1
|
Xing A, Xue C, Mao X, Hu Y. Metal ion of metal-organic frameworks facilitating immobilized chitinase performance. Int J Biol Macromol 2025; 307:141972. [PMID: 40081704 DOI: 10.1016/j.ijbiomac.2025.141972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Metal-organic framework (MOF) structures containing different metal ions and 1,3,5-trimesic acid (BTC) were fabricated, as the carriers to immobilize chitinase (Chi) for improving the performance of Chi, for the first time. It was found that the immobilization of Chi on Ca-BTC, Ba-BTC, and Ni-BTC increased its activity. Notably, the specific activity of Chi@Ca-BTC was enhanced by 2.1 times that of free Chi, reaching 16.27 U/mg. The catalytic efficiency and substrate affinity of Chi@Ca-BTC were also remarkably improved, confirmed by the kcat/Km enhancement (4.2 times) and Km value reduction (40 %). Moreover, the half-life of Chi@Ca-BTC at the optimum pH 6.0 and 55 °C was prolonged from 1.8 h to 6.8 h. More than 80 % of enzyme activity was retained after 22 cycles of usage, showing superior reusability. It was proved that Ca2+ on MOF surface enhanced the formation of hydrogen bonds between the catalytic key amino acid Glu-405 and substrate, accelerating the enzymatic catalysis. Then, Chi@Ca-BTC was employed as an outstanding biocatalytic platform for the degradation of chitin, with 8.1 times increase in conversion efficiency. Such a MOF-based immobilization strategy for improving enzymatic performance is of considerable reference value in designing advanced immobilized enzyme for various polysaccharide biocatalytic reaction.
Collapse
Affiliation(s)
- Aijia Xing
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Yang Hu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Pan D, Xiao P, Li F, Liu J, Zhang T, Zhou X, Zhang Y. High Degree of Polymerization of Chitin Oligosaccharides Produced from Shrimp Shell Waste by Enrichment Microbiota Using Two-Stage Temperature-Controlled Technique of Inducing Enzyme Production and Metagenomic Analysis of Microbiota Succession. Mar Drugs 2024; 22:346. [PMID: 39195462 DOI: 10.3390/md22080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
The direct enzymatic conversion of untreated waste shrimp and crab shells has been a key problem that plagues the large-scale utilization of chitin biological resources. The microorganisms in soil samples were enriched in two stages with powdered chitin (CP) and shrimp shell powder (SSP) as substrates. The enrichment microbiota XHQ10 with SSP degradation ability was obtained. The activities of chitinase and lytic polysaccharide monooxygenase of XHQ10 were 1.46 and 54.62 U/mL. Metagenomic analysis showed that Chitinolyticbacter meiyuanensis, Chitiniphilus shinanonensis, and Chitinimonas koreensis, with excellent chitin degradation performance, were highly enriched in XHQ10. Chitin oligosaccharides (CHOSs) are produced by XHQ10 through enzyme induction and two-stage temperature control technology, which contains CHOSs with a degree of polymerization (DP) more significant than ten and has excellent antioxidant activity. This work is the first study on the direct enzymatic preparation of CHOSs from SSP using enrichment microbiota, which provides a new path for the large-scale utilization of chitin bioresources.
