1
|
Catalano Gonzaga O, McKenna S, O’Neill I, Cotter PD, McAuliffe FM, Coffey A, van Sinderen D, Bottacini F. Gene-trait matching among Bifidobacterium dentium strains reveals various glycan metabolism loci including a strain-specific fucosyllactose utilization cluster. Front Microbiol 2025; 16:1584694. [PMID: 40421466 PMCID: PMC12104195 DOI: 10.3389/fmicb.2025.1584694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/18/2025] [Indexed: 05/28/2025] Open
Abstract
In contrast to other human-associated bifidobacteria, Bifidobacterium dentium is commonly classified as an opportunistic pathogen as its presence in the oral cavity has been associated with the development of dental caries. While B. dentium is frequently isolated from the oral cavity of children with caries, recent microbiome investigations and preliminary genomic analyses have suggested that this species is also adapted to colonize the gastrointestinal tract. Understanding the genetic and metabolic adaptations that enable this flexible colonization ability is crucial to clarify its role in human health and disease. To assess B. dentium genomic diversity and metabolic potential, the current study presents analysis and characterization of 10 complete genome sequences from recently isolated B. dentium strains obtained from human fecal samples together with 48 publicly available genome sequences. We investigated genetic loci predicted to be involved in host interaction and carbohydrate utilization in this species by means of comparative genomics, pan-genome analysis, and gene-trait matching. These analyses identified gene clusters involved in the utilization of plant-derived glycans and, for the first time, revealed B. dentium strains capable of utilizing human milk oligosaccharides (HMOs) through a fucosyllactose utilization cluster homologous to the one found in several infant-derived bifidobacterial species. Moreover, additional investigations of strain-specific genetic features highlighted a taxon that is evolved to colonize multiple niches and to compete with other colonizers. These findings challenge the narrow classification of B. dentium as an opportunist and underscore its ecological versatility.
Collapse
Affiliation(s)
- Ortensia Catalano Gonzaga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen McKenna
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Ian O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Aidan Coffey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
2
|
Zhao X, Jia S, Zhao H, Liu P, Wu Z, Tao H, Yu B, Cui B. The interaction between maize resistant starch III and Bifidobacterium adolescentis during in vitro fermentation. Food Chem 2025; 463:140968. [PMID: 39265403 DOI: 10.1016/j.foodchem.2024.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
As an alternative to traditional dietary fibers with prebiotic effects, the interaction between resistant starch III (RS3) and gut microbiota is worth exploring. In this study, the effects of RS3 on the proliferation of Bifidobacterium adolescentis (B. adolescentis) and their structural changes before and after fermentation were investigated. Autoclaved-debranched resistant starch (ADRS) demonstrated the best proliferative effect for B. adolescentis and the highest roughness (Ra = 21.90 nm; Rq = 16.00 nm). The rough surface of ADRS was the key for B. adolescentis proliferation. B. adolescentis produced an extracellular amylase to assist degradation and showed the highest activity in ADRS. Fermentation disrupted short-range ordered structure and reduced R1047 cm-1/1022 cm-1 by 20.74 % and R995 cm-1/1022 cm-1 by 30.85 %. The extracellular amylase was essential substance for ADRS degradation. These findings help optimize RS3 structure and promote the proliferation of intestinal probiotics.
