1
|
Liu S, Fu X, Lin Y, Xia Q, Xiao N, Liu Y, Liu R, Xia W. The regulation of cassava nanostarch structure treated with malt endogenous enzymes and adsorption property for anthocyanins. Food Chem 2025; 475:143249. [PMID: 39952187 DOI: 10.1016/j.foodchem.2025.143249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
The enzymatic preparation of nanostarch exhibits specific and efficient. However, commercial amylases face issues of expensive and time-consuming extraction, which limit their application. This study obtained cassava nanostarch (MCS) from Cassava starch (CS) treated with malt endogenous amylase, followed by structural characterization and property exploration. The results demonstrated that CS was converted into MCS (515 nm) after 4 h of enzymolysis, transitioning from smooth spheres to rough nanoparticles. Compared to CS, the water solubility index of MCS increased from 34.4 % to 82.1 %, and its transparency increased from 55.8 % to 76.8 %. However, the swelling power of MCS decreased from 24.5 g/g to 6.62 g/g. The adsorption capacity of MCS for anthocyanin (226 mg/g) was twice higher than that of CS, conformed to the pseudo-second-order kinetic model and the Freundlich isothermal model. This study could provide new ideas for the green and efficient preparation of nanostarches and a promising activity delivery system.
Collapse
Affiliation(s)
- Shucheng Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaoyan Fu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China
| | - Yanyun Lin
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Naiyong Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ruihai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, New York, USA
| | - Wen Xia
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
2
|
Liu L, Jin T, Huang Y, Kan Z, Guo H, Chen X, Xu K, Lei H, Du G, Zhang L. Preparation of a boiling water resistant and flame retardant wood adhesive using novel hyperbranched phosphorus containing polyamine and silicon containing tannin core-shell structure. Int J Biol Macromol 2025; 304:140896. [PMID: 39947528 DOI: 10.1016/j.ijbiomac.2025.140896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The use of aldehyde starch and amine compounds for the preparation of wood adhesives has improved their properties, but the use of expensive oxidizing agents have inevitably limited the development of starch adhesives. As we all know, air is one of the greenest and most environmentally friendly oxidizers. In this study, a novel hyperbranched polyamine (DIHP) containing phosphorus element was synthesized. Then, α-amylase was used to hydrolyze starch partially into glucose and maltose, and S-DIHP adhesive was prepared with DIHP and starch hydrolysis products based on enzyme catalyzed hydrolysis strategy, air oxidation strategy, and hyperbranching cross-linking network strategy. Because of the synergistic effect of imine bonding, amide bonding and hydrogen bonding within the adhesive, the S-DIHP adhesive was endowed with good boiling water resistance. Finally, the nano hybrid DE @ TA with polysiloxane (DE) as the core and tannic acid (TA) as the shell was prepared. The incorporation of DE @ TA not only improved the bonding performance of the adhesive, but also enhanced the flame retardancy, and the ultimate oxygen index of the adhesive was up to 32.1 %, reaching the standard for flame retardant materials: B2 class (GB8624-2012). This study provides a new idea for developing multifunctional starch adhesive.
