1
|
Wang G, Ma P, Mo S, Liu W, Chen T, Huang Z, Xie J. Chemical characterization, antioxidant activity and activation of macrophages RAW264.7 via MAPK signaling pathway of the exopolysaccharide from Penicillium EF-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39912408 DOI: 10.1002/jsfa.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Microbial exopolysaccharides represent a significant source of polysaccharides, with their production unconstrained by temporal or spatial limitations. Penicillium, a filamentous fungus widely recognized for its medicinal food applications, is known to produce exopolysaccharides that exhibit cancer-inhibitory properties. RESULTS In the present study, exopolysaccharides from Penicillium EF-2 (EPS) were extracted and structurally characterized using ion chromatograph, infrared spectroscopy and NMR. The in vitro antioxidant and immunomodulatory activities were also investigated. EPS has a molecular weight of 111.47 kDa, is primarily composed of mannose, glucose and galactose, possesses a crystalline region, and exhibits excellent thermal properties. In free radical scavenging assays, EPS demonstrated robust in vitro antioxidant activity. Furthermore, EPS activated the mitogen-activated protein kinase pathway, enhancing the immunomodulatory capacity of macrophages. CONCLUSION EPS has excellent antioxidant and biological activities. The present study provides a theoretical basis for the utilization of EPS and offers new ideas for active sources of Penicillium fermented foods. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shiru Mo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Wendong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Gao H, Shi D, Yin C, Fan X, Cheng X, Qiao X, Liu C, Hu G, Yao F, Qiu J, Yu W. A highly branched glucomannan from the fruiting body of Schizophyllum commune: Structural characteristics and antitumor properties analysis. Int J Biol Macromol 2024; 282:137460. [PMID: 39528189 DOI: 10.1016/j.ijbiomac.2024.137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, a highly branched glucomannan (SCP-1) from Schizophyllum commune fruiting body with good solubility was isolated, and its structural characteristics and antitumor properties were analyzed. The monosaccharides of SCP-1 were fucose, glucosamine hydrochloride, galactose, glucose and mannose with a relative molar ratio of 14:6:210:593:177, and the molecular weight (Mw) of SCP-1 was 15.1 kDa. SCP-1 showed a rough and dense surface, and it was aggregated to particles in distilled water, though it might have triple-helix conformation. The main backbone chain of SCP-1 was →[3)-β-D-Glcp-(1]3→3)-β-D-Glcp-(1→2)-α-D-Manp-(1→2)-α-D-Manp-(1→3)-α-D-Glcp-(1→ and three sides chains including α-D-Glcp-(1→[6)-β-D-Glcp-(1]2→, α-D-Glcp-(1→3)-α-D-Manp-(1→ and α-D-Glcp-(1→[6)-α-D-Galp-(1]3→ were linked with 1,6-glycosidic bond, which was significantly different with the schizophyllan isolated from the mycelia of S. commune. SCP-1 could significantly inhibit the growth of A549 cells, the inhibition rate reached 41.62 % and the percentage of cells in S phase increased from 27.17 % to 56.40 % (400 μg/mL, 48 h). Moreover, SCP-1 could induce cell apoptosis and the total apoptosis rate reached 28.13 %. SCP-1 exerted apoptosis inducing effect probably by reducing the expression ratio of Bcl-2/Bax and the p-PI3K, p-Akt and p-mTOR expression level. The results showed that SCP-1 might have the potential to act as an antitumor agent for lung cancer therapy.
Collapse
Affiliation(s)
- Hong Gao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Defang Shi
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Chaomin Yin
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| | - Xiuzhi Fan
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Xianbo Cheng
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Ministry of Education, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xin Qiao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Chunyou Liu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzho 545006, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fen Yao
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Jianhui Qiu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Wei Yu
- National Research and Development Center for Edible Fungi Processing (Wuhan), Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Agro-Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China.