Collapse
Affiliation(s)
- Xinzhu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
3
|
Kozakai T, Nakajima A, Miyazawa K, Sasaki Y, Odamaki T, Katoh T, Fukuma T, Xiao JZ, Suzuki T, Katayama T, Sakanaka M. An improved temperature-sensitive shuttle vector system for scarless gene deletion in human-gut-associated Bifidobacterium species. iScience 2024; 27:111080. [PMID: 39502284 PMCID: PMC11536034 DOI: 10.1016/j.isci.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Bifidobacterium is a prevalent bacterial taxon in the human gut that comprises over 10 (sub)species. Previous studies suggest that these species use evolutionarily distinct strategies for symbiosis with their hosts. However, the underlying species-specific mechanisms remain unclear due to the lack of efficient gene knockout systems applicable across different species. Here, we developed improved temperature-sensitive shuttle vectors by introducing Ser139Trp into the replication protein RepB. We then used temperature-sensitive plasmids to construct a double-crossover-mediated scarless gene deletion system. The system was employed for targeted gene deletion in Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium kashiwanohense, and Bifidobacterium pseudocatenulatum. Deletion of genes involved in capsular polysaccharide biosynthesis, aromatic lactic acid production, and sugar utilization resulted in the expected phenotypic changes in the respective (sub)species. The temperature-sensitive plasmids developed in this study will aid in deciphering the evolutionary traits of the human-gut-associated Bifidobacterium species.
Collapse
Affiliation(s)
- Tomoya Kozakai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Miyazawa
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Sasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Fukuma
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Jin-zhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Pickens TL, Cockburn DW. Clostridium butyricum Prazmowski can degrade and utilize resistant starch via a set of synergistically acting enzymes. mSphere 2024; 9:e0056623. [PMID: 38131665 PMCID: PMC10826348 DOI: 10.1128/msphere.00566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Resistant starch is a prebiotic fiber that is best known for its ability to increase butyrate production by the gut microbiota. This butyrate then plays an important role in modulating the immune system and inflammation. However, the ability to use this resistant starch appears to be a rare trait within the gut microbiota, with only a few species such as Ruminococcus bromii and Bifidobacterium adolescentis having been demonstrated to possess this ability. Furthermore, these bacteria do not directly produce butyrate themselves, rather they rely on cross-feeding interactions with other gut bacteria for its production. Here, we demonstrate that the often-used probiotic organism Clostridium butyricum also possesses the ability to utilize resistant starch from a number of sources, with direct production of butyrate. We further explore the enzymes responsible for this trait, demonstrating that they exhibit significant synergy, though with different enzymes exhibiting more or less importance depending on the source of the resistant starch. Thus, the co-administration of Clostridium butyricum may have the ability to improve the beneficial effects of resistant starch.IMPORTANCEClostridium butyricum is seeing increased use as a probiotic, due to potential health benefits tied to its ability to produce butyrate. Here, we demonstrate that this organism can use a variety of resistant starch sources and characterize the enzymes it uses to accomplish this. Given the relative rarity of resistant starch utilizing ability within the gut and the health benefits tied to resistant starch, the combined use of this organism with resistant starch in synbiotic formulations may prove beneficial.
Collapse
Affiliation(s)
- Tara L. Pickens
- Department of Food Science, The Pennsylvania State University, State College, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Darrell W. Cockburn
- Department of Food Science, The Pennsylvania State University, State College, Pennsylvania, USA
- The One Health Microbiome Center, Huck Institute of the Life Sciences, The Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
6
|
Jung DH, Park CS. Resistant starch utilization by Bifidobacterium, the beneficial human gut bacteria. Food Sci Biotechnol 2023; 32:441-452. [PMID: 36911330 PMCID: PMC9992497 DOI: 10.1007/s10068-023-01253-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Resistant starch (RS) reaches the large intestine largely intact, where it is fermented by the gut microbiota, resulting in the production of short-chain fatty acids (SCFAs) that have beneficial effects on the human body. Bifidobacteria are a major species widely used in the probiotic field, and are increased in the gut by RS, indicating their importance in RS metabolism in the intestine. Bifidobacteria have a genetic advantage in starch metabolism as they possess a significant number of starch-degrading enzymes and extraordinary three RS-degrading enzymes, allowing them to utilize RS. However, to date, only three species of RS-degrading bifidobacteria have been reported as single isolates B. adolescentis, B. choerinum, and B. pseudolongum. In this review, we describe recent studies on RS utilization by Bifidobacterium, based on their biochemical characteristics and genetic findings. This review provides a crucial understanding of how bifidobacteria survive in specific niches with abundant RS such as the human gut.