Collapse
Affiliation(s)
- Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Tao Jin
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Yuefeng Huang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Zhenqiang Kan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Haiyang Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoyang Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Hong Lei
- College of Chemistry and Material Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
3
|
Dall’Acua K, Klein MP, Tech BI, Fontana A, Crepalde LT, Wagner R, de Oliveira FDC, Sant’Anna V. Understanding the Utilization of Wasted Bread as a Brewing Adjunct for Producing a Sustainable Wheat Craft Beer. Microorganisms 2025; 13:66. [PMID: 39858833 PMCID: PMC11767916 DOI: 10.3390/microorganisms13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025] Open
Abstract
Wasted bread (WB) has been studied as an alternative ingredient for increasing the sustainable footprint in the beer production chain. There are gaps in the literature on the impact of WB on beer manufacturing. Thus, the objective was to evaluate the addition of WB as a replacement for wheat flakes in a craft beer. Three formulations with different concentrations of WB were produced and monitored for glucose and maltose concentrations in the mash; the beer was analyzed for ethanol, glycerol, acetic acid, lactic acid, pH, acidity, turbidity, color, and volatile compounds. Sensory analysis was performed by a trained panel. In the initial stages of mashing, a higher concentration of sugars was found in the wort with WB added, while, at the end stages, this was higher in the control wort. The addition of WB resulted in beers with a lower turbidity, darker color, and lower concentrations of ethanol, glycerol, and acetic acid. Among the volatile compounds, D-limonene, ethyl dodecanoate, heptanol, acetaldehyde, and ethyl acetate should be further explored as markers for the presence of WB. Higher intensities of banana odor and flavors were observed by the trained panel when there was a greater substitution of wheat flakes. WB is a low-cost and effective ingredient for beer production, although more work is needed for its large-scale use.
Collapse
Affiliation(s)
- Katry Dall’Acua
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil; (K.D.); (M.P.K.); (B.I.T.); (V.S.)
| | - Manuela Poletto Klein
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil; (K.D.); (M.P.K.); (B.I.T.); (V.S.)
- Nutrition Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Bárbara Iegli Tech
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil; (K.D.); (M.P.K.); (B.I.T.); (V.S.)
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Faculty of Agriculture, Food and Environmental Sciences, Catholic University of the Sacred Heart, 26100 Cremona, Italy
| | | | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, Brazil; (R.W.); (F.d.C.d.O.)
| | - Fernanda de Candido de Oliveira
- Department of Food Science and Technology, Federal University of Santa Maria, Camobi, Santa Maria 97105-900, Brazil; (R.W.); (F.d.C.d.O.)
| | - Voltaire Sant’Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado 95960-000, Brazil; (K.D.); (M.P.K.); (B.I.T.); (V.S.)
| |
Collapse
|
4
|
Zainab S, Zhou X, Zhang Y, Tanweer S, Mehmood T. Suitability of early indica rice for the preparation of rice noodles by its starch properties analysis. Food Chem X 2024; 24:101921. [PMID: 39525065 PMCID: PMC11550054 DOI: 10.1016/j.fochx.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The research was conducted to explore the affiliation between the physicochemical properties of rice noodles and rice starch of early indica rice samples of varying amylose content. 3 various types of rice samples were analyzed to uncover how amylose content influences rice noodles' quality. Findings revealed that primarily sensory scores differ in palatability, while textural disparity lies in hardness and chewiness. The higher hardness and chewiness values were correlated with higher sensory scores. Rice with lower amylose content demonstrates elevated solubility, swelling power, and crystallinity along with poor retrogradation resulting in inferior-quality noodles. Sensory scores and textural properties were proved to be associated with the distribution of branched starch molecule chain lengths. Noodles of higher sensory scores had more stable gel structure and improved elasticity. These findings underscore the critical role of amylose content and starch molecular structure in determining the suitability of early indica rice for noodle preparation.
