1
|
D'Amora U, Scialla S, Fasolino I, Ronca A, Soriente A, De Cesare N, Manini P, Phua JW, Pezzella A, Raucci MG, Ambrosio L. Eumelanin pigment release from photo-crosslinkable methacrylated gelatin-based cryogels: Exploring the physicochemical properties and antioxidant efficacy in wound healing. BIOMATERIALS ADVANCES 2025; 170:214214. [PMID: 39904018 DOI: 10.1016/j.bioadv.2025.214214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Managing wounds in certain phases of the healing process still represents a big challenge. The oxidative stress, caused by reactive oxygen species (ROS), is one of the hallmarks controlling the wound healing-related process. Multifunctional biomaterials with excellent biocompatibility, tuneable properties, and easy functionalization, may allow realizing suitable three-dimensional (3D) and extracellular matrix (ECM)-mimicking structures, to efficiently control ROS levels. This might be a promising strategy for healing severe wounds. Herein, photo-crosslinkable methacrylated gelatin (GelMA)-based spongy-like cryogels (from 5 to 20 % w/v) incorporating Eumelanin from Black Soldier Flies (BSF-Eumel, 0.5 and 1.0 mg/mL), a pigment endowed with marked antioxidant properties, were developed. GelMA-based cryogels were fabricated by an easily handled and scalable cryogelation process followed by ultraviolet (UV) photo-crosslinking. BSF-Eumel sub-micrometer particles were embedded into GelMA-based cryogels by passive permeation of the solution within the polymeric network. BSF-Eumel addition resulted in more hydrophilic and porous structures, exhibiting a good stability and a prolonged release within 14 days. Furthermore, GelMA/BSF-Eumel cryogels exhibited good antioxidant activity, confirmed by a powerful quenching effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (59 % at 1.0 mg/mL of BSF-Eumel). Moreover, GelMA/BSF-Eumel cryogels at the highest GelMA concentrations (10 and 20 % w/v) accelerated human dermal fibroblasts-adult (HDF-a) migration, promoting wound closure within 24 h. They also proved to mitigate oxidative stress, modulating the production of ROS levels and preventing superoxide dismutase (SOD) activity inhibition in HDFs stimulated by lipopolysaccharide (LPS), owing to the release of BSF-Eumel. Such remarkable outcomes make GelMA/BSF-Eumel cryogels a promising antioxidant platform for wound healing.
Collapse
Affiliation(s)
- Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy.
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy.
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Noemi De Cesare
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Jun Wei Phua
- Insectta Pte. Ltd., 8 Cleantech Loop, Singapore 637145, Singapore
| | - Alessandro Pezzella
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy; Department of Physics "E. Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy; Bioelectronics Task Force, University of Naples Federico II, 80126 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125 Naples, Italy
| |
Collapse
|
2
|
Wang J, Liu H, Liu M, Shen T, Weng T, He F, Wang X. A dual gene-activated dermal scaffolds loaded with nanocomposite particles expressing of VEGF and aFGF: Promoting wound healing by early vascularization. Int J Biol Macromol 2025; 307:141831. [PMID: 40057066 DOI: 10.1016/j.ijbiomac.2025.141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/23/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
The urgent need to enhance the early vascularization of dermal substitutes to improve their repair efficiency in skin defect wound presents a significant challenge. This study investigated the impact of dual gene-activated scaffolds (DGAS-M), which combined nanocomposite particles (NPs) encapsulating plasmid DNA (pDNA) of VEGF and aFGF, with the aim of enhancing early vascularization and vascular maturation. In this study, we used the liposomes to encapsulate pDNA and loaded on PLGA knitted mesh-reinforced collagen/chitosan scaffolds (PLGAm/CCS) to prepare DGAS-M. DGAS-M exerted effects on the proliferation of human fibroblasts, angiogenesis, and the synthesis and secretion of growth factors in umbilical vein endothelial cells in vitro. Furthermore, in a rat full-thickness skin defect model, DGAS-M enhanced the survival rate of autologous split-thickness skin grafts during the first 14 days post-surgery. DGAS-M not only accelerated the vascularization process in the wound but also promoted collagen deposition while diminishing the release of inflammatory mediators, ultimately improving the quality of healing. This approach offers a potential solution to address the present clinical problem of skin defect recovery.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China
| | - Tao Shen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China
| | - Tingting Weng
- Department of Burn and Plastic Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - Fang He
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China.
