1
|
Alkhamis MA, Hussain A, Al-Therban F. Comparative Evolutionary Epidemiology of SARS-CoV-2 Delta and Omicron Variants in Kuwait. Viruses 2024; 16:1872. [PMID: 39772182 PMCID: PMC11680180 DOI: 10.3390/v16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Continuous surveillance is critical for early intervention against emerging novel SARS-CoV-2 variants. Therefore, we investigated and compared the variant-specific evolutionary epidemiology of all the Delta and Omicron sequences collected between 2021 and 2023 in Kuwait. We used Bayesian phylodynamic models to reconstruct, trace, and compare the two variants' demographics, phylogeographic, and host characteristics in shaping their evolutionary epidemiology. The Omicron had a higher evolutionary rate than the Delta. Both variants underwent periods of sequential growth and decline in their effective population sizes, likely linked to intervention measures and environmental and host characteristics. We found that the Delta strains were frequently introduced into Kuwait from East Asian countries between late 2020 and early 2021, while those of the Omicron strains were most likely from Africa and North America between late 2021 and early 2022. For both variants, our analyses revealed significant transmission routes from patients aged between 20 and 50 years on one side and other age groups, refuting the notion that children are superspreaders for the disease. In contrast, we found that sex has no significant role in the evolutionary history of both variants. We uncovered deeper variant-specific epidemiological insights using phylodynamic models and highlighted the need to integrate such models into current and future genomic surveillance programs.
Collapse
Affiliation(s)
- Moh A. Alkhamis
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Abrar Hussain
- Department of Epidemiology and Biostatistics, College of Public Health, Health Sciences Centre, Kuwait University, P.O. Box 24923, Kuwait City 13110, Kuwait;
| | - Fayez Al-Therban
- Department of Public Health, Ministry of Health, P.O. Box 24923, Kuwait City 13110, Kuwait;
| |
Collapse
|
2
|
Aleebrahim-Dehkordi E, Soveyzi F, Deravi N, Saghazadeh A, Rezaei N. Mental Healthcare in Pediatrics During the COVID-19 Pandemic: A Call for International Public Health Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:19-34. [PMID: 39102187 DOI: 10.1007/978-3-031-61943-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Public health measures associated with coronavirus disease 2019 (COVID-19), such as lockdowns and quarantine of suspected cases, can negatively affect children's mental health status. Although the current crisis provides personal growth and family cohesion opportunities, pitfalls appear to outweigh the benefits. The magnitude and quality of its impact on children depend on several factors, including anxiety, lack of social contact, and a reduced opportunity for stress regulation, along with an increased risk for parental mental health issues, child maltreatment, and domestic violence. Children with special needs and social disadvantages like trauma experiences, disabilities, pre-existing mental illness, e.g., autism spectrum disorders and hyperactivity, and low socioeconomic status, may be at higher risk in this context. Here, the potentials social support can provide for pediatrics, both healthy children and children with special needs, are reviewed after an overview of quarantine's adverse effects on this special population during a pandemic. The most common psychological issues associated with the COVID-19 pandemic are sleep disorders, mood swings, depression, anxiety, decreased attention, stress, irritability, anger, and fear. Moreover, the impact of COVID-19 on children's physical health includes weight gain, reduced physical activity, immune dysregulation, and cardiometabolic disorders. All support systems, involving parents, teachers/school counselors, pediatricians, mental healthcare workers, and Health and Art (HEART) groups, need to enter the scene and make their share of children's mental health care.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Radiology Resident at MUMS, Radiology Department Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Du J, Wu G, Chen Q, Yu C, Xu G, Liu A, Wang L. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging detection. Anal Biochem 2023; 663:115034. [PMID: 36586502 PMCID: PMC9794521 DOI: 10.1016/j.ab.2022.115034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Because the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is the immunodominant antigen, the S protein and its receptor-binding domain (RBD) are both targets currently to be genetically engineered for designing the broad-spectrum vaccine. In theory, the expressed protein exists as a set of variants that are roughly the same but slightly different, which depends on the protein expression system. The variants can be phenotypically manifested as charge heterogeneity. Here, we attempted to depict the charge heterogeneity of the trimeric SARS-CoV-2 RBD by using capillary isoelectric focusing with whole-column imaging detection (cIEF-WCID). In its nature form, the electropherogram fingerprints of the trimeric RBD were presented under optimized experimental conditions. The peaks of matrix buffers can be fully distinguishable from peaks of trimeric RBD. The isoelectric point (pI) was determined to be within a range of 6.67-9.54 covering the theoretical pI of 9.02. The fingerprints of three batches of trimeric RBDs are completely the same, with the intra-batch and batch-to-batch relative standard deviations (RSDs) of both pI values and area percentage of each peak no more than 1.0%, indicating that the production process is stable and this method can be used to surveillance the batch-to-batch consistency. The fingerprint remained unchanged after incubating at 37 °C for 7 d and oxidizing by 0.015% H2O2. In addition, the fingerprint was destroyed when adjusting the pH value to higher than 10.0 but still stable when the pH was lower than 4.0. In summary, the cIEF-WCID fingerprint can be used for the identification, batch-to-batch consistency evaluation, and stability study of the trimeric SARS-CoV-2 RBD, as part of a quality control strategy during the potential vaccine production.
