1
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Liu S, Chen H, Chen X, Luo N, Peraramelli S, Gong X, Zhang MJ, Ou L. Utilizing noncatalytic ACE2 protein mutant as a competitive inhibitor to treat SARS-CoV-2 infection. Front Immunol 2024; 15:1365803. [PMID: 38646520 PMCID: PMC11032047 DOI: 10.3389/fimmu.2024.1365803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.
Collapse
|
3
|
Maeshima R, Jacobs AI, Dalbay MT, Hart SL. BMI1 Transduction of Human Airway Epithelial Cells for Expansion of Proliferation and Differentiation. Methods Mol Biol 2024; 2725:225-237. [PMID: 37856028 DOI: 10.1007/978-1-0716-3507-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Air-liquid interface (ALI)-cultured cells are widely used as in vitro models of the human respiratory airway in studies of pulmonary physiology, disease, and therapies. However, the primary basal cells required to establish the ALI cultures generally lose their ability to differentiate by the second or third passage, requiring a fresh batch, which can be limiting, particularly from donors with rare genotypes or in studies where gene modification or editing is required. We have developed a method that preserves the ability to expand primary cells and maintain their capacity to differentiate by lentiviral transduction with BMI1. BMI1-transduced basal airway cells are maintained in submerged culture in the same way as primary basal cells but can be passaged more than 20 times retaining their differentiation capacity in ALI cultures. BMI1-transduced basal cells can be frozen and stored long term in liquid nitrogen, enabling transfer of samples between research groups.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amy I Jacobs
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melis T Dalbay
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen L Hart
- Cilia Disorders Section, Genetic and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
4
|
Functional Expression of the Recombinant Spike Receptor Binding Domain of SARS-CoV-2 Omicron in the Periplasm of Escherichia coli. Bioengineering (Basel) 2022; 9:bioengineering9110670. [DOI: 10.3390/bioengineering9110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant known as Omicron has caused a rapid increase in recent global patients with coronavirus infectious disease 2019 (COVID-19). To overcome the COVID-19 Omicron variant, production of a recombinant spike receptor binding domain (RBD) is vital for developing a subunit vaccine or a neutralizing antibody. Although bacterial expression has many advantages in the production of recombinant proteins, the spike RBD expressed in a bacterial system experiences a folding problem related to disulfide bond formation. In this study, the soluble Omicron RBD was obtained by a disulfide isomerase-assisted periplasmic expression system in Escherichia coli. The Omicron RBD purified from E. coli was very well recognized by anti-SARS-CoV-2 antibodies, sotrovimab (S309), and CR3022, which were previously reported to bind to various SARS-CoV-2 variants. In addition, the kinetic parameters of the purified Omicron RBD upon binding to the human angiotensin-converting enzyme 2 (ACE2) were similar to those of the Omicron RBD produced in the mammalian expression system. These results suggest that an E. coli expression system would be suitable to produce functional and correctly folded spike RBDs of the next emerging SARS-CoV-2 variants quickly and inexpensively.
Collapse
|
5
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
6
|
Wines BD, Kurtovic L, Trist HM, Esparon S, Lopez E, Chappin K, Chan LJ, Mordant FL, Lee WS, Gherardin NA, Patel SK, Hartley GE, Pymm P, Cooney JP, Beeson JG, Godfrey DI, Burrell LM, van Zelm MC, Wheatley AK, Chung AW, Tham WH, Subbarao K, Kent SJ, Hogarth PM. Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2. Front Immunol 2022; 13:889372. [PMID: 35967361 PMCID: PMC9369017 DOI: 10.3389/fimmu.2022.889372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 01/26/2023] Open
Abstract
Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.