Collapse
Affiliation(s)
- Saadia Zainab
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xianqing Zhou
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yurong Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Saira Tanweer
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Tariq Mehmood
- Institute of Food Science and Technology, Faculty of Food, Health Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
5
|
Jia X, Xu J, Cui Y, Ben D, Wu C, Zhang J, Sun M, Liu S, Zhu T, Liu J, Lin K, Zheng M. Effect of Modification by β-Amylase and α-Glucosidase on the Structural and Physicochemical Properties of Maize Starch. Foods 2024; 13:3763. [PMID: 39682835 DOI: 10.3390/foods13233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Single enzymatic modifications are limited to starch. Complex modification with synergistic amylases will improve starch properties more significantly. In this study, maize starch was compound modified by β-amylase and α-glucosidase. The structure and physicochemical properties of the corn starch were determined by scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance hydrogen spectroscopy (1HNMR), high-performance anion-exchange chromatography (HPAEC-PAD), differential scanning calorimetry (DSC) and Rapid Visco analyzer (RVA) to determine the changes in the structure and physicochemical properties of maize starch before and after the dual enzyme modification. The branching degree (4.95-7.10%) of maize starch was increased after bi-enzymatic modification, the amylose content (28.77-18.60%) was decreased, and the amylopectin content (70.79-81.71%) was elevated. The relative crystallinity (20.41-30.20%) and short-range ordered structure of the starch increased, and the dual enzyme modification led to a more compact structure. Dual enzyme-modified maize starch showed a decrease in long chains, an increase in short chains, and its degree of branching was elevated. Dual enzyme modification also affected the thermal stability, pasting, light transmittance (1.40-2.16%), solubility (20.15-13.76%), and swelling (33.97-45.79%) of maize starch. It can be concluded that the complex modification of maize starch by β-amylase and α-glucosidase significantly changed the amylose/amylopectin ratio of the starch and made its structure denser. These results can provide a theoretical basis for the enzymatic preparation of maize starch with different amylose/amylopectin ratios and the development and utilization of functional starches.
Collapse
Affiliation(s)
- Xinge Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Dazhi Ben
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chuyu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Mingru Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shuo Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Tianhao Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| | - Ke Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Maize Deep Processing, Changchun 130118, China
| |
Collapse
|
6
|
Wei X, Huang W, Han Y, Chen L, Wang Y, Yu S, Yang F. Allosteric mechanism of synergistic effect in α- and β-amylase mixtures. Int J Biol Macromol 2024; 280:135653. [PMID: 39278430 DOI: 10.1016/j.ijbiomac.2024.135653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Alpha-amylase and beta-amylase coexist as mixtures in industrial production, and the two amylases have active synergistic effects when they approach each other. These effects are due to enhanced enzyme binding affinity for the substrate and the rate of particle hydrolysis. Here, we report the allosteric mechanism of this synergistic effect in α- and β-amylase mixtures. The assay showed higher activity after mixing α- and β-amylase. Molecular docking showed that α- and β-amylase create a stable dual-enzyme complex with high binding energy, and that complex formation does not affect the exposure of respective active sites. β-Amylase is specifically bound to the B domain of α-amylase, and the dynamic plasticity of the B domain makes it move spatially, and this adjustment leads to a more open conformation in the active site of α-amylase. Because the enzymes binding make the complex more stable, the degree to which the relative activity of the dual-enzyme complex is inhibited is significantly reduced. After enzyme hydrolysis, the products maltose and glucose accumulate and produce competitive inhibition, which explains the relative activity decrease of the later-stage dual-enzyme cooperation. Structural characterization by FT-IR and CD spectroscopy did not reveal significant changes in respective secondary structures after enzyme binding.
Collapse
Affiliation(s)
- Xinfei Wei
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wanqiu Huang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China
| | - Yanlin Wang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation Industry, Kweichow Moutai Group, Zunyi 564501, China.
| |
Collapse
|
7
|
Liu L, Jiang X, Chen Y, Yaqoob S, Xiu L, Liu H, Zheng M, Cai D, Liu J. Germination-induced modifications of starch structure, flour-processing characteristics, and in vitro digestive properties in maize. Food Chem X 2024; 22:101430. [PMID: 38736981 PMCID: PMC11087989 DOI: 10.1016/j.fochx.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Current research on maize germination suffers from long sampling intervals, and the relationship between the starch structure and the processing properties of flour in maize is still unclear. This study observed the effect of germination on the structure and composition of maize starch and the processing properties of maize flour over a 72 h period using a short interval sampling method. At 36 h, the short-range ordered structure, crystallinity, and enthalpy of starch reached the highest values of 1.02, 34.30%, and 9.90 J/g, respectively. At 72 h, the ratios of rapidly-digested starch (RDS) and slowly-digested starch (SDS) enhanced to 29.37% and 28.97%; the RS content reduced to 35.37%; and the flow properties of the starch were improved. This study enhances the understanding of the effects of germination on the processing properties of maize starch and flour, determines the appropriate application, and recommends the use of germination in the food industry.