Collapse
Affiliation(s)
- Jialiang Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gang Wu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Quanyao Chen
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China,School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Gangling Xu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Anhui Liu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
4
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Jamal Z, Haider M, Ikram A, Salman M, Rana MS, Rehman Z, Haider SA, Ammar M, Nisar N, Umair M. Breakthrough cases of Omicron and Delta variants of SARS-CoV-2 during the fifth wave in Pakistan. Front Public Health 2022; 10:987452. [PMID: 36249252 PMCID: PMC9557048 DOI: 10.3389/fpubh.2022.987452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023] Open
Abstract
COVID-19 pandemic has severely affected Pakistan with 1,557,134 cases as of August 4, 2022. However, the data regarding breakthrough infections in Pakistan is scant. Hence, the objective was to analyze SARS-CoV-2 breakthrough infections with respect to vaccines and variants during the fifth wave in Pakistan. Therefore, the Department of Virology (NIH, Pakistan) genotyped 2,467 randomly selected individuals between November 2021 and February 2022 using the SNPsig® SARS-CoV-2 (EscapePLEX) kit (PrimerDesign, UK). P681R and K417N mutations were used to distinguish delta and omicron. Data on the patient's age, gender, date of collection, variant, and vaccination status were analyzed using Statistical Package for Social Sciences (SPSS) software. Among 2,467 genotyped samples, Omicron was detected in 58.6% (n = 1445), Delta in 40.4% (n = 998) and undetermined/wildtype variant in 24 samples. The vaccination status of omicron-positive patients showed (49.7%; n = 718/1445) and Delta-positive patients (39.67%; n = 396/998) to be fully vaccinated. Of note, a high percentage 85% of breakthrough cases (n = 947) were identified among fully vaccinated individuals (n = 1114). Among them, 85.9% (n = 617/718) belonged to omicron and 83.3% (n = 330/396) to delta. Moreover, 76.7% (n = 855) of vaccinated individuals (n = 1114) received Sinopharm (n = 432) and Sinovac (n = 423) vaccines. The majority of breakthrough subjects who contracted Omicron were vaccinated with Sinopharm (93.0%, n = 256) and delta with Cansino (100%, n = 44). Individuals vaccinated with Sinovac showed the most frequent breakthrough cases for both Omicron and Delta variant between the 4th and 6th months (n = 278) after primary vaccination as compared to the 7th to 9th months (n = 24) category. While in case of Sinopharm, maximum breakthrough cases occurred between 7th to 9th months (n = 234) as compared to the 4th to 6th months (n = 120) after primary vaccination. Omicron and Delta breakthrough cases in men (n = 364 and 193) are more frequently seen than women (n = 253 and 138) respectively and breakthrough majority cases (n = 392) occurred in individuals aged 18-33 years. Breakthrough cases limiting monitoring in Pakistan impose a substantial constraint on policymakers' ability to take timely effective decisions. Since the current study consists of only a 2,467-genotyped sample, comprehensive data should be analyzed.
Collapse
|
6
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
7
|
Guérin P, Yahi N, Azzaz F, Chahinian H, Sabatier JM, Fantini J. Structural Dynamics of the SARS-CoV-2 Spike Protein: A 2-Year Retrospective Analysis of SARS-CoV-2 Variants (from Alpha to Omicron) Reveals an Early Divergence between Conserved and Variable Epitopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123851. [PMID: 35744971 PMCID: PMC9230616 DOI: 10.3390/molecules27123851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022]
Abstract
We analyzed the epitope evolution of the spike protein in 1,860,489 SARS-CoV-2 genomes. The structural dynamics of these epitopes was determined by molecular modeling approaches. The D614G mutation, selected in the first months of the pandemic, is still present in currently circulating SARS-CoV-2 strains. This mutation facilitates the conformational change leading to the demasking of the ACE2 binding domain. D614G also abrogated the binding of facilitating antibodies to a linear epitope common to SARS-CoV-1 and SARS-CoV-2. The main neutralizing epitope of the N-terminal domain (NTD) of the spike protein showed extensive structural variability in SARS-CoV-2 variants, especially Delta and Omicron. This epitope is located on the flat surface of the NTD, a large electropositive area which binds to electronegatively charged lipid rafts of host cells. A facilitating epitope located on the lower part of the NTD appeared to be highly conserved among most SARS-CoV-2 variants, which may represent a risk of antibody-dependent enhancement (ADE). Overall, this retrospective analysis revealed an early divergence between conserved (facilitating) and variable (neutralizing) epitopes of the spike protein. These data aid in the designing of new antiviral strategies that could help to control COVID-19 infection by mimicking neutralizing antibodies or by blocking facilitating antibodies.
Collapse
Affiliation(s)
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Fodil Azzaz
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
| | - Jean-Marc Sabatier
- Inst Neurophysiopathol, Aix-Marseille University, CNRS, INP, CEDEX, 13005 Marseille, France;
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille University, CEDEX, 13015 Marseille, France; (N.Y.); (F.A.); (H.C.)
