1
|
Soliman L, Party P, Nagy A, Farkas Á, Paróczai D, Burián K, Ambrus R. Enhanced pulmonary delivery of spray-dried theophylline: investigation of the trehalose and amino acid combinations as innovative fine carriers. Eur J Pharm Sci 2025; 209:107109. [PMID: 40280283 DOI: 10.1016/j.ejps.2025.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The emergence of novel carrier systems for dry powder inhalers is an attractive research subject. Additionally, the site-specific pulmonary delivery of theophylline (THN) remains challenging. Therefore, the present research aims to assess the potential enhancement of THN local delivery to the deep lung via powder inhalation for asthma treatment by developing appropriate fine carriers utilizing the well-established spray-drying technique. The preliminary study aimed to develop novel trehalose-based carrier systems combined with amino acids leucine, glycine, and arginine. Aqueous feedstock solutions were spray-dried, and the obtained microparticulate carriers were assessed. Subsequently, therapeutic powders were produced by spray drying ethanol 10 % solutions of THN combined with candidate-developed carriers. Following each sample preparation, it was subjected to structural, thermal, morphological, rheological, aerodynamic, and particle size distribution characterization. Furthermore, THN solubility was determined. In vitro drug release and diffusion, in vitro and in silico simulated lung deposition, and aerodynamic particle count were analyzed by applying samples equivalent to 10 mg of THN. To summarize the outcomes, carriers composed of trehalose with either leucine or a leucine-glycine combination demonstrated superior respirable properties and were considered candidates for further development. THN co-spray-dried samples showed less crystalline structure and particle size of 4-5 µm, leading to profound solubility enhancement (⁓20 fold) and rapid drug release compared to the pure THN (⁓100 % in 5 min). The in vitro and in silico aerodynamic measurements demonstrated that the THN-trehalose-leucine combination had a significantly enhanced fine particle fraction (43 %), leading to higher deep lung deposition (36 %), and the aerodynamic counter confirmed the development of fine particles (mean=3.61 µm). Moreover, the in vitro experiments on the A549 cells demonstrated that the optimized formulation has a low cytotoxicity profile. In conclusion, the acquired characteristics suggest that inhalable co-spray-dried THN with the trehalose-leucine fine carrier may be a practical approach for local asthma therapy.
Collapse
Affiliation(s)
- Lomass Soliman
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Street 29-33, Budapest 1121, Hungary
| | - Dóra Paróczai
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary; Department of Pulmonology, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt 107, H-6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary.
| |
Collapse
|
2
|
Saeed S, Farooq M, Arshad R, Adnan S, Ahmad H, Masood Z, Malik A, Saeed A, Tabish TA. Responding to Hitch in Fighting Mycobacterium Tuberculosis Through Arginine Multi Functionalized Mucoadhesive SNEDDS of Rifampicin. Macromol Biosci 2024; 24:e2400288. [PMID: 39319685 DOI: 10.1002/mabi.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Indexed: 09/26/2024]
Abstract
The study aimed to develop thiolated pluronic-based self-emulsifying drug delivery system (SNEDDS) targeted delivery of Rifampicin coated by arginine for enhanced drug loading, mucoadhesion, muco penetration, site-specific delivery, stabilized delivery against intracellular mycobacterium tuberculosis (M. tb), decreased bacterial burden and production by intracellular targeting. Oleic oil, PEG 200 and Tween 80 are selected as oil, co-surfactant and surfactant based on solubilizing capacity and pseudo ternary diagram region. Coating of thiolated polymer on SNEDDS with ligand arginine (Arg-Th-F407 SNEDDDS) decreased bacterial burden and production by intracellular targeting in macrophages. Formulation are evaluated through scanning electron microscope (SEM), EDAX analysis, diffraction laser scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and thermal analysis (DSC & TGA). Hydrodynamic diameter of thiolated polymeric SNEDDS (Th-F407 SNEDDS) and Arg-Th-F407 SNEDDS is observed to be 148.4 and 188.5 nm with low PDI of 0.4 and 0.3, respectively. Invitro drug release study from Arg-Th-F407 SNEDDS indicates 80% sustained release in 72 h under controlled conditions. Arg-Th-F407 SNEDDDS shows excellent capability of killing M.tb strains in macrophages even at low dose as compared to traditional rifampicin (RIF) and is found biocompatible, non-cytotoxic, and hemocompatible. Therefore, Arg-Th-F407 SNEDDDS of RIF proved ideal for targeting and treating M.tb strains within macrophages.