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China; Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, Zhejiang university, Hangzhou 310009, China.
| |
Collapse
|
3
|
Gao S, He X, Liu H, Liu Y, Wang H, Zhou Z, Chen L, Ji X, Yang R, Xie J. Multifunctional Bioactive Nanozyme Systems for Enhanced Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2401580. [PMID: 39077928 DOI: 10.1002/adhm.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Indexed: 07/31/2024]
Abstract
The protracted transition from inflammation to proliferation in diabetic wound healing poses significant challenges, exacerbated by persistent inflammatory responses and inadequate vascularization. To address these issues, a novel nanozymatic therapeutic approach utilizing asymmetrically structured MnO₂-Au-mSiO₂@aFGF Janus nanoparticles is engineered. Nanozymes featuring a mSiO₂ head and MnO₂ extensions, into which acidic fibroblast growth factor (aFGF) is encapsulated, resulting in MnO₂-Au-mSiO₂@aFGF Janus nanoparticles (mSAM@aFGF), are synthesized. This nanozyme system effectively emulates enzymatic activities of catalase (CAT) and superoxide dismutase (SOD), catalyzing degradation of reactive oxygen species (ROS) and generating oxygen. In addition, controlled release of aFGF fosters tissue regeneration and vascularization. In vitro studies demonstrate that mSAM@aFGF significantly alleviates oxidative stress in cells, and enhances cell proliferation, migration, and angiogenesis. An injectable hydrogel based on photocrosslinked hyaluronic acid (HAMA), incorporating the nanozymatic ROS-scavenging and growth factor-releasing system, is developed. The HAMA-mSAM@aFGF hydrogel exhibits multifaceted benefits in a diabetic wound model, including injectability, wound adhesion, hemostasis, anti-inflammatory effects, macrophage polarization from M1 to M2 phenotype, and promotion of vascularization. These attributes underscore the potential of this system to facilitate transition from chronic inflammation to the proliferative phase of wound repair, offering a promising therapeutic strategy for diabetic wound management.
Collapse
Affiliation(s)
- Suyue Gao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yiling Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ziheng Zhou
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Lei Chen
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
4
|
Maimaiti D, Ge X, Wang C, Liu J, Yang G, Zhang D, Xu Y, He F, Chen X. Extracellular matrix-mimicking cryogels composed of methacrylated fucoidan enhance vascularized skeletal muscle regeneration following volumetric muscle loss. Int J Biol Macromol 2024; 283:137122. [PMID: 39491692 DOI: 10.1016/j.ijbiomac.2024.137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Volumetric muscle loss (VML) significantly impairs the inherent regenerative ability of skeletal muscle and results in chronic functional impairment. Polysaccharides in the muscle extracellular matrix are crucial for regulating cell proliferation and differentiation. Recent studies indicate that fucoidan has beneficial effects on musculoskeletal conditions. However, the impact of fucoidan on skeletal muscle regeneration remains poorly understood. In this study, methacrylated fucoidan (FuMA) was synthesized through chemical grafting of the methacryloyl group onto fucoidan. In vitro experiments demonstrated that treatment with FuMA significantly up-regulated the expression of myogenic markers and promoted the formation of myotubes in C2C12 myoblast cells. Importantly, FuMA treatment led to a significant enhancement in mitochondrial energy metabolism of myoblasts via activation of the NRF2 antioxidant signaling pathway. To further investigate the regenerative properties in repairing skeletal muscle defects, we fabricated a dual crosslinked cryogel consisting of FuMA and methacrylated gelatin (GelMA) with a porous and interconnected structure. In a rat tibialis anterior muscle VML model, implantation of the FuMA/GelMA cryogel effectively promoted the regeneration of muscle fibers, reduced collagen deposition, and facilitated the formation of new blood vessels. Hence, polysaccharide-based cryogels represent a promising implantable biomimetic scaffold for facilitating skeletal muscle regeneration following severe injuries.
Collapse
Affiliation(s)
- Dimulati Maimaiti
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China; Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiaoyang Ge
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Chengyue Wang
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jinuo Liu
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China; Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Guanyu Yang
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yong Xu
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Fan He
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Luo Y, Luo H, Yang X, Ding X, Wang K, Zhang M, Wei J, An Y, Xu J, He H, Wu J. Bio-inspired aFGF modification functionalized piezoelectric chitosan films for promoting scald wound healing. Int J Biol Macromol 2024; 282:136486. [PMID: 39423968 DOI: 10.1016/j.ijbiomac.2024.136486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The application of acidic fibroblast growth factor (aFGF) has shown great potential in the treatment of scald or burn wounds with high morbidity and mortality, especially in promoting the repair of deep partial-thickness wounds. However, its short half-life and instability in vivo do pose challenges for clinical application. Herein, two kinds of bio-inspired modified piezoelectric chitosan (CS) films, namely heparin-coated CS film (HCS) and polydopamine-coated CS film (DCS), are facially fabricated and adopted as controlled-release platforms for local delivery of aFGF. Polydopamine or heparin layers serve as a bridge grafting on chitosan films, facilitating the loading of aFGF and enabling controlled release of aFGF from the piezoelectric film through intermolecular interactions. Additionally, these layers enhance the hydrophilicity and antibacterial properties of the bare CS film due to their inherent biological activities. Furthermore, the polydopamine coating imparts photothermal activity to the CS film. The in vivo experiments ascertain that the synergetic effect of the controlled-released aFGF and low temperature photothermal therapy collectively accelerate scald wound healing outcomes within 14 days by facilitating granulation formation, collagen deposition, re-epithelialization and angiogenesis. This study opens up new possibilities for the development of multifunctional chitosan-based wound dressings and the creation of innovative drug delivery platforms.