- Correspondence:
| |
Collapse
|
8
|
Alkhamis MA, Fountain-Jones NM, Khajah MM, Alghounaim M, Al-Sabah SK. Comparative Phylodynamics Reveals the Evolutionary History of SARS-CoV-2 Emerging Variants in the Arabian Peninsula. Virus Evol 2022; 8:veac040. [PMID: 35677574 PMCID: PMC9129158 DOI: 10.1093/ve/veac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to be responsible for an unprecedented worldwide public health and economic catastrophe. Accurate understanding and comparison of global and regional evolutionary epidemiology of novel SARS-CoV-2 variants are critical to guide current and future interventions. Here, we utilized a Bayesian phylodynamic pipeline to trace and compare the evolutionary dynamics, spatiotemporal origins, and spread of five variants (Alpha, Beta, Delta, Kappa, and Eta) across the Arabian Peninsula. We found variant-specific signatures of evolution and spread that are likely linked to air travel and disease control interventions in the region. Alpha, Beta, and Delta variants went through sequential periods of growth and decline, whereas we inferred inconclusive population growth patterns for the Kappa and Eta variants due to their sporadic introductions in the region. Non-pharmaceutical interventions imposed between mid-2020 and early 2021 likely played a role in reducing the epidemic progression of the Beta and the Alpha variants. In comparison, the combination of the non-pharmaceutical interventions and the rapid rollout of vaccination might have shaped Delta variant dynamics. We found that the Alpha and Beta variants were frequently introduced into the Arab peninsula between mid-2020 and early 2021 from Europe and Africa, respectively, whereas the Delta variant was frequently introduced between early 2021 and mid-2021 from East Asia. For these three variants, we also revealed significant and intense dispersal routes between the Arab region and Africa, Europe, Asia, and Oceania. In contrast, the restricted spread and stable effective population size of the Kappa and the Eta variants suggest that they no longer need to be targeted in genomic surveillance activities in the region. In contrast, the evolutionary characteristics of the Alpha, Beta, and Delta variants confirm the dominance of these variants in the recent outbreaks. Our study highlights the urgent need to establish regional molecular surveillance programs to ensure effective decision making related to the allocation of intervention activities targeted toward the most relevant variants.
Collapse
Affiliation(s)
- Moh A Alkhamis
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | | | - Mohammad M Khajah
- Systems and Software development Department, Kuwait Institute for Scientific Research, Kuwait
| | - Mohammad Alghounaim
- Departement of pediatrics, Amiri Hospital, Ministry of Health, Kuwait
- Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Kuwait
| | - Salman K Al-Sabah
- Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Kuwait
- Department of Surgery, Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait
| |
Collapse
|
9
|
Rajpal VR, Sharma S, Sehgal D, Singh A, Kumar A, Vaishnavi S, Tiwari M, Bhalla H, Goel S, Raina SN. A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program. Future Virol 2022. [PMID: 35747328 PMCID: PMC9203033 DOI: 10.2217/fvl-2021-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/26/2022] [Indexed: 12/23/2022]
Abstract
This review collates information on the onset of COVID-19, SARS-CoV-2 genome architecture, emergence of novel viral lineages that drove multiple waves of infection around the world and standard and fast track development of vaccines. With the passage of time, the continuously evolving SARS-CoV-2 has acquired an expanded mutational landscape. The functional characterization of spike protein mutations, the primary target of diagnostics, therapeutics and vaccines has revealed increased transmission, pathogenesis and immune escape potential in the variant lineages of the virus. The incurred mutations have also resulted in substantial viral neutralization escape to vaccines, monoclonal, polyclonal and convalescent antibodies presently in use. The present situation suggests the need for development of precise next-generation vaccines and therapeutics by targeting the more conservative genomic viral regions for providing adequate protection.
Collapse
Affiliation(s)
| | - Shashi Sharma
- Virology Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, 474002, India
| | - Deepmala Sehgal
- International Maize & Wheat Improvement Center (CIMMYT) Carretera México-Veracruz Km. 45, El Batán, Texcoco, 56237, México
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| | - Avinash Kumar
- Department of Botany, Vinoba Bhave University, Hazaribag, Jharkhand, 825319, India
| | - Samantha Vaishnavi
- Department of Botany, Central University of Jammu, Rahya Suchani (Bagla), Distt. Samba, Jammu and Kashmir, 181143, India
| | - Mugdha Tiwari
- ICMR-National Institute of Occupational Health (ICMR-NIOH), Meghaninagar, Ahmedabad, 380016, India
| | - Hemal Bhalla
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Zhang M, Liang Y, Yu D, Du B, Cheng W, Li L, Yu Z, Luo S, Zhang Y, Wang H, Zhang X, Zhang W. A systematic review of Vaccine Breakthrough Infections by SARS-CoV-2 Delta Variant. Int J Biol Sci 2022; 18:889-900. [PMID: 35002532 PMCID: PMC8741840 DOI: 10.7150/ijbs.68973] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Mengxin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ying Liang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Shuying Luo
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Huanmin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| |
Collapse
|