Collapse
Affiliation(s)
- Bruce D. Wines
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Halina M. Trist
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Sandra Esparon
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Klasina Chappin
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Li-Jin Chan
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sheila K. Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Phillip Pymm
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Monash University, Clayton VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Louise M. Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Wang H, Li C, Obadan A, Frizzell H, Hsiang TY, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem HP, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther 2022; 33:389-403. [PMID: 35057635 PMCID: PMC9063208 DOI: 10.1089/hum.2021.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500–1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, 7284, Seattle, Washington, United States
| | - chang Li
- University of Washington, 7284, Medicine, 1959 NE Pacific Street, HSB K-263, Box357720, Seattle, Washington, United States, 98195
| | - Adebimpe Obadan
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Hannah Frizzell
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Tien-Ying Hsiang
- University of Washington, 7284, Department of Immunology, Seattle, Washington, United States
| | - Sucheol Gil
- University of Washington, 7284, Department of Medicine, Seattle, Washington, United States
| | - Audrey Germond
- University of Washington, 7284, Washington National Primate Research Center , Seattle, Washington, United States
| | - Connie Fountain
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Audrey Baldessari
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Steve Roffler
- Academia Sinica Division Of Humanities and Social Sciences, 485001, Institute of Biomedical Sciences, Taipei, Taiwan,
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, 7286, Clinical Research Division, 1100 Fairview Avenue N, D1-100, Seattle, Washington, United States, 98109-1024
- University of Washington School of Medicine, 12353, Seattle, United States, 98195-6340
| | - Deborah Fuller
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Andre Lieber
- University of Washington, 7284, Department of Medicine, Box 357720, Seattle, Washington, United States, 98195
- University of Washington
| |
Collapse
|
8
|
Alfaleh MA, Zawawi A, Al-Amri SS, Hashem AM. David versus goliath: ACE2-Fc receptor traps as potential SARS-CoV-2 inhibitors. MAbs 2022; 14:2057832. [PMID: 35380919 PMCID: PMC8986284 DOI: 10.1080/19420862.2022.2057832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape mutations. Therefore, several reports have suggested the administration of recombinant angiotensin-converting enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immunoadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated betacoronaviruses.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia
| | - Ayat Zawawi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah Saudi Arabia
| | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah Saudi Arabia
| |
Collapse
|
9
|
Castiglione GM, Zhou L, Xu Z, Neiman Z, Hung CF, Duh EJ. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biol 2021; 19:e3001510. [PMID: 34932561 PMCID: PMC8730403 DOI: 10.1371/journal.pbio.3001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/05/2022] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.
Collapse
Affiliation(s)
- Gianni M. Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zachary Neiman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Picomolar inhibition of SARS-CoV-2 variants of concern by an engineered ACE2-IgG4-Fc fusion protein. Antiviral Res 2021; 196:105197. [PMID: 34774603 PMCID: PMC8579703 DOI: 10.1016/j.antiviral.2021.105197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 enters host cells after binding through its spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor. Soluble ACE2 ectodomains bind and neutralize the virus, yet their short in vivo half-live limits their therapeutic use. This limitation can be overcome by fusing the fragment crystallizable (Fc) part of human immunoglobulin G (IgG) to the ACE2 ectodomain, but this bears the risk of Fc-receptor activation and antibody-dependent cellular cytotoxicity. Here, we describe optimized ACE2-IgG4-Fc fusion constructs that avoid Fc-receptor activation, preserve the desired ACE2 enzymatic activity and show promising pharmaceutical properties. The engineered ACE2-IgG4-Fc fusion proteins neutralize the original SARS-CoV, pandemic SARS-CoV-2 as well as the rapidly spreading SARS-CoV-2 alpha, beta and delta variants of concern. Importantly, these variants of concern are inhibited at picomolar concentrations proving that ACE2-IgG4 maintains - in contrast to therapeutic antibodies - its full antiviral potential. Thus, ACE2-IgG4-Fc fusion proteins are promising candidate anti-antivirals to combat the current and future pandemics.
