1
|
Wu X, Shao G, Wang Z, Qin B, Wang T, Wang Y, Fu Y. A "cyclodextrin-salicylic acid-chitosan" bifunctional monomer magnetic hydrophilic imprinted sandwich gel for targeted adsorption and slow release of ginkgolic acid. Int J Biol Macromol 2025; 294:139410. [PMID: 39765294 DOI: 10.1016/j.ijbiomac.2024.139410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Qmax = 47.786 mg g-1) and desorption performance (QD = 42.33 mg g-1), with a desorption rate of 88.58 %. In addition, the material exhibited outstanding selectivity, stability, recyclability, antibacterial activity, and sustained-release properties, with a cumulative release rate of 95.57 % over 72 h. The release data followed the Korsmeyer-Peppas model, while the adsorption behavior fit a multi-layer heterogeneous adsorption model (Freundlich model) and conformed to a second-order kinetic model. Thermodynamic analysis confirmed that the adsorption of ginkgolic acid by MMCC-CD/CS-MIP is both feasible and spontaneous. MMCC-CD/CS-MIP provides a promising solution for the detoxification of medicinal components.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
2
|
Alnoman RB, Aljohani MS, Alharbi HY, Monier M. Thiol-maleimide click reaction-driven imprinted polymer for chiral resolution of indoprofen. J Chromatogr A 2025; 1743:465657. [PMID: 39808907 DOI: 10.1016/j.chroma.2025.465657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH2). The cationic maleimide-hydrazidine was then attached to the polymer particles, followed by its loading with anionic S-INP. In the post-crosslinking, ethane-1,2-dithiol (ETH) was used as a crosslinker through a thiol-maleimide click reaction, which attached the ETH to the maleimide groups in Ma-P. Acidic elution released S-INP enantiomers through specific receptor sites formed in the imprinted polymer particles, S-INP-P. Characterization of the polymers was done by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (13C NMR), and X-ray diffraction (XRD) while the surface morphology of the sorbents was investigated by scanning electron microscope (SEM). Optimum conditions for the enantioselective adsorption indicated that at pH 7, 285 mg/g of S-INP can be extracted. The chiral separation of the INP racemate led to an ee of 85% for R-INP in the first run and 97% for S-INP during elution.
Collapse
Affiliation(s)
- Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Cheng Q, Yu Y, Wan Z, Zhou M, Tang W, Tan W, Liu M. Structure-based design and screening of hydrogel copolymer/Fe 3O 4 composite microspheres for magnetic solid phase extraction of bisphenol A from aqueous samples. Talanta 2025; 283:127178. [PMID: 39520927 DOI: 10.1016/j.talanta.2024.127178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
It is of great significance to monitor bisphenol A (BPA) in the environment because of its potential environmental and health risks. However, the detection of trace or ultratrace BPA in complicated environmental samples is challenging due to the relatively low affinity and poor selectivity of existing adsorbents used in sample pretreatment. Herein, we report a high-affinity, low environment-dependent and strong interference-resistant abiotic affinity ligand, a N-methacryloyl-l-lysine-NH2 (MLys)-based hydrogel copolymer (HP 17) screened from a small focused polymer library engineered by incorporating various combinations and ratios of candidate functional monomers. The selection of these monomers was guided by molecular mechanism between BPA and the ligand-binding pocket of its estrogen receptors. The BPA-HP17 binding is mainly a synergistic effect of π-cation and hydrophobic interactions. The screened HP 17 has high adsorption capacity (349.4 mg/g) for BPA under wide pH (3.0-10.0) and ionic strength (0-150 mM) range. To improve its practicability, a hydrogel copolymer/Fe3O4 composite microspheres (Fe3O4@HP 17) was synthesized and applied for magnetic solid phase extraction-high-performance liquid chromatography (MSPE-HPLC) analysis of BPA in tap water, lake water and industrial effluents. The method shows wide linear range (2.5⁓100 ng/mL), high sensitivity (detection limit of 0.22 ng/mL even without further concentration after desorption), high accuracies (92.6⁓103.0 %) and good precisions (0.57⁓4.53 %), indicating a great potential of this material and method in the detection of trace or ultratrace BPA in complex environmental water samples.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunli Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Meng Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