Collapse
Affiliation(s)
- Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xiaying Yang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xin Ding
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Kun Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Miao Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jiacheng Wei
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ying An
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, PR China
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
6
|
Yuan G, Yu C, Du X, Li D, Dou H, Lu P, Wu T, Hao C, Wang Y. Injectable GelMA Hydrogel Microspheres with Sustained Release of Platelet-Rich Plasma for the Treatment of Thin Endometrium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403890. [PMID: 39206600 DOI: 10.1002/smll.202403890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Platelet-rich plasma (PRP) intrauterine infusion has been demonstrated to be effective in treating thin endometrium and achieving pregnancy. However, the rapid release of growth factors limits its effectiveness in clinical applications, and thus, multiple intrauterine infusions are often required to achieve therapeutic efficacy. In this study, a GelMA hydrogel microsphere biomaterial is developed using droplet microfluidics to modify the delivery mode of PRP and thus prolong its duration of action. Its biocompatibility is confirmed through both in vivo and in vitro studies. Cell experiments show that PRP-loaded microspheres significantly enhance cell proliferation, migration, and angiogenesis. In vivo experiments show that the effects of PRP-loaded microspheres on repairing the endometrium and restoring fertility in mice could achieve the impact of triple PRP intrauterine infusions. Further mechanistic investigations reveal that PRP could facilitate endometrial repair by regulating the expression of E2Fs, a group of transcription factors. This study demonstrates that hydrogel microspheres could modify the delivery of PRP and prolong its duration of action, enabling endometrial repair and functional reconstruction. This design avoids repeated intrauterine injections of PRP in the clinic, reduces the number of patient visits, and provides a new avenue for clinical treatment of thin endometrium.
Collapse
Affiliation(s)
- Guanghui Yuan
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Chenghao Yu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Xin Du
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Duan Li
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Huaiqian Dou
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Panpan Lu
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China
| | - Cuifang Hao
- Centre for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, 266011, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, 266011, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| |
Collapse
|
7
|
He H, Huang W, Zhang S, Li J, Zhang J, Li B, Xu J, Luo Y, Shi H, Li Y, Xiao J, Ezekiel OC, Li X, Wu J. Microneedle Patch for Transdermal Sequential Delivery of KGF-2 and aFGF to Enhance Burn Wound Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307485. [PMID: 38623988 DOI: 10.1002/smll.202307485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Indexed: 04/17/2024]
Abstract
Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.
Collapse
Affiliation(s)
- Huacheng He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
| | - Wen Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shihui Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Bingxin Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yuting Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Huiling Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yue Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Odinaka Cassandra Ezekiel
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
8
|
Chen Y, Hu M, Hu H, Ji S, Huang L, Wei W, Zhao K, Teng C. Fabrication of an Adhesive Small Intestinal Submucosa Acellular Matrix Hydrogel for Accelerating Diabetic Wound Healing. ACS OMEGA 2023; 8:46653-46662. [PMID: 38107900 PMCID: PMC10720003 DOI: 10.1021/acsomega.3c05682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The treatment of diabetic skin defects comes with enormous challenges in the clinic due to the disordered metabolic microenvironment. In this study, we therefore designed a novel composite hydrogel (SISAM@HN) with bioactive factors and tissue adhesive properties for accelerating chronic diabetic wound healing. Hyaluronic acid (HA) modified by N-(2-aminoethyl)-4-(4-(hydroxymethyl)-2-methoxy-5-nitrosophenoxy) butanamide (NB) held the phototriggering tissue adhesive capacity. Decellularized small intestinal submucosa (SIS) was degreased and digested to form the acellular matrix, which facilitated bioactive factor release. The results of the burst pressure test demonstrated that the in situ formed hydrogel possessed a tissue adhesive property. In vitro experiments, based on bone marrow stromal cells, revealed that the SIS acellular matrix-containing hydrogel contributed to promoting cell proliferation. In vivo, a diabetic mouse model was created and used to evaluate the tissue regeneration function of the obtained hydrogel, and our results showed that the synthesized hydrogel could assist collagen deposition, attenuate inflammation, and foster vascular growth during the wound healing process. Overall, the SIS acellular matrix-containing HA hydrogel was able to adhere to the wound sites, promote cell proliferation, and facilitate angiogenesis, which would be a promising biomaterial for wound dressing in clinical therapy of diabetic skin defects.
