1
|
Zou J, Zhao XY, Ji LH, Zou JZ, Han YY, Li YM, Liu MM. Cloning, expression, and functional characterization of three f 6-hydroxyalizarin glycosyltransferases from Rheum palmatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109987. [PMID: 40344819 DOI: 10.1016/j.plaphy.2025.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Glycosyltransferases are key enzymes responsible for the glycosylation of natural products in plants. The roots and rhizomes of Rheum palmatum Diels, commonly known as rhubarb, are well-established in traditional Chinese medicine and are rich in diverse glycoside natural products. Despite this, no glycosyltransferase from R. palmatum had been molecularly and biochemically characterized until now. In this study, we report the identification and characterization of three novel glycosyltransferases (GTs) - RpUGT1, RpUGT6, and RpUGT30 - that mediate f 6-hydroxyalizarin glycoside biosynthesis. These enzymes exhibit regioselective glycosylation of β-OH anthraquinones and display substrate promiscuity, acting on at least six compounds to form O-glycosides. Molecular modeling and site-directed mutagenesis have identified critical residues essential for substrate binding and glycosylation. These results elucidate the pivotal enzymes and molecular mechanisms underlying 6-hydroxyalizarin biosynthesis in Polygonaceae plants, paving the way for the complete elucidation of this biosynthetic pathway and the construction of an artificial pathway for 6-hydroxyalizarin glycoside production.
Collapse
Affiliation(s)
- Jing Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Xin-Yu Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Li-Hong Ji
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Jian-Zhen Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yuan-Yuan Han
- Medical Comprehensive Experimental Center, Hebei University, Baoding, China
| | - Yi-Min Li
- Key Laboratory for Research and Development of "Qin Medicine" of ShaanxiAdministration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Meng-Meng Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China.
| |
Collapse
|
2
|
Wu L, Ma T, Zang C, Xu Z, Sun W, Luo H, Yang M, Song J, Chen S, Yao H. Glycyrrhiza, a commonly used medicinal herb: Review of species classification, pharmacology, active ingredient biosynthesis, and synthetic biology. J Adv Res 2024:S2090-1232(24)00538-1. [PMID: 39551128 DOI: 10.1016/j.jare.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Licorice is extensively and globally utilized as a medicinal herb and is one of the traditional Chinese herbal medicines with valuable pharmacological effects. Its therapeutic components primarily reside within its roots and rhizomes, classifying it as a tonifying herb. As more active ingredients in licorice are unearthed and characterized, licorice germplasm resources are gaining more and more recognition. However, due to the excessive exploitation of wild licorice resources, the degrading germplasm reserves fail to meet the requirements of chemical extraction and clinical application. AIM OF REVIEW This article presents a comprehensive review of the classification and phylogenetic relationships of species in genus Glycyrrhiza, types of active components and their pharmacological activities, licorice omics, biosynthetic pathways of active compounds in licorice, and metabolic engineering. It aims to offer a unique and comprehensive perspective on Glycyrrhiza, integrating knowledge from diverse fields to offer a comprehensive understanding of this genus. It will serve as a valuable resource and provide a solid foundation for future research and development in the molecular breeding and synthetic biology fields of Glycyrrhiza. KEY SCIENTIFIC CONCEPTS OF REVIEW Licorice has an abundance of active constituents, primarily triterpenoids, flavonoids, and polysaccharides. Modern pharmacological research unveiled its multifaceted effects encompassing anti-inflammatory, analgesic, anticancer, antiviral, antioxidant, and hepatoprotective activities. Many resources of Glycyrrhiza species remain largely untapped, and multiomic studies of the Glycyrrhiza lineage are expected to facilitate new discoveries in the fields of medicine and human health. Therefore, strategies for breeding high-yield licorice plants and developing effective biosynthesis methods for bioactive compounds will provide valuable insights into resource conservation and drug development. Metabolic engineering and microorganism-based green production provide alternative strategies to improve the production efficiency of natural products.