Collapse
Affiliation(s)
- Sana Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Muhammad Farooq
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
- Adjunct Faculty at Equator University of Science and Technology, Kampala, 21353, Uganda
| | - Sherjeel Adnan
- Faculty of Pharmacy, Grand Asian University Sialkot, Sialkot, 51040, Pakistan
| | - Hammad Ahmad
- Sialkot Institute of Science and Technology, Sialkot, 51070, Pakistan
| | - Zeeshan Masood
- School of Pharmacy, Multan University of Science and Technology, Multan, 60000, Pakistan
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Ayesha Saeed
- Faculty of Pharmacy, University of Lahore, Faculty Of Pharmacy, Lahore, 54000, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Mukhtar M, Csóka I, Martinović J, Šelo G, Bucić-Kojić A, Orosz L, Paróczai D, Burian K, Ambrus R. Fabrication of Ciprofloxacin-Loaded Sodium Alginate Nanobeads Coated with Thiol-Anchored Chitosan Using B-390 Encapsulator Following Optimization by DoE. Pharmaceutics 2024; 16:691. [PMID: 38931815 PMCID: PMC11206434 DOI: 10.3390/pharmaceutics16060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and off-site drug accumulation lead to an increased risk of tendinitis and peripheral neuropathy. To overcome this issue, nanotechnology is being exploited to encapsulate antibiotics within polymeric structures, which not only facilitates dose maintenance at the infection site but also limits off-site side effects. Here, sodium alginate (SA) and thiol-anchored chitosan (TC) were used to encapsulate CIP via a calcium chloride (CaCl2) cross-linker. For this purpose, the B-390 encapsulator was employed in the preparation of nanobeads using a simple technique. The hydrogel-like sample was then freeze-dried, using trehalose or mannitol as a lyoprotectant, to obtain a fine dry powder. Design of Experiment (DoE) was utilized to optimize the nanobead production, in which the influence of different independent variables was studied for their outcome on the polydispersity index (PDI), particle size, zeta potential, and percentage encapsulation efficiency (% EE). In vitro dissolution studies were performed in simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid. Antibacterial and anti-inflammatory studies were also performed along with cytotoxicity profiling. By and large, the study presented positive outcomes, proving the advantage of using nanotechnology in fabricating new delivery approaches using already available antibiotics.
Collapse
Affiliation(s)
- Mahwash Mukhtar
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (M.M.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (M.M.); (I.C.)
| | - Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31 000 Osijek, Croatia; (J.M.); (A.B.-K.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31 000 Osijek, Croatia; (J.M.); (A.B.-K.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31 000 Osijek, Croatia; (J.M.); (A.B.-K.)
| | - László Orosz
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (L.O.); (D.P.); (K.B.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (L.O.); (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (L.O.); (D.P.); (K.B.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (M.M.); (I.C.)
| |
Collapse
|
4
|
Patil SM, Diorio AM, Kommarajula P, Kunda NK. A quality-by-design strategic approach for the development of bedaquiline-pretomanid nanoparticles as inhalable dry powders for TB treatment. Int J Pharm 2024; 653:123920. [PMID: 38387819 DOI: 10.1016/j.ijpharm.2024.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M.tb) and is the second leading cause of death from an infectious disease globally. The disease mainly affects the lungs and forms granulomatous lesions that encapsulate the bacteria, making treating TB challenging. The current treatment includes oral administration of bedaquiline (BDQ) and pretomanid (PTD); however, patients suffer from severe systemic toxicities, low lung drug concentration, and non-adherence. In this study, we developed BDQ-PTD loaded nanoparticles as inhalable dry powders for pulmonary TB treatment using a Quality-by-Design (QbD) approach. The BDQ-PTD combination showed an additive/synergistic effect for M.tb inhibition in vitro, and the optimized drug ratio (1:4) was successfully loaded into polymeric nanoparticles (PLGA NPs). The QbD approach was implemented by identifying the quality target product profile (QTPPs), critical quality attributes (CQAs), and critical process parameters (CPPs) to develop efficient design space for dry powder preparation using spray drying. The three-factorial and three-level Box-Behnken Design was used to assess the effect of process parameters (CPPs) on product quality (CQAs). The Design of Experiments (DoE) analysis showed different regression models for product quality responses and helped optimize process parameters to meet QTPPs. The optimized dry powder showed excellent yield (72 ± 2 % w/w), high drug (BDQ-PTD) loading, low moisture content (<1% w/w), and spherical morphology. Further, aerosolization performance revealed the suitability of powder for deposition in the respiratory airways of the lungs (MMAD 2.4 µm and FPF > 75 %). In conclusion, the QbD approach helped optimize process parameters and develop dry powder with a suitable quality profile for inhalation delivery in TB patients.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Alec M Diorio