| |
Collapse
|
3
|
Wang G, Kong J, Leng T, Zhang W, Chen T, Xu X, Huang Z, Xie J. Metabolomics analysis based on UHPLC-QTOF-MS/MS to explore the synthesis mechanism and culture conditions optimization of Penicillium EF-2 exopolysaccharide. Int J Food Microbiol 2024; 423:110841. [PMID: 39059140 DOI: 10.1016/j.ijfoodmicro.2024.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Penicillium exopolysaccharide (EPS) inhibits galactose lectins and enhances immunity. However, EPS production is low and its synthesis mechanism remains unclear. Penicillium EF-2 strains with high EPS production were selected for this study, and Penicillium fermentation conditions were subsequently improved. The optimal culture conditions were 30 g/L lactose, 6 g/L yeast extract powder, 4 d seed age, 10 % inoculation amount, 3 d of secondary fermentation time, and the final EPS yield was 3.97 g/L. UHPLC-Q-TOF-MS/MS was used to explore the mechanism of EPS synthesis at the metabolic level. Optimal carbon source: lactose and optimal nitrogen source: yeast extract can provide precursors for EPS synthesis through related metabolic pathways. Moreover, regulating the energy, vitamin, and lipid metabolic pathways created favourable conditions for EPS synthesis and secretion. These findings explain the mechanism of EPS synthesis at the metabolic level and provide a theoretical basis for optimising and industrialising EPS production.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jia Kong
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Tuo Leng
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xizhe Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Liu P, Fei L, Wu D, Zhang Z, Chen W, Li W, Yang Y. Progress in the metabolic kinetics and health benefits of functional polysaccharides from plants, animals and microbes: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 7:100526. [DOI: 10.1016/j.carpta.2024.100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
5
|
Shuai M, Li Y, Guan F, Fu G, Sun C, Ren Q, Wang L, Zhang T. Breaking barriers: How modified citrus pectin inhibits galectin-8. Food Funct 2024; 15:4887-4893. [PMID: 38597504 DOI: 10.1039/d4fo00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by β-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.
Collapse
Affiliation(s)
- Ming Shuai
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guixia Fu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Qianqian Ren
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Li Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
6
|
Naveen KV, Sathiyaseelan A, Mandal S, Han K, Wang MH. Unveiling the Structural Characteristics and Bioactivities of the Polysaccharides Extracted from Endophytic Penicillium sp. Molecules 2023; 28:5788. [PMID: 37570759 PMCID: PMC10421393 DOI: 10.3390/molecules28155788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are abundantly present in fungi and are gaining recognition for their exceptional bioactivities. Hence, the present study aimed to extract intracellular polysaccharides (IPS-1 and IPS-2) from the endophytic Penicillium radiatolobatum and compare their physicochemical and bioactive attributes. The monosaccharide composition analysis revealed the existence of galactose, glucose, and mannose in both the IPS, while a trace amount of xylose was found in IPS-1. Further, FT-IR, 1H NMR, and 13C NMR analysis suggested that the IPS-2 was mainly composed of the β-(1→4)-D-Galactose and β-(1→4)-D-Glucose as the main chain, with the β-(1→6)-D-mannose as branched chains. Compared to IPS-1, the IPS-2 showed higher antioxidant activities with an IC50 value of 108 ± 2.5 μg/mL, 272 ± 4.0 μg/mL, and 760 ± 5.0 μg/mL for ABTS+ scavenging, DPPH radical scavenging, and ferric reducing power, respectively. In addition, the IPS-2 inhibited the viability of prostate cancer (PC-3) cells (IC50; 435 ± 3.0 μg/mL) via apoptosis associated with mitochondrial membrane potential collapse and altered morphological features, which was revealed by cellular staining and flow cytometric analysis. Moreover, no apparent cytotoxic effects were seen in IPS-2-treated (1000 μg/mL) non-cancerous cells (HEK-293 and NIH3T3). Overall, the findings of this study suggest that P. radiatolobatum could be a potent source of polysaccharides with promising antioxidant and anticancer activity.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Sumana Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Kiseok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| |
