1
|
Chen M, Chen Y, He H, Zhou X, Chen N. Structure and Property Evolution of Microinjection Molded PLA/PCL/Bioactive Glass Composite. Polymers (Basel) 2025; 17:991. [PMID: 40219379 PMCID: PMC11991442 DOI: 10.3390/polym17070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
In this study, the microinjection molding technology was adopted to prepare polylactic acid (PLA)/polycaprolactone (PCL)/bioactive glass (BG) composites with varying BG contents for biomedical applications. The various measurement techniques, including scanning electronic microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, the water contact angle (WCA) test, the mechanical test, and in vitro biological evaluations, were applied to characterize the above interesting biocomposites. The experimental results show that the extremely strong shear force field generated during the microinjection molding process could induce the in situ formation of micron PCL dispersed phase fibril structures and strongly promote the homogeneous dispersion of micron BG filler particles in the PLA/PCL polymer matrix, which therefore leads to a significant improvement in the specific mechanical property of the PLA/PCL/BG composite. For example, with BG fillers content increasing to 10 wt%, the Young's modulus of the above obtained PLA/PCL/BG composite could reach 2122.9 MPa, which is 1.47 times higher than that of the unfilled PLA/PCL blend material. In addition, it is also found that under the simulated body fluid (SBF) environment, the incorporated BG fillers in the PLA/PCL polymer matrix could be effectively transformed into hydroxyapatite (HA) components on the treated sample surface, thus being greatly advantageous to enhancing the material's in vitro bioactivity. Obviously, the microinjection molded PLA/PCL/BG biocomposites could exhibit excellent comprehensive performance, revealing that the microinjection molding processing method could hold great potential in industrialization applications of the resulting biodegradable biomedical materials.
Collapse
Affiliation(s)
| | - Yinghong Chen
- National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (M.C.); (H.H.); (X.Z.); (N.C.)
| | | | | | | |
Collapse
|
2
|
Costa KC, Andrade MGDS, de Araujo RN, de Abreu Junior AR, Sobral MV, Gonçalves JCR, Sousa BV, Neves GA, Menezes RR. PVP as an Oxygen Vacancy-Inducing Agent in the Development of Black 45S5 Bioactive Glass Fibrous Scaffolds Doped with Zn and Mg Using A-HSBS. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1340. [PMID: 40141622 PMCID: PMC11943605 DOI: 10.3390/ma18061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Currently, there is an increasing demand for advanced materials that can address the needs of tissue engineering and have the potential for use in treatments targeting tumor cells, such as black bioactive materials in photothermal therapy. Thus, 3D fibrous scaffolds of black 45S5 bioactive glass were produced using the air-heated solution blow spinning (A-HSBS) technique, with polyvinylpyrrolidone (PVP) serving as a spinning aid and an oxygen vacancy-inducing agent. Glass powder with the same composition was synthesized via the sol-gel route for comparison. The samples were characterized using thermogravimetric analysis, X-ray diffraction, FTIR spectroscopy, and scanning electron microscopy, along with in vitro tests using simulated body fluid (SBF), phosphate-buffered saline (PBS), and TRIS solution. The results showed that PVP enhanced oxygen vacancy formation and stabilized the scaffolds at 600 °C. Doping with Zn and Mg ions reduced crystallization while significantly increasing the fiber diameters. Scaffolds doped with Zn exhibited lower degradation rates, delayed apatite formation, and hindered ionic release. Conversely, Mg ions facilitated greater interaction with the medium and rapid apatite formation, completely covering the fibers. The scaffolds showed no cytotoxicity in the MTT assay at concentrations of up to 200 µg/mL for HaCat cells and 0.8 mg/mL for L929 cells. This study demonstrated the effectiveness of using PVP in the production of black bioactive glass scaffolds, highlighting their potential for bone regeneration.