Collapse
Affiliation(s)
- Liwei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chenxi Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongmei Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
3
|
Fujii S, Uto T, Hayashi H, Putalun W, Sakamoto S, Tanaka H, Shoyama Y. Application of Monoclonal Antibodies against Naturally Occurring Bioactive Ingredients. Antibodies (Basel) 2024; 13:60. [PMID: 39189231 PMCID: PMC11348259 DOI: 10.3390/antib13030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Monoclonal antibodies (Mabs) are widely used in a variety of fields, including protein identification, life sciences, medicine, and natural product chemistry. This review focuses on Mabs against naturally occurring active compounds. The preparation of Mabs against various active compounds began in the 1980s, and now there are fewer than 50 types. Eastern blotting, which was developed as an antibody staining method for low-molecular-weight compounds, is useful for its ability to visually represent specific components. In this method, a mixture of lower-molecular-weight compounds, particularly glycosides, are separated by thin-layer chromatography (TLC). The compounds are then transferred to a membrane by heating, followed by treatment with potassium periodate (KIO4) to open the sugar moiety of the glycoside on the membrane to form an aldehyde group. Proteins are then added to form Schiff base bonds to enable adsorption on the membrane. A Mab is bound to the glycoside moiety on the membrane and reacts with a secondary antibody to produce color. Double Eastern blotting, which enables the simultaneous coloration of two glycosides, can be used to evaluate quality and estimate pharmacological effects. An example of staining by Eastern blotting and a component search based on the results will also be presented. A Mab-associated affinity column is a method for isolating antigen molecules in a single step. However, the usefulness of the wash fractions that are not bound to the affinity column is unknown. Therefore, we designated the wash fraction the "knockout extract". Comparing the nitric oxide (NO) production of a glycyrrhizin (GL)-knockout extract of licorice with a licorice extract revealed that the licorice extract is stronger. Therefore, the addition of GL to the GL-knockout extract of licorice increased NO production. This indicates that GL has synergic activity with the knockout extract. The GL-knockout extract of licorice inhibited high-glucose-induced epithelial-mesenchymal transition in NRK-52E cells, primarily by suppressing the Notch2 pathway. The real active constituent in licorice may be constituents other than GL, which is the causative agent of pseudohyperaldosteronism. This suggests that a GL-knockout extract of licorice may be useful for the treatment of diabetic nephritis.
Collapse
Affiliation(s)
- Shunsuke Fujii
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan; (S.F.); (T.U.)
| | - Takuhiro Uto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan; (S.F.); (T.U.)
| | - Hiroaki Hayashi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan;
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan;
| | - Hiroyuki Tanaka
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Yamaguchi 756-0884, Yamaguchi, Japan;
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan; (S.F.); (T.U.)
| |
Collapse
|
4
|
Li P, Ren G, Wu F, Chen J, Jiang D, Liu C. Root-specific flavones and critical enzyme genes involved in their synthesis changes due to drought stress on Scutellaria baicalensis. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
IntroductionScutellaria baicalensis is rich in bioactive flavonoid, which are widely used in clinical therapy. Many environmental factors, such as water and temperature, affect gene expression and secondary metabolites accumulation in plants.MethodsIn this study, to explore the effect of drought stress on the accumulation of flavonoids and gene expression in S. baicalensis seedlings, 4-week-old Scutellaria baicalensis seedlings were treated with different concentrations of PEG6000 to simulate drought stress. The contents of four root-specific flavones (baicalein, wogonin, baicalin, and wogonoside) in samples under different treatments were quantitatively analyzed by high performance liquid chromatography (HPLC). The expression levels of flavonoid biosynthesis-related genes (PAL1, PAL2, CHS, and UBGAT) were determined by real-time quantitative PCR (qRT-PCR). Also, a correlation analysis between flavonoid contents and gene expression levels was made.ResultsThe HPLC results revealed that 5 and 10% PEG6000 treatments significantly increased the content of four flavonoids, with 5% PEG 6000 treatment being the most beneficial to the flavonoids accumulation. The qRT-PCR results showed that PAL2 and CHS gene expressions differed significantly in different organs, while PAL1 and UBGAT had poor organ-specific. For genes in roots, the expression of PAL1 and UBGAT was the highest in 5% PEG6000 treatment, and PAL2 and CHS were the highest in 10% PEG6000 treatment. Compared with other concentrations of PEG6000, 5 and 10% PEG6000 were more advantageous for gene expression. Collectively, PEG6000 at a low concentration promoted the accumulation of flavonoids and the expression of related genes. Additionally, the correlation results demonstrated that PAL1, PAL2, CHS, and UBGAT genes in roots stimulated the formation and accumulation of the four flavonoids to varying degrees, while the exception of PAL2 gene expression in roots was negatively correlated with wogonin content.DiscussionThis study for the first time investigated the effect of drought stress on the downstream gene UBGAT in S.baicalensis seedlings as well as the correlation between gene expression and flavonoid content in S. baicalensis seedlings under drought stress, providing a new sight for studying the effects of drought stress on flavonoid accumulation and related gene expression in S. baicalensis.