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Parasharamulu Kommarajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
5
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
6
|
Abduh MS. Anticancer Analysis of CD44 Targeted Cyclosporine Loaded Thiolated Chitosan Nanoformulations for Sustained Release in Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5713-5732. [PMID: 37849642 PMCID: PMC10577256 DOI: 10.2147/ijn.s424932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/30/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Cyclosporine (CsA), a potent immunosuppressive chemotherapeutic medication, treats numerous cancers, particularly malignant carcinoma, acute leukemia, and triple-negative breast cancer (TNBC). Methodology A specified polymeric nanoformulation (NF) based drug delivery technique with ligand functionalization at the surface was developed to improve its delivery at the intended area and boost the efficacy for prolonged time. The in silico verified the HA binding to the CD44 receptor at binding sites A and B in triple-negative breast cancer cells. The NF of encapsulated Cyclosporine in thiolated chitosan (TC) with the outermost coating of hyaluronic acid (HA) was formulated and characterized. Results So, the zeta analysis revealed a particle size of 192 nm and PDI of 0.433, zeta potential of 38.9mV. FTIR and Raman investigations also support the existence of hydrophobic groups, porous surfaces, and non-clumping characteristics. While XRD verified its crystallographic nature while SEM and TEM analysis revealed the spherical nanoparticles with sleek exteriors. DSC demonstrated the stability of NF at high temperatures. The NF showed 85% drug encapsulation followed Higuchi release model for therapeutic moiety at acidic pH for a maximum of 72 hours. When compared to raw Cyclosporine, the in vitro tumor cell inhibition of ThC-HA encapsulated with Cyclosporine was tested using an MTT dye on normal breast epithelial cells compared to triple-negative breast cancer cells. Conclusion This novel formulation improved the long-term viability, effectiveness, and active targeting as an effective and potent therapeutic moiety against cancer.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
8
|
Barrera-Rosales A, Rodríguez-Sanoja R, Hernández-Pando R, Moreno-Mendieta S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023; 11:1988. [PMID: 37630548 PMCID: PMC10459556 DOI: 10.3390/microorganisms11081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
Collapse
Affiliation(s)
- Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México;
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México 14080, México
| | - Silvia Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
9
|
Zeeshan M, Ain QU, Sunny A, Raza F, Mohsin M, Khan S, Weigmann B, Ali H. QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing. Biomater Sci 2023; 11:1373-1397. [PMID: 36594554 DOI: 10.1039/d2bm01719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) via the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells. Nanocarriers were produced using a modified emulsion-evaporation method with a protein adsorption technique. The QbD-risk assessment method was adopted to screen the variables impacting the quality of nanocarriers, which were then optimized using the 33 Box-Behnken design of experiment (DOE). The obtained nanocarriers have the desired physicochemical properties, drug entrapment, tfr adsorption, stability, mucoadhesion, and sustained drug release pattern at pH 7.4 (colon pH). In vitro cell-based studies confirmed the cellular biocompatibility and considerable uptake of nanocarriers by colon and macrophage cells; the uptake was diminished by anti-CD71/TFR1 antibodies. Tofa-P/tfr NCs demonstrated good colon targeting potential in the dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model. In vivo therapeutic efficacy against UC was established through restored morphological and histopathological scores, vascular integrity, antioxidant levels, hematological parameters, pro-inflammatory cytokine/marker levels, and microbial indices. Tofa-P/tfr NCs shut down the elevated STAT-1 and TFR-1 levels, demonstrating the enhanced efficacy of the encapsulated drug. Thus, the QbD-driven approach successfully developed Tofa-P/tfr NCs with good potential to mitigate mucosal inflammation by targeting colon and macrophage surface receptors.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan. .,Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
| | - Qurat Ul Ain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Ahad Sunny
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Mohsin
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen 91052, Germany
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
10
|
Zegarra-Urquia CL, Santiago J, Bumgardner JD, Goroncy AK, Vega-Baudrit J, Hernández-Escobar CA, Zaragoza-Contreras EA. Characterization of isoniazid incorporation into chitosan-poly(aspartic acid) nanoparticles. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2145287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Julio Santiago
- Departamento de Química Orgánica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joel D. Bumgardner
- Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA
