1
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
2
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
3
|
Gao J, He Z, Zhang L, Wang Z, Guo J, Wang T, He L, Zhang T, Zhao X, Wang B, Wang Z, Yi S. How do the main components influence the VOCs emission characteristics and formation pathways during moso bamboo heat treatment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170324. [PMID: 38266725 DOI: 10.1016/j.scitotenv.2024.170324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Bamboo heat treatment will cause plenty of release of volatile organic compounds (VOCs) into the atmosphere which are important precursors for ozone (O3) formation. In this study, dewaxed bamboo was heat-treated at 180 °C for 2 h to investigate the emission characteristics and the formation pathways of VOCs during heat treatment by removing different main components. The results showed that aldehydes (22.61%-57.54%) and esters (14.64%-38.88%) are the primary VOCs released during heat treatment. These compounds mainly originate from the degradation of hemicellulose, lignin, cellulose, and the linkage bonds between them in bamboo. During the bamboo heat treatment, the degradation of CO, CH, and CO bonds in hemicellulose results in the release of 5-hydroxymethylfurfural, 3-furfural, and 1-(+)-ascorbic acid 2,6-dihexadecanoate. The breakage of benzene ring group and the CO and CH bonds of lignin leading to the emission of VOCs including m-Formylphenol, Vanillin, and Syringaldehyde. The degradation of aliphatic CH, CC, and CO bonds in the amorphous region of cellulose contributes to an enhanced release of alcohols, olefins, and alkanes. It is calculated that acids (28.92%-59.47%), esters (10.10%-22.03%) and aldehydes (17.88%-39.91%) released during heat treatment contributed more to Ozone Formation Potential (OFP).
Collapse
Affiliation(s)
- Jingjing Gao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhengbin He
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Lanxin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhichuang Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jin Guo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Tinghuan Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Luxi He
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Tianfang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xiangyu Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Bo Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Zhenyu Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Songlin Yi
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Wood Science and Engineering, MOE Key Laboratory of Wooden Material Science and Application, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
4
|
Nath PC, Sharma R, Debnath S, Nayak PK, Roy R, Sharma M, Inbaraj BS, Sridhar K. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. Int J Biol Macromol 2024; 259:129129. [PMID: 38181913 DOI: 10.1016/j.ijbiomac.2023.129129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Food Technology, Shri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Rupak Roy
- SHRM Biotechnologies Pvt Ltd., Kolkata 700155, India
| | | | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
5
|
Jiang B, Shen F, Jiang Y, Huang M, Zhao L, Lei Y, Hu J, Tian D, Shen F. Extraction of super high-yield lignin-carbohydrate complexes from rice straw without compromising cellulose hydrolysis. Carbohydr Polym 2024; 323:121452. [PMID: 37940260 DOI: 10.1016/j.carbpol.2023.121452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Lignin-carbohydrate complexes (LCC) that exhibit both structural advantages of lignin and carbohydrates are promising amphiphilic biopolymers, but the extraction is challenged by its liable chemical bond cleavage between lignin and carbohydrates. This work proposed a facile chemical route to integrating the production of water-insoluble (WIS LCC) and water-soluble LCC (WS LCC) into the emerging deep eutectic solvent (DES) biorefinery at mild conditions. The tailored mechanochemical fractionation process of ball milling assisted aqueous alkaline DES could extract 24.2 % LCC in total, with the co-production of a highly hydrolysable cellulose fraction (98.7 % glucose conversion). The resulting LCC exhibited considerably high contents of β-O-4, phenyl glycoside, and ferulic acid linkage bonds. When 100 g starting straw was subjected to this technique route, 9.1 g WIS LCC, 15.1 g WS LCC and 45.5 g glucose were cascaded produced. It was proposed that the selective disruption of hydrogen bonding entangled network and the quasi-state dissolution of the whole biomass allowed the subsequent cascade fractionation of WIS LCC, WS LCC and highly hydrolysable cellulose through solution property adjustment. This work showed a promising approach for LCC production with high yield without compromising cellulose conversion potential, which has been challenging in the current lignocellulose biorefinery.
Collapse
Affiliation(s)
- Baiheng Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Feiyue Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuehan Jiang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongjia Lei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Cheng X, Ning R, Li P, Zhang F, Wang K, Jiang J. Structural variations of lignin and lignin-carbohydrate complexes from the fruit shells of Camellia oleifera during ripening. Int J Biol Macromol 2023; 253:126946. [PMID: 37722639 DOI: 10.1016/j.ijbiomac.2023.126946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Camellia oleifera fruit shell (CFS), a waste lignocellulosic biomass resulting from Camellia oleifera oil production industry, is abundantly available in Southern China. Herein, to understand the structural variations of CFS lignins and lignin-carbohydrate complexes (LCC) during ripening, the native lignin and LCC fractions from CFS (harvested every seven days from October 1 to 30, 2022) were isolated and characterized systematically. The molecular weights of both MWL and DEL fractions steadily increased during ripening. CFS lignins contained abundance of β-O-4' linkages (maximum of 58.6 per 100Ar in DEL-2), and had low S/G ratios (S/G < 0.6). Moreover, the amounts of β-O-4' linkages in MWL, DEL, and LCC-AcOH fractions increased first and then decreased during ripening. The main lignin-carbohydrate linkages in the LCC-AcOH fractions were benzyl-ether (7.0-9.4 per 100Ar) and phenyl-glycoside (4.5-5.2 per 100Ar) bonds. Based on the quantitative results, the potential structural diagrams of lignins from different ripening stages of CFS were proposed. Additionally, the LCC-AcOH fractions exhibited pronounced antioxidant capacity and were promising as natural antioxidants. The properties and functions of lignin in plant cell walls, as well as its further appreciation, are crucial for the design and selection of feasible pretreatment strategies for the lignocellulosic materials.