Collapse
Affiliation(s)
- Lipeng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yelinxin Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Sanabil Yaqoob
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Lin Xiu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
8
|
Xiao Y, Liu Z, Gu H, Yang L, Liu T, Tian H. Preparation and characterization of a modified Canna starch as a wall material for the encapsulation of methyleugenol improves its antifungal activity against Fusarium trichothecioides. Food Chem 2024; 433:137324. [PMID: 37683464 DOI: 10.1016/j.foodchem.2023.137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
In this study, α-amylase (α-A) and 2-octenylsuccinic anhydride (OSA)-modified Canna starch (Cs) were prepared and characterized as wall materials and encapsulated with methyleugenol (α-A-OSA-Cs-methyleugenol); their in vitro antifungal activity against Fusarium trichothecioides (F. trichothecioides) was also investigated. The encapsulation efficiency under optimal encapsulation conditions was 83.98%. The results of particle size, polydispersity index (PDI), zeta potential, electron scanning microscopy and Fourier transform infrared spectroscopy showed that the modified Cs had superior physicochemical properties; it was also demonstrated that methyleugenol successfully entered the pores of Cs. The in vitro release study showed that α-A-OSA-Cs could effectively reduce their volatility under different temperature environments. α-A-OSA-Cs have excellent performance as slow-release wall materials, and after encapsulation with methyleugenol, the inhibition ability of F. trichothecioides mycelium growth was dose-dependent and improved, extending the shelf life of potatoes, which has good commercial value in the field of slow-release preservatives.
Collapse
Affiliation(s)
- Yao Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lei Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Hao Tian
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| |
Collapse
|
9
|
Tang J, Tao H, Tan C, Yuan F, Guo L, Cui B, Gao S, Wu Z, Zou F, Wu Z, Liu P, Lu L. Adsorption properties of corn starch modified by malt amylases and crosslinking agents: A comparison between sodium trimetaphosphate and organic acids. Int J Biol Macromol 2023; 253:127140. [PMID: 37778579 DOI: 10.1016/j.ijbiomac.2023.127140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
In order to investigate the effects of different crosslinking agents on physicochemical properties and adsorption properties of porous starch. Native corn starch was hydrolyzed by maltase and crosslinked with different crosslinking agents. Sodium trimetaphosphate crosslinked porous starch (STMP-MPS), malic acid cross-linked porous starch (MA-MPS) and citric acid cross-linked porous starch (CA-MPS) were prepared. After crosslinking, MA-MPS and CA-MPS showed a new CO stretching absorption peak at 1738 cm-1, and the crosslinking degree was much higher than that of STMP-MPS. The surface area of MA-MPS was 36 % higher than that of STMP-MPS. Compared with the average pore size of 12.43 nm of STMP-MPS, CA-MPS (14.02 nm) and MA-MPS (14.79 nm) were increased more significantly. The degradation temperature of MA-MPS and CA-MPS was increased by the introduction of ester bond, which indicates that the organic acid cross-linking strengthens the starch granules and hence more energy is required for disruption. Compared with STMP-MPS, the water absorption of MA-MPS and CA-MPS increased by 64 % and 32 %, respectively. Furthermore, the adsorption capacity of MA-MPS to essential oil was the strongest, about 4 times that of STMP-MPS. Overall, it is feasible to modify porous starch by crosslinking reaction to improve its heat resistance and adsorption properties.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China.
| | - Shijun Gao
- Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, China.