| | | | - José Vega-Baudrit
- Centro Nacional de Alta Tecnología “Dr. Franklin Chang Díaz”, Laboratorio Nacional de Nanotecnología (LANOTEC), San José, Costa Rica
- POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Claudia A. Hernández-Escobar
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| | - E. Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, Chihuahua, Mexico
| |
Collapse
|
11
|
Lee SH, Yap WX, Jiang CQZ, Ler WX, Teo JWP, Ng SK, Heng D. Designing a ‘Ready-to-Use’ powder formulation platform for the inhaled protein therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
13
|
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081543. [PMID: 35893799 PMCID: PMC9330414 DOI: 10.3390/pharmaceutics14081543] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Marketed dosage forms fail to deliver anti-tubercular drugs directly to the lungs in pulmonary Tuberculosis (TB). Therefore, nanomediated isoniazid (INH)-loaded dry powder for inhalation (Nano-DPI) was developed for macrophage-targeted delivery in TB. Mannosylated chitosan (MC) and hyaluronic acid (HA) with an affinity for the surface mannose and CD44 receptors of macrophages were used in conjugation to prepare hybrid nanosuspension by ionic gelation method using cross-linker, sodium tri-polyphosphate (TPP) followed by freeze-drying to obtain a dry powder composed of nanoparticles (INH-MC/HA NPs). Nanoformulations were evaluated for aerodynamic characteristics, cytotoxicity, hemocompatibility, macrophage phenotype analysis, and immune regulation. Cellular uptake imaging was also conducted to evaluate the uptake of NPs. The nanopowders did not pose any significant toxicity to the cells, along with good compatibility with red blood cells (RBCs). The pro-inflammatory costimulatory markers were upregulated, demonstrating the activation of T-cell response. Moreover, the NPs did not show any tolerogenic effect on the macrophages. Furthermore, confocal imaging exhibited the translocation of NPs in the cells. Altogether, the findings present that nano-DPI was found to be a promising vehicle for targeting macrophages.
Collapse
|
15
|
Party P, Kókai D, Burián K, Nagy A, Hopp B, Ambrus R. Development of extra-fine particles containing nanosized meloxicam for deep pulmonary delivery: in vitro aerodynamic and cell line measurements. Eur J Pharm Sci 2022; 176:106247. [PMID: 35760279 DOI: 10.1016/j.ejps.2022.106247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Pulmonary drug administration provides a platform for the effective local treatment of various respiratory diseases. Application of nano-sized active ingredients results in higher bioavailability because of their large specific surface area. Extra-fine dry powder inhalers reach the smaller airways, further improving therapeutic efficiency. Poorly water-soluble meloxicam was the selected active ingredient. We aimed to decrease the particle size into the nano range by wet milling and producing extra-fine inhalable particles via nano spray-drying. The diameter of the drug was reduced to 138 nm. The particle size of the dry products was between 1.1-1.5 µm, and the dispersed diameter was between 500-800 nm. Owing to the excipients (poly-vinyl-alcohol, leucine), the spray-dried particles presented nearly spherical morphology. The drug became partially amorphous. Thanks to the improved surface area, the solubility and the released and the diffused amount of the meloxicam increased in artificial lung media. The in vitro aerodynamic measurements showed that the leucine-containing formulations had outstanding fine particle fraction (FPF) deposition with 1.3 µm mass median aerodynamic diameter (MMAD). The aerodynamic particle counter test also proved the extra-fine aerodynamic particle size. The in vitro cell line experiments revealed the non-cytotoxicity of the products and the suppression of the interleukin concentration. Overall, the powders are suitable for deep pulmonary delivery and the local treatment of lung inflammations.
Collapse
Affiliation(s)
- Petra Party
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary
| | - Dávid Kókai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Attila Nagy
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós street 29-33., 1121, Budapest, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm square 9., Szeged 6720 Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary.
| |
Collapse
|
16
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
17
|
Mohammed M, Devnarain N, Elhassan E, Govender T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1799. [PMID: 35485247 PMCID: PMC9539990 DOI: 10.1002/wnan.1799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA‐based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA‐based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up‐to‐date review that highlights various techniques of preparation of HA‐based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA‐based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA‐based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA‐based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy. Pharmaceutics 2022; 14:pharmaceutics14050959. [PMID: 35631546 PMCID: PMC9145552 DOI: 10.3390/pharmaceutics14050959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)–curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.