Collapse
|
5
|
Samad A, Khurshid B, Mahmood A, Rehman AU, Khalid A, Abdalla AN, Algarni AS, Wadood A. Identification of novel peptide inhibitors for oncogenic KRAS G12D as therapeutic options using mutagenesis-based remodeling and MD simulations. J Biomol Struct Dyn 2023; 41:13425-13437. [PMID: 37010994 DOI: 10.1080/07391102.2023.2192298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/22/2023] [Indexed: 04/04/2023]
Abstract
The Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) serves as a molecular switch, cycling between guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound states. KRAS modulates numerous signal transduction pathways including the conventional RAF-MEK-ERK pathway. Mutations in the RAS genes have been linked to the formation of malignant tumors. Human malignancies typically show mutations in the Ras gene including HRAS, KRAS, and NRAS. Among all the mutations in exon 12 and exon 13 of the KRAS gene, the G12D mutation is more prevalent in pancreatic and lung cancer and accounts for around 41% of all G12 mutations, making them potential anticancer therapeutic targets. The present study is aimed at repurposing the peptide inhibitor KD2 of the KRAS G12D mutant. We employed an in-silico mutagenesis approach to design novel peptide inhibitors from the experimentally reported peptide inhibitor, and it was found that substitutions (N8W, N8I, and N8Y) might enhance the peptide's binding affinity toward the KRAS. Molecular dynamics simulations and binding energy calculations confirmed that the newly designed peptide inhibitors are stable and that their binding affinities are stronger as compared to the wild-type peptide. The detailed analysis revealed that newly designed peptides have the potential to inhibit KRAS/Raf interaction and the oncogenic signal of the KRAS G12D mutant. Our findings strongly suggest that these peptides should be tested and clinically validated to combat the oncogenic activity of KRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California, USA
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
6
|
Tang W, Shi JJ, Liu W, Lu X, Li B. MALDI Imaging Assisted Discovery of a Di-O-glycosyltransferase from Platycodon grandiflorum Root. Angew Chem Int Ed Engl 2023; 62:e202301309. [PMID: 36861146 DOI: 10.1002/anie.202301309] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
A matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) assisted genome mining strategy was developed for the discovery of glycosyltransferase (GT) from the root of Platycodon grandiflorum. A di-O-glycosyltransferase PgGT1 was discovered and characterized that is capable of catalyzing platycoside E (PE) synthesis through the attachment of two β-1,6-linked glucosyl residues sequentially to the glucosyl residue at the C3 position of platycodin D (PD). Although UDP-glucose is the preferred sugar donor for PgGT1, it could also utilize UDP-xylose and UDP-N-acetylglucosamine as weak donors. Residues S273, E274, and H350 played important roles in stabilizing the glucose donor and positioning the glucose in the optimal orientation for the glycosylation reaction. This study clarified two key steps involved in the biosynthetic pathway of PE and could greatly contribute to improving its industrial biotransformation.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun-Jie Shi
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
7
|
Qiao F, Zhang K, Zhou L, Qiu QS, Chen Z, Lu Y, Wang L, Geng G, Xie H. Analysis of flavonoid metabolism during fruit development of Lycium chinense. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153856. [PMID: 36375401 DOI: 10.1016/j.jplph.2022.153856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.
Collapse
Affiliation(s)
- Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Kaimin Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Lianyu Zhou
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenning Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China
| | - Yueheng Lu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Luhao Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Guigong Geng
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Tibetan Plateau Medicinal Plant and Animal Resources, Qinghai Normal University, Xining, 810008, China; Qinghai Ecosystem Observation and Research Station in the Southern Qilian Mountains, Haidong, 810500, China.