4
|
Su Y, Yin X, Wei X, Xu R, Wei L, Chen Y, Ding L, Song D. A facile colorimetric sensor for ketoprofen detection in milk: Integrating molecularly imprinted polymers with Cu-doped Fe 3O 4 nanozymes. Food Chem 2025; 463:141207. [PMID: 39276544 DOI: 10.1016/j.foodchem.2024.141207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
A facile and efficient detection method is required to address the potential health risks of ketoprofen (KP) in animal-derived foods. Herein, we integrated molecularly imprinted polymers (MIPs) with Cu-doped Fe3O4 nanozymes (Fe3O4-Cu) to develop a selective colorimetric sensor for KP detection. Chitosan and glutaraldehyde were used as functional monomers and cross-linkers to fabricate proposed the MIPs@Fe3O4-Cu. On KP addition, it was specifically captured by the imprinted cavities, thereby blocking the channels between chromogenic substrates and Fe3O4-Cu. Based on this rationale, a selective colorimetric sensor utilizing MIPs@Fe3O4-Cu was established, exhibiting a linear range of 0.25-100 μM and a detection limit of 0.073 μM. The developed method was validated through its application in milk samples, yielding satisfactory recoveries with low relative standard deviations. This efficient and selective colorimetric sensor holds immense significance for KP detection in complex samples.
Collapse
Affiliation(s)
- Yu Su
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinjie Yin
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaofeng Wei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Rui Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Liwen Wei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lan Ding
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
5
|
Alharbi HY, Alnoman RB, Aljohani MS, Monier M, Tawfik EH. Design and synthesis of S-citalopram-imprinted polymeric sorbent: Characterization and application in enantioselective separation. J Chromatogr A 2024; 1727:464925. [PMID: 38776603 DOI: 10.1016/j.chroma.2024.464925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The current work describes the efficient creation and employment of a new S-citalopram selective polymeric sorbent, made from poly(divinylbenzene-maleic anhydride-styrene). The process began by using suspension polymerization technique in the synthesis of poly(styrene-maleic anhydride-divinylbenzene) microparticles. These were then modified with ethylenediamine, developing an amido-succinic acid-based polymer derivative. The S-citalopram, a cationic molecule, was loaded onto these developed anionic polymer particles. Subsequently, the particles were post-crosslinked using glyoxal, which reacts with the amino group residues of ethylenediamine. S-citalopram was extracted from this matrix using an acidic solution, which also left behind stereo-selective cavities in the S-citalopram imprinted polymer, allowing for the selective re-adsorption of S-citalopram. The attributes of the polymer were examined through methods such as 13C NMR, FTIR, thermogravemetric and elemental analyses. SEM was used to observe the shapes and structures of the particles. The imprinted polymers demonstrated a significant ability to adsorb S-citalopram, achieving a capacity of 878 mmol/g at a preferred pH level of 8. It proved efficient in separating enantiomers of (±)-citalopram via column methods, achieving an enantiomeric purity of 97 % for R-citalopram upon introduction and 92 % for S-citalopram upon release.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Eman H Tawfik
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Abomuti MA. Chiral acidic molecularly imprinted polymer for enantio-separation of norepinephrine racemate. Chirality 2024; 36:e23645. [PMID: 38384154 DOI: 10.1002/chir.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024]
Abstract
We are looking into how well a copolymeric material made of poly (maleic acid-co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.