Collapse
|
19
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Zegarra-Urquia CL, Santiago J, Bumgardner JD, Vega-Baudrit J, Hernández-Escobar CA, Zaragoza-Contreras EA. Synthesis of nanoparticles of the chitosan-poly((α,β)-DL-aspartic acid) polyelectrolite complex as hydrophilic drug carrier. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2029440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Julio Santiago
- Departamento de Química Orgánica, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Joel D. Bumgardner
- Biomedical Engineering, The University of Memphis, Memphis, Tennessee, USA
| | - José Vega-Baudrit
- Centro Nacional de Alta Tecnología “Dr. Franklin Chang Díaz”, Laboratorio Nacional de Nanotecnología (LANOTEC), San José, Costa Rica
- POLIUNA, Escuela de Química, Universidad Nacional, Heredia, Costa Rica
| | - Claudia A. Hernández-Escobar
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C. Chihuahua, Chih, Complejo Industrial Chihuahua, Chihuahua, Mexico
| | - E. Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S.C. Chihuahua, Chih, Complejo Industrial Chihuahua, Chihuahua, Mexico
| |
Collapse
|
21
|
Prabhu P, Fernandes T, Damani M, Chaubey P, Narayanan S, Sawarkar S. 2Receptor Specific Ligand conjugated Nanocarriers: an Effective Strategy for Targeted Therapy of Tuberculosis. Curr Drug Deliv 2021; 19:830-845. [PMID: 34915835 DOI: 10.2174/1567201819666211216141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is an ancient chronic disease caused by the bacillus Mycobacterium tuberculosis, which has affected mankind for more than 4,000 years. Compliance with the standard conventional treatment can assure recovery from tuberculosis, but emergence of drug resistant strains pose a great challenge for effective management of tuberculosis. The process of discovery and development of new therapeutic entities with better specificity and efficacy is unpredictable and time consuming. Hence, delivery of pre-existing drugs with improved targetability is the need of the hour. Enhanced delivery and targetability can ascertain improved bioavailability, reduced toxicity, decreased frequency of dosing and therefore better patient compliance. Nanoformulations are being explored for effective delivery of therapeutic agents, however optimum specificity is not guaranteed. In order to achieve specificity, ligands specific to receptors or cellular components of macrophage and Mycobacteria can be conjugatedto nanocarriers. This approach can improve localization of existing drug molecules at the intramacrophageal site where the parasites reside, improve targeting to the unique cell wall structure of Mycobacterium or improve adhesion to epithelial surface of intestine or alveolar tissue (lectins). Present review focuses on the investigation of various ligands like Mannose, Mycolic acid, Lectin, Aptamers etc. installed nanocarriers that are being envisaged for targeting antitubercular drugs.
Collapse
Affiliation(s)
- Pratiksha Prabhu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Trinette Fernandes
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| | - Pramila Chaubey
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Al-Dawadmi. Saudi Arabia
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area Veerapura, Doddaballapur, Bengaluru, Karnataka 561203. India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai. Saudi Arabia
| |
Collapse
|
22
|
Zillen D, Beugeling M, Hinrichs WL, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Mukhtar M, Szakonyi Z, Farkas Á, Burian K, Kókai D, Ambrus R. Freeze-dried vs spray-dried nanoplex DPIs based on chitosan and its derivatives conjugated with hyaluronic acid for tuberculosis: In vitro aerodynamic and in silico deposition profiles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021; 13:854. [PMID: 34201403 PMCID: PMC8227107 DOI: 10.3390/pharmaceutics13060854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Thiomers (or thiolated polymers) have broken through as avant-garde approaches in anticancer therapy. Their distinguished reactivity and properties, closely linked to their final applications, justify the extensive research conducted on their preparation and use as smart drug-delivery systems (DDSs). Multiple studies have demonstrated that thiomer-rich nanoformulations can overcome major drawbacks found when administering diverse active pharmaceutical ingredients (APIs), especially in cancer therapy. This work focuses on providing a complete and concise review of the synthetic tools available to thiolate cationic and anionic polymers, in particular chitosan (CTS) and hyaluronic acid (HA), respectively, drawing attention to the most successful procedures. Their chemical reactivity and most relevant properties regarding their use in anticancer formulations are also discussed. In addition, a variety of NP formation procedures are outlined, as well as their use in cancer therapy, particularly for taxanes and siRNA. It is expected that the current work could clarify the main synthetic strategies available, with their scope and drawbacks, as well as provide some insight into thiomer chemistry. Therefore, this review can inspire new research strategies in the development of efficient formulations for the treatment of cancer.