| |
Collapse
|
8
|
Xiong Z, Wang L, Sun J, Jiang X, Cong H, Sun H, Qiao F. Functional characterization of a Colchicum autumnale L. double-bond reductase (CaDBR1) in colchicine biosynthesis. PLANTA 2022; 256:95. [PMID: 36214872 DOI: 10.1007/s00425-022-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
An alkenal double-bond reductase enzyme (CaDBR1) was cloned from Colchicum autumnale L. The encoded enzyme catalysed 4-coumaraldehyde to 4-hydroxydihydrocinnamaldehyde (4-HDCA). Its functional characterization increased the understanding of colchicine biosynthesis. As a traditional medical plant, Colchicum autumnale L. is famous for producing colchicine, a widely used drug for alleviating gout attacks. The biosynthetic pathway of colchicine was revealed most recently, and 4-hydroxydihydrocinnamaldehyde (4-HDCA) has been verified as a crucial intermediate derived from L-phenylalanine. However, the functional gene that catalyses the formation of 4-HDCA remains controversial. In this study, the alkenal double-bond reductase (DBR) gene member CaDBR1 was cloned and characterized from C. autumnale. Bioinformatics analysis predicted and characterized the basic physicochemical properties of CaDBR1. Recombinant CaDBR1 protein was heterologously expressed in Escherichia coli and purified by a Ni-NTA column. In vitro enzyme assays indicated that CaDBR1 could catalyse 4-coumaraldehyde to form 4-HDCA but could not generate 4-HDCA by taking cinnamaldehyde as a substrate. Stable transformation into tobacco BY-2 cells revealed that CaDBR1 localized in the cytoplasm, and tissue-specific expression results showed that CaDBR1 had the highest expression in bulbs. All these results verify and confirm the participation and contribution of CaDBR1 in the biosynthesis pathway of 4-HDCA and colchicine alkaloids in C. autumnale.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Liang Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Jingyi Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xuefei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, Sanya Nanfan Research Institute, College of Horticulture, Hainan University, Haikou, 570228, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
9
|
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z. Genome-wide characterization of the UDP-glycosyltransferase gene family reveals their potential roles in leaf senescence in cotton. Int J Biol Macromol 2022; 222:2648-2660. [DOI: 10.1016/j.ijbiomac.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
10
|
Wang H, Wu Y, Liu Y, Zhao L, Pei J. Screening and characterizing flavone synthases and its application in biosynthesizing vitexin from naringenin by a one-pot enzymatic cascade. Enzyme Microb Technol 2022; 160:110101. [PMID: 35872507 DOI: 10.1016/j.enzmictec.2022.110101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
C-glycosylated flavonoids are important structural derivatives of flavonoids and have a variety of physiological activities. Flavone synthase is a key enzyme for producing C-glycosylated flavonoids. In this study, three flavone synthase genes were cloned, overexpressed and characterized in E. coli. By analyzing the enzymatic properties of the enzymes, Aethusa cynapium flavone synthase (AcFNS) was better than Apium graveolens flavone synthase (AgFNS) and Petroselinum crispum flavone synthase (PcFNS) in terms of catalytic ability, organic solvent tolerance and stability. Then, a one-pot enzymatic cascade was developed to synthesize vitexin from naringenin by using AcFNS, C-glycosyltransferase (TcCGT) from Trollius chinensis, and sucrose synthase (GmSUS) from Glycine max. The effects of enzyme ratios, substrate concentrations, cofactors, and reaction conditions on vitexin production were determined. The highest vitexin production reached 935.6 mg/L with a corresponding molar conversion of 78.7 % for (2 S)-naringenin. Thus, this is the first report of a one-pot enzymatic cascade for vitexin production from naringenin in vitro.
Collapse
Affiliation(s)
- Huan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
11
|
Peng X, Xie Z, Wang X, Zhao Y, Yang C, Zhang Z, Li M, Zheng J, Wang Y. Multi-omics analyses revealed key factors involved in fluorescent carbon-dots-regulated secondary metabolism in Tetrastigma hemsleyanum. J Nanobiotechnology 2022; 20:63. [PMID: 35109871 PMCID: PMC8812181 DOI: 10.1186/s12951-022-01271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Luminescent nanomaterials (LNMs), especially newly-exploited fluorescent carbon-dots (CDs), have demonstrated promising candidates for sunlight harvesting and enhanced photosynthesis efficiency of crops. However, most of the studies focus on the design and synthesis of LNMs and primary metabolism in biomass acceleration, secondary metabolism that closely associated with the quality ingredients of plants is rarely mentioned. RESULTS UV-absorptive and water-soluble NIR-CDs were harvested via a facile microwave-assisted carbonization method. The effect and regulatory mechanism of NIR-CDs on the secondary metabolism and bioactive ingredients accumulation in Tetrastigma hemsleyanum were explored. A total of 191 differential secondary metabolites and 6874 differentially expressed genes were identified when the NIR-CDs were adopted for enhancing growth of T. hemsleyanum. The phenolic acids were generally improved, but the flavonoids were more likely to decrease. The pivotal differentially expressed genes were involved in biosynthesis of secondary metabolites, flavonoid biosynthesis, porphyrin and chlorophyll metabolism, etc. The gene-metabolite association was constructed and 44 hub genes highly related to quality ingredients accumulation and growth were identified, among which and the top 5 genes of the PPI network might be the key regulators. CONCLUSION This research provided key regulatory genes and differentially accumulating quality ingredients under NIR-CDs-treatment, which could provide a theoretical basis for expanding the applications of nanomaterial in industrial crop agriculture.
Collapse
Affiliation(s)
- Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100 People’s Republic of China
| | - Zhuomi Xie
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Xiuhua Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| | - Yuxiang Zhao
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100 People’s Republic of China
| | - Chuyun Yang
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Zhongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Mingjie Li
- Fujian Agriculture and Forestry University, Fuzhou, 350028 People’s Republic of China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 People’s Republic of China
| |
Collapse
|