Collapse
Affiliation(s)
- Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
7
|
Bhandari P, Tingley J, Abbott DW, Hill JE. Glycogen-Degrading Activities of Catalytic Domains of α-Amylase and α-Amylase-Pullulanase Enzymes Conserved in Gardnerella spp. from the Vaginal Microbiome. J Bacteriol 2023; 205:e0039322. [PMID: 36744900 PMCID: PMC9945562 DOI: 10.1128/jb.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Gardnerella spp. are associated with bacterial vaginosis in which normally dominant lactobacilli are replaced with facultative and anaerobic bacteria, including Gardnerella spp. Co-occurrence of multiple species of Gardnerella is common in the vagina, and competition for nutrients such as glycogen likely contributes to the differential abundances of Gardnerella spp. Glycogen must be digested into smaller components for uptake, a process that depends on the combined action of glycogen-degrading enzymes. In this study, the ability of culture supernatants of 15 isolates of Gardnerella spp. to produce glucose, maltose, maltotriose, and maltotetraose from glycogen was demonstrated. Carbohydrate-active enzymes (CAZymes) were identified bioinformatically in Gardnerella proteomes using dbCAN2. Identified proteins included a single-domain α-amylase (EC 3.2.1.1) (encoded by all 15 isolates) and an α-amylase-pullulanase (EC 3.2.1.41) containing amylase, carbohydrate binding modules, and pullulanase domains (14/15 isolates). To verify the sequence-based functional predictions, the amylase and pullulanase domains of the α-amylase-pullulanase and the single-domain α-amylase were each produced in Escherichia coli. The α-amylase domain from the α-amylase-pullulanase released maltose, maltotriose, and maltotetraose from glycogen, and the pullulanase domain released maltotriose from pullulan and maltose from glycogen, demonstrating that the Gardnerella α-amylase-pullulanase is capable of hydrolyzing α-1,4 and α-1,6 glycosidic bonds. Similarly, the single-domain α-amylase protein also produced maltose, maltotriose, and maltotetraose from glycogen. Our findings show that Gardnerella spp. produce extracellular amylase enzymes as "public goods" that can digest glycogen into maltose, maltotriose, and maltotetraose that can be used by the vaginal microbiota. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms, and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community, but little is known about the contribution of bacterial enzymes to the metabolism of glycogen, a major food source available to vaginal bacteria. The significance of our research is characterizing the activity of enzymes conserved in Gardnerella species that contribute to the ability of these bacteria to utilize glycogen.
Collapse
Affiliation(s)
- Pashupati Bhandari
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jeffrey Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Improved Stability and Hydrolysates of Hyperthermophilic GH57 Type II Pullulanase from the Deep-Sea Archaeon Thermococcus siculi HJ21 by Truncation. Catalysts 2023. [DOI: 10.3390/catal13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Pullulanase (EC 3.2.1.41) belongs to the amylase family and is often used alone or in combination with other amylases in the industrial production of starch-based products. This enzyme is often required in industrial production because of its better stability. We here truncated the pullulanase gene from the deep-sea hydrothermal anaerobic archaeon Thermococcus siculi HJ21 and obtained Pul-HJΔ782, which is a member of the α-amylase family GH57. The results revealed that the optimum temperature for Pul-HJΔ782 was 100 °C, and its thermostability at 100 °C improved after truncation. Less than 15% of its enzyme activity was lost after 1 h of incubation at 100 °C, and 57% activity remained after 5 h of treatment. Truncation significantly improved the overall pH tolerance range of Pul-HJΔ782, and its stability in the pH range 4–8 was over 80% relative activity from an average of 60%. The sequence and structural model of Pul-HJΔ782 was analyzed, and its instability index was reduced significantly. Furthermore, the hydrolysates of the truncated and wild-type pullulanase were analyzed, and the enzymatic digestion efficiency of the truncated Pul-HJΔ782 was higher.
Collapse
|
9
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|