Collapse
|
7
|
Li Y, Guo X, Zhong R, Ye C, Chen J. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: Cell antioxidant, anticancer and immune-modulatory activities. Int J Biol Macromol 2023:125204. [PMID: 37271268 DOI: 10.1016/j.ijbiomac.2023.125204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Polysaccharides LNP-1 and LNP-2 were extracted and purified from Lepista nuda, and their structural characteristics and biological activities were evaluated. The molecular weights of LNP-1 and LNP-2 were determined to be 16,263 Da and 17,730 Da, respectively. The monosaccharide composition analysis showed that LNP-1 and LNP-2 were composed of fucose, mannose, glucose, and galactose in a molar ratio of 1.00:2.42:1.09:4.04 and 1.00:2.39:1.61:4.23, respectively. The structure analysis revealed that these two polysaccharides were mainly composed of T-Fuc, T-Man, T-Glc, 1,6-Glc 1,6-Gal, and 1,2,6-Man, 1,2,6-Gal. Additionally, LNP-2 contained an additional 1,4-Glc glycosidic linkage in comparison to LNP-1. Both LNP-1 and LNP-2 exhibited anti-proliferation effects on A375 cells, but not on HepG2 cells. Furthermore, LNP-2 showed better cellular antioxidant activity (CAA) than LNP-1. RT-PCR results indicated that LNP-1 and LNP-2 could induce macrophages to secrete immune-modulatory factors NO, IL-6, and TNF-α by regulating their mRNA expression. Overall, this study provides a theoretical basis for the further development of the structure-function relationship of polysaccharides from L. nuda.
Collapse
Affiliation(s)
- Yimeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuxiang Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ruifang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changming Ye
- Era Biotechnology(Shenzhen)Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Ren Y, Pei F, Cao X, Zhang W, Du R, Ge J, Ping W. Purification of exopolysaccharides from Lactobacillus rhamnosus and changes in their characteristics by regulating quorum sensing genes via polyphenols. Int J Biol Macromol 2023; 240:124414. [PMID: 37059280 DOI: 10.1016/j.ijbiomac.2023.124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
To explore the effect of Lonicera caerulea fruit polyphenols (LCP) on caries-causing bacteria, strain RYX-01 with high production of biofilm and exopolysaccharides (EPS) was isolated from the oral cavity of caries patients and was identified as Lactobacillus rhamnosus by 16S rDNA analysis and morphology. The characteristics of EPS produced by RYX-01 (EPS-CK) and those produced by adding L. caerulea fruit polyphenols (EPS-LCP) were compared to reveal whether LCP reduced the cariogenicity of RYX-01 by influencing the structure and composition of EPS. The results showed that LCP could increase the content of galactose in EPS and destroy the original aggregation state of EPS-CK but had no significant effect on the molecular weight and functional group composition of EPS (p > 0.05). At the same time, LCP could inhibit the growth of RYX-01, reduce EPS and biofilm formation and inhibit the expression of quorum sensing (QS, luxS)- and biofilm formation (wzb)-related genes. Therefore, LCP could change the surface morphology, content and composition of RYX-01 EPS and reduce the cariogenic effect of EPS and biofilm. In conclusion, LCP can be used as a potential plaque biofilm inhibitor and QS inhibitor in drugs and functional foods.