Collapse
Affiliation(s)
| | - M.-Violante de-Paz
- Departamento Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
26
|
Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 2021; 185:20-30. [PMID: 34116092 DOI: 10.1016/j.ijbiomac.2021.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 01/23/2023]
Abstract
Chitosan-loaded nanomedicines provide a greater opportunity for the treatment of respiratory diseases. Natural biopolymer chitosan and its derivatives have a large number of proven pharmacological actions like antioxidant, wound healing, immuno-stimulant, hypocholesterolemic, antimicrobial, obesity treatment, anti-inflammatory, anticancer, bone tissue engineering, antifungal, regenerative medicine, anti-diabetic and mucosal adjuvant, etc. which attracted its use in the pharmaceutical industry. As compared to other polysaccharides, chitosan has excellent mucoadhesive characteristics, less viscous, easily modified into the chemical and biological molecule and gel-forming property due to which the drugs retain in the respiratory tract for a longer period of time providing enhanced therapeutic action of the drug. Chitosan-based nanomedicines would have the greatest effect when used to transport poor water soluble drugs, macromolecules like proteins, and peptides through the lungs. In this review, we highlight and discuss the role of chitosan and its nanomedicines in the treatment of chronic respiratory diseases such as pneumonia, asthma, COPD, lung cancer, tuberculosis, and COVID-19.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
27
|
Iqbal O, Shah S, Abbas G, Rasul A, Hanif M, Ashfaq M, Afzal Z. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int J Biol Macromol 2021; 182:2087-2096. [PMID: 34087298 DOI: 10.1016/j.ijbiomac.2021.05.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
The aim of our study was to prepare nanoparticles of disulfide bridged thiolated chitosan and eudragit RS100 using the air oxidation method for controlled drug delivery. The developed nanoparticles were characterized by FTIR, DSC, TGA, zeta sizer, zeta potential, SEM and 1H NMR. The loading, entrapment efficiency and in-vitro release of moxifloxacin from nanoparticles was determined. Toxicity was studied using Caco-2 cell line and pharmacokinetics of moxifloxacin from the developed nanoparticles was studied in albino rats. The FTIR analysis showed no chemical interaction of the drug with the thiolated polymers. The DSC and TGA showed the thermal stability of nanoparticles. The average particle size of nanoparticles was 87 nm, zeta potential of NTC3 was ± 19 and SEM showed the spherical shape of nanoparticles. The 1H NMR spectra confirmed the structure of thiolated chitosan and eudragit RS100. The loading, encapsulation efficiency and release of moxifloxacin from NTC3 were 100.3%, 89.67% and 88.49% respectively. The nanoparticles in culture medium did not affect the viability of Caco-2 cells. The NTC3 formulation showed a greater bioavailability of moxifloxacin compared to the reference formulation. The study reports a convenient and effective way to prepare a chitosan and eudragit RS100 based drug delivery system with a controlled release pattern.
Collapse
Affiliation(s)
- Omeira Iqbal
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan.
| | - Akhtar Rasul
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Mehran Ashfaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Zunaira Afzal
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
28
|
Németh Z, Pallagi E, Dobó DG, Csóka I. A Proposed Methodology for a Risk Assessment-Based Liposome Development Process. Pharmaceutics 2020; 12:E1164. [PMID: 33260443 PMCID: PMC7760874 DOI: 10.3390/pharmaceutics12121164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
The requirements of a liposomal formulation vary depending on the pharmaceutical indication, the target patient population, and the corresponding route of administration. Different preparation methods require various material attributes (MAs) (properties and characteristics of the components) and process parameters (PPs) (settings of the preparation method). The identification of the quality target product profile for a liposome-based formulation, the critical quality attributes of the liposomes, and the possible MAs and PPs that may influence the key characteristics of the vesicles facilitates pharmaceutical research. Researchers can systematise their knowledge by using the quality by design (QbD) approach. The potential factors that influence the quality of the product can be collected and studied through a risk assessment process. In this paper, the requirements of a liposome formulation prepared via the thin-film hydration preparation technique are presented; furthermore, the possible factors that have an impact on the quality of the final product and have to be considered and specified during the development of a liposomal formulation are herein identified and collected. The understanding and the application of these elements of QbD in the pharmaceutical developments help to influence the quality, the achievements, and the success of the formulated product.
Collapse
Affiliation(s)
| | | | | | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (Z.N.); (E.P.); or (D.G.D.)
| |
Collapse
|