Collapse
Affiliation(s)
- Xichuang Cheng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ruxia Ning
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Kun Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Feng Q, Wang L, Wan Z, Bu X, Deng Q, Li D, Chen C, Xu Z. Efficient ultraviolet blocking film on the lignin-rich lignocellulosic nanofibril from bamboo. Int J Biol Macromol 2023; 250:126059. [PMID: 37544557 DOI: 10.1016/j.ijbiomac.2023.126059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
The ultraviolet (UV) blocking performance of current bio-based devices is always limited by delignification and exploited chemical treatment. Lignocellulosic nanofibril (LCNF) is a promising green alternative that could efficiently impede UV radiation. Herein, we proposed a robust LCNF film that achieved 99.8 ± 0.19 % UVB blocking, 96.1 ± 0.23 % UVA blocking, and was highly transparent without complex chemical modification. Compared to conventional lignin composites, this LCNF method involves 29.5 ± 2.31 % lignin content directly extracted from bamboo as a broad-spectrum sun blocker. This bamboo-based LCNF film revealed an excellent tensile strength of 94.9 ± 3.6 MPa and outstanding stability, adapting to the natural environment's variability. The residual hemicellulose could also embed the link between lignin and cellulose, confirming high lignin content in the network. The connection between lignin and hemicelluloses in the cellulose network was explored and described for the fibrillation of lignocellulosic nanofibrils. This research highlights the promising development of LCNFs for UV protection and bio-based solar absorption materials.
Collapse
Affiliation(s)
- Qian Feng
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Luzhen Wang
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Zhangmin Wan
- Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xiangting Bu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Qiaoyun Deng
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China
| | - Dagang Li
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| | - Chuchu Chen
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| | - Zhaoyang Xu
- College of Material Science and Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, PR China.
| |
Collapse
|
8
|
Cui S, Wei X, Chen X, Xie Y. Investigation of chemical linkages between lignin and carbohydrates in cultured poplar cambium tissues via double isotope labeling. Int J Biol Macromol 2023; 231:123250. [PMID: 36639086 DOI: 10.1016/j.ijbiomac.2023.123250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Lignin precursor labeled with 13C (coniferin-13Cα), carbohydrate precursor labeled with D (6,6-D2-glucose) were put into cambium tissue stripped from a growing poplar. The tissue was further cultured in vitro for 18d. Then, the isotopic abundance was determined. The results showed that the labeled precursors could be normally involved in the formation of new xylem. The labeled new xylem tissue was fractionated by ionic liquid DMSO/TBAH system to obtain two components: glucan-lignin complex (GL) and xylan-lignin complex (XL). The X-ray diffraction (XRD) results indicated that the crystalline form of cellulose in the GL component was transformed from type I to type II after the ionic liquid separation. Then the GL and XL were purified and modified by enzymatic and chemical methods, and their structures were elucidated by nuclear magnetic resonance (NMR) spectroscopy. The results showed that lignin subunits in the cultured tissues were mainly connected by β-5 and β-O-4 linkages, of which the β-O-4 substructure unit predominated. Lignin and carbohydrates were mainly connected by acetal bonds, ether bonds, and ester bonds. Combined with the carbohydrate composition and XRD analysis results, the GL components also confirmed the existence of acetal bonds, ester bonds and ether bonds between lignin and cellulose.
Collapse
Affiliation(s)
- Sheng Cui
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Wei
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xudong Chen
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yimin Xie
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
9
|
Antioxidant and ultraviolet shielding performance of lignin-polysaccharide complex isolated from spent coffee ground. Int J Biol Macromol 2023; 230:123245. [PMID: 36639080 DOI: 10.1016/j.ijbiomac.2023.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Spent coffee ground (SCG) is a representative type of biomass waste with huge annual output. To better develop high value applications of SCG, in this study, the lignin-polysaccharide complex (LPC) was isolated from SCG by applying effective ball milling and the subsequent solvent extraction of 96 % 1, 4-dioxane aqueous solution. In addition to the comprehensive analyses of the obtained LPC regarding its chemical composition, surface morphology, molecular weight distribution, characteristic functional groups, surface chemical linkages, and thermal stability, its potentials in radical scavenging and UV shielding had been emphatically investigated. As revealed from the results, a proper duration (e.g., 4 h) of UV irradiation could evidently enhance the radical-scavenging capacity of LPC, ascribed to the increasing number of antioxidant groups. Moreover, the LPC-containing composite sunscreens also exhibited strengthened UV resistance after UV irradiation, which may benefit from the UV-induced conjugated structures and the π-π stacking of aromatic rings from both LPC and the active ingredients in commercial sunscreen. Therefore, LPC is highly promising to be exploited for the development of novel antioxidants and UV-shielding products, by virtue of its characteristic chemical structure and potential synergistic effect with other active ingredients from the composite.