Collapse
Affiliation(s)
- Yanxin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161000, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China
| |
Collapse
|
9
|
Rusinova-Videva S, Ognyanov M, Georgiev Y, Petrova A, Dimitrova P, Kambourova M. Chemical characterization and biological effect of exopolysaccharides synthesized by Antarctic yeasts Cystobasidium ongulense AL 101 and Leucosporidium yakuticum AL 102 on murine innate immune cells. World J Microbiol Biotechnol 2022; 39:39. [PMID: 36512173 DOI: 10.1007/s11274-022-03477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The current study aimed to investigate exopolysaccharides (EPSs) produced by two Antarctic yeasts isolated from soil and penguin feathers samples collected on Livingston Island (Antarctica). The strains were identified as belonging to the species Leucosporidium yakuticum (LY) and Cystobasidium ongulense (CO) based on molecular genetic analysis. The EPS production was investigated using submerged cultivation. Different chemical, chromatographic, and spectral analyses were employed to characterize EPSs. LY accumulated 5.5 g/L biomass and 4.0 g/L EPS after 120 h of cultivation, while CO synthesized 2.1 g/L EPS at the end of cultivation, and the biomass amount reached 5.5 g/L. LY-EPS was characterized by a higher total carbohydrate content (80%) and a lower protein content (18%) by comparison with CO-EPS (62%, 30%). The LY-EPS mainly consisted of mannose (90 mol%), whereas CO-EPS had also glucose, galactose, and small amounts of uronic acids (8-5 mol%). Spectral analyses (FT-IR and 1D, 2D NMR) revealed that LY-EPS comprised a typical β-(1 → 4)-mannan. Branched (hetero)mannan, together with β/α-glucans constituted the majority of CO-EPS. Unlike LY-EPS, which had a high percentage of high molecular weight populations, CO-EPS displayed a large quantity of lower molecular weight fractions and a higher degree of heterogeneity. LY-EPS (100 ng/mL) elevated significantly interferon gamma (IFN-γ) production in splenic murine macrophages and natural killer (NK) cells. The results indicated that newly identified EPSs might affect IFN-γ signaling and in turn, might enhance anti-infectious responses. The data obtained also revealed the potential of EPSs and yeasts for practical application in biochemical engineering and biotechnology.
Collapse
Affiliation(s)
- Snezhana Rusinova-Videva
- Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Yordan Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ani Petrova
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Petya Dimitrova
- Department of Immunology, Laboratory of Experimental Immunotherapy, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Margarita Kambourova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
10
|
Galf-containing polysaccharides from medicinal molds: Sources, structures and bioactive properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Zhang S, Lin Z, Wang D, Xu X, Song C, Sun L, Mayo KH, Zhao Z, Zhou Y. Galactofuranose side chains in galactomannans from Penicillium spp. modulate galectin-8-mediated bioactivity. Carbohydr Polym 2022; 292:119677. [PMID: 35725172 DOI: 10.1016/j.carbpol.2022.119677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Polysaccharides from fungi have many bioactivities. Previous studies showed that galactomannans from Penicillium oxalicum antagonize galectin-8-mediated activity. Here, two intracellular and two extracellular galactomannans were purified and their structures were comparatively characterized by NMR, partial acid hydrolysis and methylation. All four of them were identified to be galactomannans with similar mannan backbones having 1,2-/1,6-linkages (~3:1) and various amounts of galactofuranan side chains. The interaction of those polysaccharides with galectin-8 was assessed by hemagglutination and biolayer interferometry. These results show that side chains are important for the interaction, and the more the side chains, the stronger the interaction. But the side chains alone did not show act on galectin-8, which indicated that the cooperation between backbone and side chains is another necessary factor for this interaction. Our findings provide important information about structure-activity relationships and the galactofuranose-containing galactomannans might be as potential therapeutic of galectin-8 related diseases.
Collapse
Affiliation(s)
- Siying Zhang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhiying Lin
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Dongmei Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.
| | - Zihan Zhao
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
12
|
Lin Y, Yang J, Luo L, Zhang X, Deng S, Chen X, Li Y, Bekhit AEDA, Xu B, Huang R. Ferroptosis Related Immunomodulatory Effect of a Novel Extracellular Polysaccharides from Marine Fungus Aureobasidium melanogenum. Mar Drugs 2022; 20:332. [PMID: 35621983 PMCID: PMC9144548 DOI: 10.3390/md20050332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine fungi represent an important and sustainable resource, from which the search for novel biological substances for application in the pharmacy or food industry offers great potential. In our research, novel polysaccharide (AUM-1) was obtained from marine Aureobasidium melanogenum SCAU-266 were obtained and the molecular weight of AUM-1 was determined to be 8000 Da with 97.30% of glucose, 1.9% of mannose, and 0.08% galactose, owing to a potential backbone of α-D-Glcp-(1→2)-α-D-Manp-(1→4)-α-D-Glcp-(1→6)-(SO3-)-4-α-D-Glcp-(1→6)-1-β-D-Glcp-1→2)-α-D-Glcp-(1→6)-β-D-Glcp-1→6)-α-D-Glcp-1→4)-α-D-Glcp-6→1)-[α-D-Glcp-4]26→1)-α-D-Glcp and two side chains that consisted of α-D-Glcp-1 and α-D-Glcp-(1→6)-α-D-Glcp residues. The immunomodulatory effect of AUM-1 was identified. Then, the potential molecular mechanism by which AUM-1 may be connected to ferroptosis was indicated by metabonomics, and the expression of COX2, SLC7A11, GPX4, ACSL4, FTH1, and ROS were further verified. Thus, we first speculated that AUM-1 has a potential effect on the ferroptosis-related immunomodulatory property in RAW 264.7 cells by adjusting the expression of GPX4, regulated glutathione (oxidative), directly causing lipid peroxidation owing to the higher ROS level through the glutamate metabolism and TCA cycle. Thus, the ferroptosis related immunomodulatory effect of AUM-1 was obtained.