Collapse
Affiliation(s)
- Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Fuyi Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Jinze Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tengfei Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Lyu Y, Luo H, Chai S, Zhang Y, Fan X, Wang S, Feng Z. Discovery and characterization of a novel PKD-Fn3 domains containing GH44 endoglucanase from a Tibetan metagenomic library. J Appl Microbiol 2023; 134:lxad187. [PMID: 37596069 DOI: 10.1093/jambio/lxad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023]
Abstract
AIMS To explore novel microbial endoglucanases with unique properties derived from extreme environments by using metagenomics approach. METHODS AND RESULTS A Tibetan soil metagenomic library was applied for screening cellulase-active clones by function-based metagenomics. The candidate genes in the active clones were identified through bioinformatic analyses and heterologously expressed using an Escherichia coli system. The recombinant endoglucanases were purified and characterized using enzyme assays to determine their bioactivities, stabilities, substrate specificities, and other enzymatic properties. A novel endoglucanase gene Zfeg1907 was identified, which consisted of a glycoside hydrolase family 44 (GH44) catalytic domain along with a polycystic kidney disease (PKD) domain and a fibronectin type Ⅲ (Fn3) domain at the C terminal. Recombinant enzyme ZFEG1907 and its truncated mutant ZFEG1907t (ΔPKDΔFn3) were successfully expressed and purified. The two recombinants exhibited catalytic activities toward carboxymethyl cellulose, konjac glucomannan (KGM), and lichenan. Both enzymes had an optimal temperature of 50°C and an optimal pH value of 5.0. The catalytic activities of both recombinant enzymes were promoted by adding Zn2+ and Ca2+ at the final concentration of 10 mM. The Km value of ZFEG1907 was lower, while the kcat/Km value of ZFEG1907 was higher than those of of ZFEG1907t when using carboxymethyl cellulose, KGM, and lichenan as substrates. Structure prediction of two recombinants revealed that PKD-Fn3 domains consisted of a flexible linker and formed a β-sandwich structure. CONCLUSIONS A novel endoglucanase ZFEG1907 contained a GH44 catalytic domain and a PKD-Fn3 domain was characterized. The PKD-Fn3 domains were not indispensable for the activity but contributed to the enzyme binding of the polysaccharide substrates as a carbohydrate-binding module (CBM).
Collapse
Affiliation(s)
- Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hao Luo
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shumao Chai
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinyu Fan
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
4
|
He B, Yang L, Yang D, Jiang M, Ling C, Chen H, Ji F, Pan L. Biochemical purification and characterization of a truncated acidic, thermostable chitinase from marine fungus for N-acetylglucosamine production. Front Bioeng Biotechnol 2022; 10:1013313. [PMID: 36267443 PMCID: PMC9578694 DOI: 10.3389/fbioe.2022.1013313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is widely used in nutritional supplement and is generally produced from chitin using chitinases. While most GlcNAc is produced from colloidal chitin, it is essential that chitinases be acidic enzymes. Herein, we characterized an acidic, highly salinity tolerance and thermostable chitinase AfChiJ, identified from the marine fungus Aspergillus fumigatus df673. Using AlphaFold2 structural prediction, a truncated Δ30AfChiJ was heterologously expressed in E. coli and successfully purified. It was also found that it is active in colloidal chitin, with an optimal temperature of 45°C, an optimal pH of 4.0, and an optimal salt concentration of 3% NaCl. Below 45°C, it was sound over a wide pH range of 2.0–6.0 and maintained high activity (≥97.96%) in 1–7% NaCl. A notable increase in chitinase activity was observed of Δ30AfChiJ by the addition of Mg2+, Ba2+, urea, and chloroform. AfChiJ first decomposed colloidal chitin to generate mainly N-acetyl chitobioase, which was successively converted to its monomer GlcNAc. This indicated that AfChiJ is a bifunctional enzyme, composed of chitobiosidase and β-N-acetylglucosaminidase. Our result suggested that AfChiJ likely has the potential to convert chitin-containing biomass into high-value added GlcNAc.
Collapse
Affiliation(s)
- Bin He
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Liyan Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Dengfeng Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Minguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Chengjin Ling
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, Guangxi, China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| | - Feng Ji
- Guangxi Huaren Medical Technolgoy Group, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| |
Collapse
|
5
|
Wu YL, Wang S, Yang DF, Yang LY, Wang QY, Yu J, Li N, Pan LX. The Discovery, Enzymatic Characterization and Functional Analysis of a Newly Isolated Chitinase from Marine-Derived Fungus Aspergillus fumigatus df347. Mar Drugs 2022; 20:md20080520. [PMID: 36005523 PMCID: PMC9410337 DOI: 10.3390/md20080520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/15/2023] Open
Abstract
In order to discover a broad-specificity and high stability chitinase, a marine fungus, Aspergillus fumigatus df347, was identified in the sediments of mangrove wetlands in Qinzhou Bay, China. The chitinase gene (AfChi28) from A. fumigatus df347 was cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme AfChi28 was purified and characterized. AfChi28 is an acido-halotolerant- and temperature-resistant bifunctional enzyme with both endo- and exo-cleavage functions. Its enzymatic products are mainly GlcNAc, (GlcNAc)2, (GlcNAc)3 and (GlcNAc)4. Na+, Mg2+, K+, Ca2+ and Tris at a concentration of 50 mM had a strong stimulatory effect on AfChi28. The crude enzyme and pure enzyme exhibited the highest specific activity of 0.737 mU/mg and 52.414 mU/mg towards colloidal chitin. The DxDxE motif at the end of strand β5 and with Glu154 as the catalytic residue was verified by the AlphaFold2 prediction and sequence alignment of homologous proteins. Moreover, the results of molecular docking showed that molecular modeling of chitohexaose was shown to bind to AfChi28 in subsites −4 to +2 in the deep groove substrate-binding pocket. This study demonstrates that AfChi28 is a promising chitinase for the preparation of desirable chitin oligosaccharides, and provides a foundation for elucidating the catalytic mechanism of chitinases from marine fungi.
