1
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Li P, Shen S, Jia J, Sun H, Zhu H, Wei N, Yu B, Sohail A, Wu D, Zeng F, Hao Z, Dong J. The catalytic subunit of type 2A protein phosphatase negatively regulates conidiation and melanin biosynthesis in Setosphaeria turcica. Int J Biol Macromol 2024; 266:131149. [PMID: 38556232 DOI: 10.1016/j.ijbiomac.2024.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Northern corn leaf blight caused by Setosphaeria turcica is a major fungal disease responsible for significant reductions in maize yield worldwide. Eukaryotic type 2A protein phosphatase (PP2A) influences growth and virulence in a number of pathogenic fungi, but little is known about its roles in S. turcica. Here, we functionally characterized S. turcica StPP2A-C, which encodes the catalytic C subunit of StPP2A. StPP2A-C deletion slowed colony growth, conidial germination, and appressorium formation but increased conidiation, melanin biosynthesis, glycerol content, and disease lesion size on maize. These effects were associated with expression changes in genes related to calcium signaling, conidiation, laccase activity, and melanin and glycerol biosynthesis, as well as changes in intra- and extracellular laccase activity. A pull-down screen for candidate StPP2A-c interactors revealed an interaction between StPP2A-c and StLac1. Theoretical modeling and yeast two-hybrid experiments confirmed that StPP2A-c interacted specifically with the copper ion binding domain of StLac1 and that Cys267 of StPP2A-c was required for this interaction. StPP2A-C expression thus appears to promote hyphal growth and reduce pathogenicity in S. turcica, at least in part by altering melanin synthesis and laccase activity; these insights may ultimately support the development of novel strategies for biological management of S. turcica.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Shen Shen
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Jingzhe Jia
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Hehe Sun
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Hang Zhu
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Ning Wei
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Bo Yu
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Aamir Sohail
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Di Wu
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
3
|
Ma L, Wang L, Gao M, Zhang X, Zhao X, Xie D, Zhang J, Wang Z, Hou L, Zeng F. Rtr1 is required for Rpb1-Rpb2 assembly of RNAPII and prevents their cytoplasmic clump formation. FASEB J 2022; 36:e22585. [PMID: 36190433 DOI: 10.1096/fj.202200698rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
RNA polymerase II (RNAPII) is an essential machinery for catalyzing mRNA synthesis and controlling cell fate in eukaryotes. Although the structure and function of RNAPII have been relatively defined, the molecular mechanism of its assembly process is not clear. The identification and functional analysis of assembly factors will provide new understanding to transcription regulation. In this study, we identify that RTR1, a known transcription regulator, is a new multicopy genetic suppressor of mutants of assembly factors Gpn3, Gpn2, and Rba50. We demonstrate that Rtr1 is directly required to assemble the two largest subunits of RNAPII by coordinating with Gpn3 and Npa3. Deletion of RTR1 leads to cytoplasmic clumping of RNAPII subunit and multiple copies of RTR1 can inhibit the formation of cytoplasmic clump of RNAPII subunit in gpn3-9 mutant, indicating a new layer function of Rtr1 in checking proper assembly of RNAPII. In addition, we find that disrupted activity of Rtr1 phosphatase does not trigger the formation of cytoplasmic clump of RNAPII subunit in a catalytically inactive mutant of RTR1. Based on these results, we conclude that Rtr1 cooperates with Gpn3 and Npa3 to assemble RNAPII core.
Collapse
Affiliation(s)
- Lujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinjie Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiangdong Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jing Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Science & Technology, Hebei Agricultural University, Cangzhou, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|