Collapse
Affiliation(s)
- Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Jiajia Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Shengyu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| | - Yiyang Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.L.)
| | - Alaa El-Din A. Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University−Hong Kong Baptist University−United International College, Zhuhai 519087, China;
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.Y.); (S.D.); (X.C.)
| |
Collapse
|
13
|
Xu Y, Li Y, You X, Pei C, Wang Z, Jiao S, Zhao X, Lin X, Lü Y, Jin C, Gao GF, Li J, Wang Q, Du Y. Novel Insights Into the Sulfated Glucuronic Acid-Based Anti-SARS-CoV-2 Mechanism of Exopolysaccharides From Halophilic Archaeon Haloarcula hispanica. Front Chem 2022; 10:871509. [PMID: 35572116 PMCID: PMC9091367 DOI: 10.3389/fchem.2022.871509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022] Open
Abstract
The pandemic caused by SARS-CoV-2 is the most widely spread disease in the 21st century. Due to the continuous emergence of variants across the world, it is necessary to expand our understanding of host-virus interactions and explore new agents against SARS-CoV-2. In this study, it was found exopolysaccharides (EPSs) from halophilic archaeon Haloarcula hispanica ATCC33960 can bind to the spike protein of SARS-CoV-2 with the binding constant KD of 2.23 nM, block the binding of spike protein to Vero E6 and bronchial epithelial BEAS-2B cells, and inhibit pseudovirus infection. However, EPSs from the gene deletion mutant △HAH_1206 almost completely lost the antiviral activity against SARS-CoV-2. A significant reduction of glucuronic acid (GlcA) and the sulfation level in EPSs of △HAH_1206 was clearly observed. Our results indicated that sulfated GlcA in EPSs is possible for a main structural unit in their inhibition of binding of SARS-CoV-2 to host cells, which would provide a novel antiviral mechanism and a guide for designing new agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Yueqiang Xu
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin You
- Lung Cancer Translational Medicine Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Wang
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Processing and Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Yang W, Zhao P, Li X, Guo L, Gao W. The potential roles of natural plant polysaccharides in inflammatory bowel disease: A review. Carbohydr Polym 2022; 277:118821. [PMID: 34893238 DOI: 10.1016/j.carbpol.2021.118821] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-term chronic disease, about 20% of IBD patients deteriorate to colorectal cancer. Currently, there is no radical cure for IBD. Natural plant polysaccharides (NPP) have low toxic and side effects, which have immune and prebiotic activities and possesses positive effect on alleviating IBD. In this review, we will focus on the alleviating effect of NPP on IBD in vitro and in vivo from three aspects: regulating intestinal flora imbalance, repairing intestinal barrier injury and improving immunity. The relationship between the chemical structure of natural plant polysaccharides and the therapeutic effect of IBD are highlighted. Finally, the synergistic role of NPP as a carrier of drugs or active molecules to reduce side effects and enhance targeting function are discussed, especially pectic polysaccharides. Broadly, this review provides a valuable reference for NPP to be developed as functional food or health products to alleviate IBD.
Collapse
Affiliation(s)
- Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Ping Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|