Collapse
Affiliation(s)
- Ya-Li Wu
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Sheng Wang
- Nanning Pangbo Biological Engineering Co., Ltd., Nanning 530004, China
| | - Deng-Feng Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Li-Yan Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Qing-Yan Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jun Yu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China
| | - Nan Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Correspondence: (N.L.); (L.-X.P.); Tel.: +86-1350-7868-042 (N.L.); +86-1376-8513-581 (L.-X.P.)
| | - Li-Xia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
- Correspondence: (N.L.); (L.-X.P.); Tel.: +86-1350-7868-042 (N.L.); +86-1376-8513-581 (L.-X.P.)
| |
Collapse
|
6
|
Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts 2022. [DOI: 10.3390/catal12040385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural resources are considered a promising source of microorganisms responsible for producing biocatalysts with great relevance in several industrial areas. However, a significant fraction of the environmental microorganisms remains unknown or unexploited due to the limitations associated with their cultivation in the laboratory through classical techniques. Metagenomics has emerged as an innovative and strategic approach to explore these unculturable microorganisms through the analysis of DNA extracted from environmental samples. In this review, a detailed discussion is presented on the application of metagenomics to unravel the biotechnological potential of natural resources for the discovery of promising biocatalysts. An extensive bibliographic survey was carried out between 2010 and 2021, covering diverse metagenomic studies using soil and/or water samples from different types and locations. The review comprises, for the first time, an overview of the worldwide metagenomic studies performed in soil and water and provides a complete and global vision of the enzyme diversity associated with each specific environment.
Collapse
|
7
|
Wang C, Chen X, Zhou N, Chen Y, Zhang A, Chen K, Ouyang P. Property and Function of a Novel Chitinase Containing Dual Catalytic Domains Capable of Converting Chitin Into N-Acetyl-D-Glucosamine. Front Microbiol 2022; 13:790301. [PMID: 35283860 PMCID: PMC8908422 DOI: 10.3389/fmicb.2022.790301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
A novel multifunctional chitinase (CmChi3)-encoding gene was cloned from Chitinolyticbacter meiyuanensis and actively expressed in Escherichia coli. Sequence analysis showed that CmChi3 contains two glycoside hydrolase family 18 (GH18) catalytic domains and exhibited low identity with well-characterized chitinases. The optimum pH and temperature of purified recombinant CmChi3 were 6.0 and 50°C, respectively. CmChi3 exhibited strict substrate specificity of 4.1 U/mg toward colloidal chitin (CC) and hydrolyzed it to yield N-acetyl-D-glucosamine (GlcNAc) as the sole end product. An analysis of the hydrolysis products toward N-acetyl chitooligosaccharides (N-acetyl COSs) and CC substrates revealed that CmChi3 exhibits endochitinase, N-acetyl-β-d-glucosaminidase (NAGase), and transglycosylase (TGase) activities. Further studies revealed that the N-terminal catalytic domain of CmChi3 exhibited endo-acting and NAGase activities, while the C-terminal catalytic domain showed exo-acting and TGase activities. The hydrolytic properties and favorable environmental adaptations indicate that CmChi3 holds potential for commercial GlcNAc production from chitin.
Collapse
Affiliation(s)
- Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|