| | - Zehua Wu
- Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
10
|
Chen L, Huang W, Hao M, Yang F, Shen H, Yu S, Wang L. Rapid and ultrasensitive activity detection of α-amylase based on γ-cyclodextrin crosslinked metal-organic framework nanozyme. Int J Biol Macromol 2023; 242:124881. [PMID: 37201881 DOI: 10.1016/j.ijbiomac.2023.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
α-Amylase plays a significant part in fermentation and the food industry, as this enzyme effectively regulates the content of different sugars in brewing systems and affects the yield and quality of alcoholic beverages. Nevertheless, current strategies suffer from unsatisfactory sensitivity and are time-consuming or are indirect methods which demand the assistance of tool enzymes or inhibitors. Therefore, they are unsuitable for the low bioactivity and non-invasive detection of α-amylase in fermentation samples. Rapid, sensitive, facile, and direct detection method of this protein remains challenging in actual applications. In this work, a nanozyme-based α-amylase assay was constructed. The colorimetric assay used the interaction between α-amylase and γ-cyclodextrin (γ-CD) which crosslinks MOF-919-NH2. The determination mechanism bases on the hydrolysis of γ-CD by α-amylase, resulting in increased peroxidase-like bioactivity of the released MOF nanozyme. The detection limit was 0.12 U L-1 with a wide linear range (0-200 U L-1) and excellent selectivity. Additionally, the proposed detection method was successfully utilized in distilled yeasts to verify analytical capability in fermentation samples. The exploration of this nanozyme-based assay not only provides a convenient and effective strategy for enzyme activity determination in food industry, but also has promotion significance in clinical diagnosis and pharmaceutical production.
Collapse
Affiliation(s)
- Liangqiang Chen
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Wanqiu Huang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Mengdi Hao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Wang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
11
|
Zinck SS, Christensen SJ, Sørensen OB, Svensson B, Meyer AS. Importance of Inactivation Methodology in Enzymatic Processing of Raw Potato Starch: NaOCl as Efficient α-Amylase Inactivation Agent. Molecules 2023; 28:molecules28072947. [PMID: 37049710 PMCID: PMC10095898 DOI: 10.3390/molecules28072947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42–816% relative to controls that had not been subjected to extreme pH. “Inactivation” by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.
Collapse
|
12
|
Zhang X, Mi T, Gao W, Wu Z, Yuan C, Cui B, Dai Y, Liu P. Ultrasonication effects on physicochemical properties of starch-lipid complex. Food Chem 2022; 388:133054. [PMID: 35483292 DOI: 10.1016/j.foodchem.2022.133054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
The starch-lipid complex between the pea starch (PSt) and glycerol monolaurate (GM) was prepared using ultrasound with different amplitudes, durations and application sequences. Fourier-transform infrared and nuclear magnetic resonance spectra showed the formation of amylose-lipid complex between PSt and GM in the ultrasonic field. Stronger diffraction intensities were observed in samples treated by ultrasonication, whereas the thermogravimetric analysis indicated that the thermal stability of starch was improved by the formation of the V-type inclusion complexes. An ultrasound pre-treatment prior to the addition of a guest molecule (UC) was more favorable to induce the formation of an amylose-lipid complexes than ultrasound treatment after PSt was incorporated with GM (CU). The UC-treated samples showed stronger diffraction intensities, higher melting enthalpy values and enzyme-resistant than that of CU-treated PSt-GM complexes.