Collapse
Affiliation(s)
- May Abdullah Abomuti
- Chemistry Department, Faculty of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
| |
Collapse
|
7
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent. RSC Adv 2024; 14:1316-1329. [PMID: 38174277 PMCID: PMC10763660 DOI: 10.1039/d3ra04222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Water pollution from organic dyes poses a serious danger to the environment. In the present work, we report a novel adsorbent (ADFS) based on azo-dye-functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of the anionic dye bromophenol blue (BPB) from contaminated water. The fabricated SPIONs, azo dye, and ADFS adsorbent were characterized with FTIR and UV-vis absorption spectroscopy, 1HNMR spectroscopy, mass spectrometry, SEM imaging, dynamic light scattering (DLS), zeta potential measurements, vibrating sample magnetometry, thermogravimetric analysis, differential thermal analysis, and X-ray diffraction analysis. DLS measurements showed a particle size of 46.1 and 176.5 nm for the SPIONs and the ADFS, respectively. The adsorbent exhibited an adsorption capacity of 7.43 mg g-1 and followed the pseudo-second-order kinetics model (r2 = 0.9981). The ADFS could efficiently remove BPB from water after stirring for 120 minutes at room temperature and pH 2. The adsorption process was proved to occur via physisorption, as revealed by the Freundlich isotherm (n = 1.82 and KF = 11.5). Thermodynamic studies implied that the adsorption is spontaneous (-8.03 ≤ ΔG ≤ -0.58 kJ mol-1) and enthalpy-driven might take place via van der Waals interactions and/or hydrogen bonding (ΔH = -82.19 kJ mol-1 and ΔS = -0.24 kJ mol-1 K-1).
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
- General Organization for Export and Import Control Ramses Street Cairo Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
8
|
Sui J, Wang N, Wang J, Huang X, Wang T, Zhou L, Hao H. Strategies for chiral separation: from racemate to enantiomer. Chem Sci 2023; 14:11955-12003. [PMID: 37969602 PMCID: PMC10631238 DOI: 10.1039/d3sc01630g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Chiral separation has become a crucial topic for effectively utilizing superfluous racemates synthesized by chemical means and satisfying the growing requirements for producing enantiopure chiral compounds. However, the remarkably close physical and chemical properties of enantiomers present significant obstacles, making it necessary to develop novel enantioseparation methods. This review comprehensively summaries the latest developments in the main enantioseparation methods, including preparative-scale chromatography, enantioselective liquid-liquid extraction, crystallization-based methods for chiral separation, deracemization process coupling racemization and crystallization, porous material method and membrane resolution method, focusing on significant cases involving crystallization, deracemization and membranes. Notably, potential trends and future directions are suggested based on the state-of-art "coupling" strategy, which may greatly reinvigorate the existing individual methods and facilitate the emergence of cross-cutting ideas among researchers from different enantioseparation domains.
Collapse
Affiliation(s)
- Jingchen Sui
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China +86-22-2740-5754
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
- School of Chemical Engineering and Technology, Hainan University Haikou 570228 China
| |
Collapse
|
9
|
Alatawi RAS. Construction of Amino‐Functionalized Molecularly Imprinted Silica Particles for (±)‐Ofloxacin Chiral Separation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Elsayed NH, Monier M, Almutairi FM, Alotaibi FA, Albalawi AN, Aljohani WA, Abdel-Latif D. Developing surface molecularly imprinted cellulose acetate particles for selective recognition of S-ketoprofen enantiomers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Mabrouk M, Hammad SF, Mansour FR, Abdella AA. A Critical Review of Analytical Applications of Chitosan as a Sustainable Chemical with Functions Galore. Crit Rev Anal Chem 2022; 54:840-856. [PMID: 35903052 DOI: 10.1080/10408347.2022.2099220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomass and biowastes stand as sustainable and cost-effective environmentally benign alternative feedstock. Chitosan is a biocompatible, bioactive, and biodegradable biopolymer derived from chitin to achieve eight aspects out of the 12 green chemistry principles. Chitosan got significant attention in several fields including chemical analysis, in addition to chemical functionally, which enabled its use as adsorbent and its structural crosslinking using various crosslinkers. The physicochemical, technological, and optical properties of chitosan have been extensively exploited in analysis. Mainly, deacetylation degree and molecular weight are controlling its properties and hence controlling its functions. This review presents a structure, properties, and functions relationships of chitosan. It also aims to provide an overview of the different functions that chitosan can serve in each analytical technique such as supporting matrix, catalyst…etc. The contribution of chitosan in improving the ecological performance is discussed in each technique.
Collapse
Affiliation(s)
- Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|