Collapse
Affiliation(s)
- Yao Chen
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Miner Hu
- Department
of Cardiology, the Fourth Affiliated Hospital, International Institutes
of Medicine, Zhejiang University School
of Medicine, Yiwu, Zhejiang 322000, China
| | - Honghua Hu
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Leyi Huang
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| | - Wei Wei
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
- Key
Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang
Province, Zhejiang University School of
Medicine, Hangzhou, Zhejiang 310000, China
| | - Kun Zhao
- Department
of Endocrinology, the Seventh Medical Center of Chinese PLA General
Hospital, Beijing 100700, China
| | - Chong Teng
- Department
of Orthopaedic Surgery, the Fourth Affiliated Hospital, International
Institutes of Medicine, Zhejiang University
School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
9
|
Pan Y, Yang D, Zhou M, Liu Y, Pan J, Wu Y, Huang L, Li H. Advance in topical biomaterials and mechanisms for the intervention of pressure injury. iScience 2023; 26:106956. [PMID: 37378311 PMCID: PMC10291478 DOI: 10.1016/j.isci.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.
Collapse
Affiliation(s)
- Yingying Pan
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Min Zhou
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jiandan Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunlong Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
10
|
Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int J Mol Sci 2023; 24:9900. [PMID: 37373045 DOI: 10.3390/ijms24129900] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Collapse
Affiliation(s)
- Jessica Da Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- PDBEB-Ph.D. Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
| | - Ermelindo C Leal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eduardo A Silva
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| |
Collapse
|
11
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
12
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Preparation of biodegradable carboxymethyl cellulose/dopamine/Ag NPs cryogel for rapid hemostasis and bacteria-infected wound repair. Int J Biol Macromol 2022; 222:272-284. [PMID: 36152700 DOI: 10.1016/j.ijbiomac.2022.09.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Massive hemorrhage caused by accident or surgery is a major factor in accidental death. In addition, bacterial infection is also an important threat after bleeding. Cryogels with interpenetrating macroporous structures pose great application prospects in rapid hemostasis and infected wound repair. In this study, cryogels with different pore size are prepared by carboxymethyl cellulose (CMC) and dopamine (DA). The CMC grafted with different DA amounts is crosslinked by free DA through oxidative polymerization at low temperatures to form cryogels with different pore sizes. And the CMC/DA-3 cryogel is chosen as the optimal group for its high porosity, suitable mechanical, and good hemostatic ability. CMC/DA-3 cryogel is loaded with silver nanoparticles (Ag NPs) to prepare hemostatic cryogel with antibacterial properties. Antibacterial tests and animal hemostasis experiments confirm that the CMC/DA-3/Ag cryogel has good antibacterial properties and can finish rapid hemostasis. In the S. aureus infection skin defect model, the wound healing is significantly improved compared with commercial gelatin sponge. In summary, the novel cryogel has great potential in rapid hemostasis and infected wound healing.
Collapse
|
15
|
Idumah CI. Recently emerging advancements in polymeric cryogel nanostructures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Nigeria
| |
Collapse
|
16
|
Hydrogel loading 2D montmorillonite exfoliated by anti-inflammatory Lycium barbarum L. polysaccharides for advanced wound dressing. Int J Biol Macromol 2022; 209:50-58. [PMID: 35331795 DOI: 10.1016/j.ijbiomac.2022.03.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
Designing wound dressing materials with hemocompatibility, suitable mechanical properties, outstanding hemostatic effects and anti-inflammatory activity is of great practical significance for wound management. Herein, a hemostatic hydrogel loaded with Lycium barbarum L. polysaccharide (LBP)-functionalized ultrathin MMT nanosheets (L-MMT NSs) was fabricated for efficient hemostasis and wound healing. Loading the L-MMT NSs into polyvinyl alcohol (PVA), the obtained P-L-MMT hydrogel exhibited a 3D porous structure with good swelling properties, cytocompatibility, hemocompatibility, and anti-inflammatory activity. Importantly, in vivo investigations demonstrated that the P-L-MMT hydrogel exerts outstanding hemostasis activity in the hemorrhaging mouse liver model and reduces tissue damage caused by inflammation to shorten wound healing time. Altogether, the convenient exfoliation and functionalization of bulk MMT using LBPs make this inexpensive and rising nanostructure more attractive in the application of nanomedicine. Moreover, due to the synergy between hemostasis and anti-inflammation, this newly developed multifunctional P-L-MMT hydrogel represents a promising material in biomedical fields.
Collapse
|