Collapse
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tongtong Mi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Faculty of Agricultural and Veterinary Sciences, Liaocheng Vocational and Technical College, Liaocheng, Shandong 252000, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yangyong Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
13
|
The Characterization and Functional Properties of Euglena gracilis Paramylon Treated with Different Methods. Int J Anal Chem 2022; 2022:7811014. [PMID: 35966503 PMCID: PMC9371794 DOI: 10.1155/2022/7811014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Euglena gracilis paramylon (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. The water insolubility of EGP severely limits its application. This work aimed to improve the functional characteristics of EGP by hydrogen peroxide (H2O2) degradation and carboxymethylated modification. The results showed that the crystallinity of EGP degraded by H2O2 and carboxymethylated modification decreased by 14% and 46%, and the thermal degradation temperature was significantly descending in a crystallinity-dependent manner. In addition, the results showed that H2O2 degradation and carboxymethylation significantly improved the adsorption capacity of EGP for oil, dyes, and metal ions, and their water solubility increased by 9% and 85%. This result will provide a valuable theoretical basis for the development and utilization of EGP.
Collapse
|
14
|
Gao L, Zhao X, Liu M, Zhao X. Characterization and Antibacterial Activities of Carboxymethylated Paramylon from Euglena gracilis. Polymers (Basel) 2022; 14:polym14153022. [PMID: 35893986 PMCID: PMC9332863 DOI: 10.3390/polym14153022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Paramylon from Euglena gracilis (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. EGP has been proved to have antibacterial activity, but its effect is weak due to its water insolubility and high crystallinity. In order to change this deficiency, this experiment carried out carboxymethylated modification of EGP. Three carboxymethylated derivatives, C-EGP1, C-EGP2, and C-EGP3, with a degree of substitution (DS) of 0.14, 0.55, and 0.78, respectively, were synthesized by varying reaction conditions, such as the mass of chloroacetic acid and temperature. Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) analysis confirmed the success of the carboxymethylated modification. The Congo red (CR) experiment, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetry (TG) were used to study the conformation, surface morphology, crystalline nature, and thermostability of the carboxymethylated EGP. The results showed that carboxymethylation did not change the triple helix structure of the EGP, but that the fundamental particles’ surface morphology was destroyed, and the crystallization area and thermal stability decreased obviously. In addition, the water solubility test and antibacterial experiment showed that the water solubility and antibacterial activity of the EGP after carboxymethylation were obviously improved, and that the water solubility of C-EGP1, C-EGP2, and C-EGP3 increased by 53.31%, 75.52%, and 80.96% respectively. The antibacterial test indicated that C-EGP3 had the best effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with minimum inhibitory concentration (MIC) values of 12.50 mg/mL and 6.25 mg/mL. The diameters of the inhibition zone of C-EGP3 on E. coli and S. aureus were 11.24 ± 0.15 mm and 12.05 ± 0.09 mm, and the antibacterial rate increased by 41.33% and 43.67%.
Collapse
|
15
|
Gui Y, Wei X, Yang N, Guo L, Cui B, Zou F, Lu L, Liu P, Fang Y. Comparison of structural and functional properties of maize starch produced with commercial or endogenous enzymes. Int J Biol Macromol 2022; 209:2213-2225. [PMID: 35504411 DOI: 10.1016/j.ijbiomac.2022.04.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
To explore an effective and economic method to prepare higher contents of resistant starch (RS), different enzyme treatments including single pullulanase (PUL), commercial α-amylase (AA) or/and β-amylase (BA) with PUL, and malt endogenous amylase (MA) with PUL were used and the structural, physicochemical properties and digestibility of all modified starches (MS) were compared. All the enzyme-treated starches displayed a mixture of B and V-type diffraction patterns. The MA/PUL-MS showed higher V-type diffraction peak intensity as compared to other modified starches. Compared to the combination of commercial enzyme treatment, the combination of malt enzyme treatment led to higher apparent amylose contents (45.56%), RS content (53.93%) and thermal stability (302 °C), whereas it possessed lower solubility indices and predicted glycaemic index. The apparent viscosity and shear resistance of MA/PUL-MS were lower than that of AA/PUL-MS, whereas that of MA/PUL-MS was higher than that of BA/PUL-MS and BA/AA/PUL-MS. These findings would provide a theoretical and applicative basis to produce foods with lower GI in industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xinyang Wei
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Na Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
16
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|