Collapse
|
11
|
Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021; 89:1065-1078. [PMID: 33973262 PMCID: PMC8242511 DOI: 10.1002/prot.26140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
SARS coronavirus 2 is neutralized by proteins that block receptor-binding sites on spikes that project from the viral envelope. In particular, substantial research investment has advanced monoclonal antibody therapies to the clinic where they have shown partial efficacy in reducing viral burden and hospitalization. An alternative is to use the host entry receptor, angiotensin-converting enzyme 2 (ACE2), as a soluble decoy that broadly blocks SARS-associated coronaviruses with limited potential for viral escape. Here, we summarize efforts to engineer higher affinity variants of soluble ACE2 that rival the potency of affinity-matured antibodies. Strategies have also been used to increase the valency of ACE2 decoys for avid spike interactions and to improve pharmacokinetics via IgG fusions. Finally, the intrinsic catalytic activity of ACE2 for the turnover of the vasoconstrictor angiotensin II may directly address COVID-19 symptoms and protect against lung and cardiovascular injury, conferring dual mechanisms of action unachievable by monoclonal antibodies. Soluble ACE2 derivatives therefore have the potential to be next generation therapeutics for addressing the immediate needs of the current pandemic and possible future outbreaks.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Erik Procko
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of Biochemistry and Cancer Center at IllinoisUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
12
|
Tanaka S, Nelson G, Olson CA, Buzko O, Higashide W, Shin A, Gonzalez M, Taft J, Patel R, Buta S, Richardson A, Bogunovic D, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Sci Rep 2021; 11:12740. [PMID: 34140558 PMCID: PMC8211782 DOI: 10.1038/s41598-021-91809-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 variants replacing the first wave strain pose an increased threat by their potential ability to escape pre-existing humoral protection. An angiotensin converting enzyme 2 (ACE2) decoy that competes with endogenous ACE2 for binding of the SARS-CoV-2 spike receptor binding domain (S RBD) and inhibits infection may offer a therapeutic option with sustained efficacy against variants. Here, we used Molecular Dynamics (MD) simulation to predict ACE2 sequence substitutions that might increase its affinity for S RBD and screened candidate ACE2 decoys in vitro. The lead ACE2(T27Y/H34A)-IgG1FC fusion protein with enhanced S RBD affinity shows greater live SARS-CoV-2 virus neutralization capability than wild type ACE2. MD simulation was used to predict the effects of S RBD variant mutations on decoy affinity that was then confirmed by testing of an ACE2 Triple Decoy that included an additional enzyme activity-deactivating H374N substitution against mutated S RBD. The ACE2 Triple Decoy maintains high affinity for mutated S RBD, displays enhanced affinity for S RBD N501Y or L452R, and has the highest affinity for S RBD with both E484K and N501Y mutations, making it a viable therapeutic option for the prevention or treatment of SARS-CoV-2 infection with a high likelihood of efficacy against variants.
Collapse
Affiliation(s)
- Shiho Tanaka
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA.
| | - Gard Nelson
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - C Anders Olson
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Oleksandr Buzko
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Wendy Higashide
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Annie Shin
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Marcos Gonzalez
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
| | - Roosheel Patel
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave Lane, Levy Place, New York, NY, 10029-5674, USA
| | - Patricia Spilman
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | - Kayvan Niazi
- ImmunityBio, Inc., 9920 Jefferson Blvd., Culver City, CA, 90232, USA
| | | | | |
Collapse
|
13
|
Zhang X, Han P, Wang H, Xu Y, Li F, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Yang X. Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:754-764. [PMID: 34007862 PMCID: PMC8118700 DOI: 10.1016/j.omtm.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The emergence of the novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to the pandemic of coronavirus disease 2019 (COVID-19), which has markedly affected global health and the economy. Both uncontrolled viral replication and a proinflammatory cytokine storm can cause severe tissue damage in patients with COVID-19. SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as its entry receptor. In this study, we generated ACE2 extracellular domain-Fc and single-chain variable fragment-interleukin 6 (IL-6) single-chain variable fragment against IL-6 receptor (scFv-IL6R)-Fc fusion proteins to differentially neutralize viruses and ameliorate the cytokine storm. The human ACE2 (hACE2)1-740-Fc fusion protein showed a potent inhibitory effect on pseudo-typed SARS-CoV-2 entry and a good safety profile in mice. In addition, scFv-IL6R-Fc strongly blocked IL-6 signal activation. We also established a mesenchymal stromal cell (MSC)-based hACE21-740-Fc and scFv-IL6R-Fc delivery system, which could serve as a potential therapy strategy for urgent clinical needs of patients with COVID-19.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Dai
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai 201203, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Glasgow J, Glasgow A, Kortemme T, Wells JA. Reply to Liu et al.: Specific mutations matter in specificity and catalysis in ACE2. Proc Natl Acad Sci U S A 2021; 118:e2024450118. [PMID: 33833059 PMCID: PMC8053976 DOI: 10.1073/pnas.2024450118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jeff Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Anum Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
| |
Collapse
|
15
|
His345 mutant of angiotensin-converting enzyme 2 (ACE2) remains enzymatically active against angiotensin II. Proc Natl Acad Sci U S A 2021; 118:2023648118. [PMID: 33833058 PMCID: PMC8053926 DOI: 10.1073/pnas.2023648118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|