Collapse
|
10
|
Wang WY, Gao JH, Qin Z, Liu HM. Structural variation of lignin-carbohydrate complexes (LCC) in Chinese quince (Chaenomeles sinensis) fruit as it ripens. Int J Biol Macromol 2022; 223:26-35. [PMID: 36336153 DOI: 10.1016/j.ijbiomac.2022.10.259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/08/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Chinese quince (Chaenomeles sinensis) fruits are rich in lignin, and too sour, astringent and woody to be eaten raw. More than 50 % of lignin in plant cell walls is covalently associated with carbohydrates to form lignin-carbohydrate complexes (LCC). In this study, LCC preparations were extracted from fruits harvested on the 15th day of the month from May-October 2019. A variety of chemical and instrumental analytical approaches were used to characterize the LCC fractions, including HPAEC, TGA, GPC, FT-IR, and 2D HSQC NMR. Antioxidant activities were evaluated by DPPH radical scavenging assays. Results showed that the LCC fractions from October fruits had better thermal stability and homogeneity. NMR results revealed that the lignin-lignin linkages in LCC-AcOH preparations included β-O-4', β-β' and β-5', but β-5' linkages were not present in LCC preparations. And the NMR signals of carbohydrate confirmed the presence of lignin-pectin complexes, which was consistent with sugar analysis. All LCC preparations showed good antioxidant activity, among which Björkman LCC from October fruits showed best. This study will facilitate understanding the chemical bonds of LCC macromolecules in the plant cell wall. More specifically, it provides information critical for specific industrial applications of quince fruits.
Collapse
Affiliation(s)
- Wen-Yue Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jing-Hao Gao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Xu C, Li J, Zhang X, Wang P, Deng B, Liu N, Yuan Q. Effects of segmented aerobic and anaerobic fermentation assisted with chemical treatment on comprehensive properties and composition of wheat straw. BIORESOURCE TECHNOLOGY 2022; 362:127772. [PMID: 35964920 DOI: 10.1016/j.biortech.2022.127772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional aerobic composting used for straw treatment shows limited regulation effects and unstable properties, and it is necessary to introduce some co-processing methods to optimize its performance. Herein, segmented aerobic/anaerobic fermentation, combined with chemical treatment with wood vinegar/NaOH, was used to treat wheat straw. The results showed that anaerobic fermentation when used as the first stage could stabilize the wheat straw pH between 5.19 and 6.13 and improve nutrient contents. All treatments had greater effects on substrate aeration porosities (range of 14%) than on total porosity (range of 6%), and the water-holding porosities were improved to a greater extent by NaOH than by wood vinegar. The hemicellulose degradation rate of aerobic-anaerobic treatment was higher than that achieved with anaerobic-aerobic treatment, while the latter method was more effective at removing the neutral detergent-soluble as well as remaining organic matter, which was generated due to a higher KCl content in the ash.
Collapse
Affiliation(s)
- Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Jun Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Enhancing for Bagasse Enzymolysis via Intercrystalline Swelling of Cellulose Combined with Hydrolysis and Oxidation. Polymers (Basel) 2022; 14:polym14173587. [PMID: 36080662 PMCID: PMC9460872 DOI: 10.3390/polym14173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
To overcome the biological barriers formed by the lignin–carbohydrate complex for releasing fermentable sugars from cellulose by enzymolysis is both imperative and challenging. In this study, a strategy of intergranular swelling of cellulose combined with hydrolysis and oxidation was demonstrated. Pretreatment of the bagasse was evaluated by one bath treatment with phosphoric acid and hydrogen peroxide. The chemical composition, specific surface area (SSA), and pore size of bagasse before and after pretreatment were investigated, while the experiments on the adsorption equilibrium of cellulose to cellulase and reagent reuse were also performed. Scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC) were employed for microscopic morphology observations and glucose analysis, respectively. The results showed that pretreated bagasse was deconstructed into cellulose with a nanofibril network, most of the hemicellulose (~100%) and lignin (~98%) were removed, and the SSA and void were enlarged 11- and 5-fold, respectively. This simple, mild preprocessing method enhanced cellulose accessibility and reduced the biological barrier of the noncellulose component to improve the subsequent enzymolysis with a high glucose recovery (98.60%).
Collapse
|
13
|
Chen ZS, Yan M, Pei W, Yan B, Huang C, Chan HYE. Lignin-carbohydrate complexes suppress SCA3 neurodegeneration via upregulating proteasomal activities. Int J Biol Macromol 2022; 218:690-705. [PMID: 35872311 DOI: 10.1016/j.ijbiomac.2022.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mingqi Yan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|