our study revealed that the functionalization of biopolymer CS to the inorganic ZnO enhances the bio and catalytic properties.
Collapse
Affiliation(s)
- Gunasekaran Madhan
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - A Ayisha Begam
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - L Vetri Varsha
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | | | - Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India.
| |
Collapse
|
20
|
Mohamady Hussein MA, Ulag S, Abo Dena AS, Sahin A, Grinholc M, Gunduz O, El-Sherbiny I, Megahed M. Chitosan/Gold Hybrid Nanoparticles Enriched Electrospun PVA Nanofibrous Mats for the Topical Delivery of Punica granatum L. Extract: Synthesis, Characterization, Biocompatibility and Antibacterial Properties. Int J Nanomedicine 2021; 16:5133-5151. [PMID: 34354349 PMCID: PMC8331124 DOI: 10.2147/ijn.s306526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Intending to obtain Punica granatum L. extract (PE)-loaded drug delivery system of better impact and biomedical applicability, the current study reports the use of crosslinked PVA nanofibers (NFs) as platforms incorporating different amounts of biosynthesized PE-CS-gold nanoparticles (PE-CS-Au NPs). Methods PE-conjugated CS-Au nanoparticles (PE-CS-Au NPs) were synthesized via green chemistry approach. The formation of PE-CS-Au NPs was confirmed by UV spectroscopy, DLS, SEM and STEM. PE-CS-Au NPs were then dispersed into polyvinyl alcohol (PVA) solution at different ratios, where the optimized ratios were selected for electrospinning and further studies. Crosslinking of PE-CS-Au NPs loaded PVA nanofibers (NFs) was performed via glutaraldehyde vapor. The morphology, chemical compositions, thermal stability and mechanical properties of PE-CS-Au NPs loaded NFs were evaluated by SEM, FTIR and DSC. Swelling capacity, biodegradability, PE release profiles, release kinetics, antibacterial and cell biocompatibility were also demonstrated. Results By incorporating PE-CS-Au NPs at 0.6% and 0.9%, the diameters of the nanofibers decreased from 295.7±83.1 nm in neat PVA to 165.6±43.4 and 147.8±42.7 nm, respectively. It is worth noting that crosslinking and incorporation of PE-CS-Au NPs improved thermal stability and mechanical properties of the obtained NFs. The release of PE from NFs was controlled by a Fickian diffusion mechanism (n value ˂0.5), whereas Higuchi was the mathematical model which could describe this release. The antibacterial activity was found to be directly proportional to the amount of the incorporated PE-CS-Au NPs. The human fibroblasts (HFF-1) showed the highest viability (123%) by seeding over the PVA NFs mats containing 0.9% PE-CS-Au NPs. Conclusion The obtained results suggest that the electrospun PVA NFs composites containing 0.9% PE-CS-Au NPs can be used as antibacterial agents against antibiotic-resistant bacteria, and as suitable scaffolds for cell adhesion, growth and proliferation of fibroblast populations.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen, 52074, Germany.,Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Songul Ulag
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Turkey
| | - Ahmed S Abo Dena
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, 34722, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Turkey.,Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, 34722, Turkey
| | - Ibrahim El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen, 52074, Germany
| |
Collapse
|
21
|
Mohamady Hussein MA, Guler E, Rayaman E, Cam ME, Sahin A, Grinholc M, Sezgin Mansuroglu D, Sahin YM, Gunduz O, Muhammed M, El-Sherbiny IM, Megahed M. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr Polym 2021; 270:118373. [PMID: 34364617 DOI: 10.1016/j.carbpol.2021.118373] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Dual-drug delivery systems were constructed through coaxial techniques, which were convenient for the model drugs used the present work. This study aimed to fabricate core-shell electrospun nanofibrous membranes displaying simultaneous cell proliferation and antibacterial activity. For that purpose, phenytoin (Ph), a well-known proliferative agent, was loaded into a polycaprolactone (PCL) shell membrane, and as-prepared silver-chitosan nanoparticles (Ag-CS NPs), as biocidal agents, were embedded in a polyvinyl alcohol (PVA) core layer. The morphology, chemical composition, mechanical and thermal properties of the nanofibrous membranes were characterized by FESEM/STEM, FTIR and DSC. The coaxial PVA-Ag CS NPs/PCL-Ph nanofibers (NFs) showed more controlled Ph release than PVA/PCL-Ph NFs. There was notable improvement in the morphology, thermal, mechanical, antibacterial properties and cytobiocompatibility of the fibers upon incorporation of Ph and Ag-CS NPs. The proposed core-shell PVA/PCL NFs represent promising scaffolds for tissue regeneration and wound healing by the effective dual delivery of phenytoin and Ag-CS NPs.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen 52074, Germany; Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt.
| | - Ece Guler
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey
| | - Erkan Rayaman
- Department of Pharmaceutical Microbiology, Marmara University, Istanbul, Turkey.
| | - Muhammet Emin Cam
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34716, Turkey; Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| | - Ali Sahin
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey.
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland.
| | - Demet Sezgin Mansuroglu
- Polymer Technologies and Composite Application and Research Center (ArelPOTKAM), Istanbul Arel University, Istanbul 34537, Turkey
| | - Yesim Müge Sahin
- Polymer Technologies and Composite Application and Research Center (ArelPOTKAM), Istanbul Arel University, Istanbul 34537, Turkey.
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey.
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, Aachen 52074, Germany.
| |
Collapse
|
22
|
Comparison of Antimicrobial Activity of Chitosan Nanoparticles against Bacteria and Fungi. COATINGS 2021. [DOI: 10.3390/coatings11070769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan nanoparticles (CSNPs) have attracted wide interest; however, there has been no substantial information about a direct comparison of the antimicrobial activity of CSNPs on bacteria and fungi. Thus, in this study, simple, economically feasible CSNPs were synthesized and assessed for their antimicrobial activity. This investigation indicated that the coordination inducing effect of CSNPs could dissociate the tryptophan (Trp) and tyrosine (Tyr) residue groups on the peptide chain of the bovine serum albumin (BSA) molecule, thereby increasing the absorption intensity. The growth of E. coli and S. aureus could be completely inhibited when the concentration of CSNPs in the solution was higher than 0.6 mg/mL. The CSNPs showed more potent antibacterial activity against Gram-negative bacteria (E. coli) than against Gram-positive bacteria (S. aureus). In addition, the CSNPs were effective at initiating cellular leakage of fungal mycelia and damping off fungal pathogens, and their antifungal effects were stronger on P. steckii than on A. oryzae. Furthermore, the antimicrobial activity of the CSNPs was found to be more effective against bacteria than against fungi. This study thus ascertained the antimicrobial activity of synthesized CSNPs against different microorganisms, as well as their different degrees of inhibition.
Collapse
|
23
|
Hussein MAM, Grinholc M, Dena ASA, El-Sherbiny IM, Megahed M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr Polym 2021; 256:117498. [DOI: 10.1016/j.carbpol.2020.117498] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
|
24
|
Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021; 7:e06456. [PMID: 33763612 PMCID: PMC7973307 DOI: 10.1016/j.heliyon.2021.e06456] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
The scientific explorations of nanoparticles for their inherent therapeutic potencies as antimicrobial and antiviral agents due to increasing incidences of antibiotic resistance have gained more attention in recent time. This factor amongst others necessitates the search for newer and more effective antimicrobial agents. Several investigations have demonstrated the prospects of nanoparticles in the treatment of various microbial infections. The therapeutic applications of nanoparticles as either delivery agent or broad spectrum inhibition agents in viral and microbial investigations can no longer be overlooked. Their large surface area to volume ratio made them an indispensable substance as delivery agents in many respect. Various materials have been used for the synthesis of nanoparticles with unique properties channelised to meet specific therapeutic requirement. This review focuses on the antibacterial, antifungal, and antiviral potential of nanoparticles with their probable mechanism of action.
Collapse
Affiliation(s)
- Shabnam Sharmin
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mizanur Rahaman
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Landmark University, P.M.B. 1001, Omu-Aran 251101, Kwara State, Nigeria
| |
Collapse
|
25
|
Gowri M, Latha N, Suganya K, Murugan M, Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev Ind Pharm 2021; 47:280-291. [PMID: 33493022 DOI: 10.1080/03639045.2021.1879835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteomyelitis is one of the infections of the bone, and the treatment needs to the infection problems. Here, a local therapeutic approach for efficient drug delivery systems was designed to enhance the antibiotic drug's therapeutic activity. Calcium-Alginate nanoparticle (Ca-Alg) crosslinked phosphorylated polyallylamine (PPAA) was prepared through the salting-out technique, and it achieved 82.55% encapsulation of Clindamycin drug. The physicochemical characterizations of FTIR, SEM/EDX, TEM, and XRD were investigated to confirm the materials nature and formation. Clindamycin loaded Ca-Alg/PPAA system showed sustained Clindamycin release from the carrier. Cell viability was assessed in bone-related cells by Trypan blue assay and MTT assay analysis method. Both assay results exhibited better cell viability of synthesized materials against MG63 cells. MIC value of Ca-Alg/PPAA/Clindamycin in the Methicillin-resistant Staphylococcus aureus (MRSA) pathogen was 275 µg/mL, and it was 120 µg/mL for Enterobacter cloacae pathogen. The materials promising material for Osteomyelitis affected bone regeneration without any destructive effect and speedy recovery of infected parts from these investigations.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Nachimuthu Latha
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Kannan Suganya
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
26
|
Nandana CN, Christeena M, Bharathi D. Synthesis and Characterization of Chitosan/Silver Nanocomposite Using Rutin for Antibacterial, Antioxidant and Photocatalytic Applications. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01947-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|