Collapse
Affiliation(s)
- Keila C. Costa
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (R.N.d.A.); (G.A.N.)
| | - Maria Geórgia da S. Andrade
- Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
| | - Rondinele N. de Araujo
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (R.N.d.A.); (G.A.N.)
| | - Adegildo R. de Abreu Junior
- Graduate Program in Natural and Synthetic Bioactive Products, Onco Pharmacology Laboratory, Federal University of Paraíba (UFPB), Campus I, Castelo Branco, s/n, University City, João Pessoa 58051-970, PB, Brazil; (A.R.d.A.J.); (M.V.S.); (J.C.R.G.)
| | - Marianna V. Sobral
- Graduate Program in Natural and Synthetic Bioactive Products, Onco Pharmacology Laboratory, Federal University of Paraíba (UFPB), Campus I, Castelo Branco, s/n, University City, João Pessoa 58051-970, PB, Brazil; (A.R.d.A.J.); (M.V.S.); (J.C.R.G.)
| | - Juan Carlos R. Gonçalves
- Graduate Program in Natural and Synthetic Bioactive Products, Onco Pharmacology Laboratory, Federal University of Paraíba (UFPB), Campus I, Castelo Branco, s/n, University City, João Pessoa 58051-970, PB, Brazil; (A.R.d.A.J.); (M.V.S.); (J.C.R.G.)
| | - Bianca V. Sousa
- Department of Chemical Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil;
| | - Gelmires A. Neves
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (R.N.d.A.); (G.A.N.)
| | - Romualdo R. Menezes
- Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil; (R.N.d.A.); (G.A.N.)
| |
Collapse
|
3
|
Cui Y, Hong S, Jiang W, Li X, Zhou X, He X, Liu J, Lin K, Mao L. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioact Mater 2024; 34:436-462. [PMID: 38282967 PMCID: PMC10821497 DOI: 10.1016/j.bioactmat.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.
Collapse
Affiliation(s)
| | | | | | - Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xingyu Zhou
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
4
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Vafa E, Tayebi L, Abbasi M, Azizli MJ, Bazargan-Lari R, Talaiekhozani A, Zareshahrabadi Z, Vaez A, Amani AM, Kamyab H, Chelliapan S. A better roadmap for designing novel bioactive glasses: effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116960-116983. [PMID: 36456674 DOI: 10.1007/s11356-022-24176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The introduction of bioactive glasses (BGs) precipitated a paradigm shift in the medical industry and opened the path for the development of contemporary regenerative medicine driven by biomaterials. This composition can bond to live bone and can induce osteogenesis by the release of physiologically active ions. 45S5 BG products have been transplanted effectively into millions of patients around the world, primarily to repair bone and dental defects. Over the years, many other BG compositions have been introduced as innovative biomaterials for repairing soft tissue and delivering drugs. When research first started, many of the accomplishments that have been made today were unimaginable. It appears that the true capacity of BGs has not yet been realized. Because of this, research involving BGs is extremely fascinating. However, to be successful, it requires interdisciplinary cooperation between physicians, glass chemists, and bioengineers. The present paper gives a picture of the existing clinical uses of BGs and illustrates key difficulties deserving to be faced in the future. The challenges range from the potential for BGs to be used in a wide variety of applications. We have high hopes that this paper will be of use to both novice researchers, who are just beginning their journey into the world of BGs, as well as seasoned scientists, in that it will promote conversation regarding potential additional investigation and lead to the discovery of innovative medical applications for BGs.
Collapse
Affiliation(s)
- Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Azizli
- Department of Chemistry and Chemical Engineering, Islamic Azad University, Rasht, Rasht Branch, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Amirreza Talaiekhozani
- Department of Civil Engineering, Jami Institute of Technology, Isfahan, Iran
- Alavi Educational and Cultural Complex, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohamad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India, Chennai, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Alonso-Fernández I, Haugen HJ, López-Peña M, González-Cantalapiedra A, Muñoz F. Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review. Acta Biomater 2023; 168:1-21. [PMID: 37454707 DOI: 10.1016/j.actbio.2023.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materials in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthesizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompatible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. STATEMENT OF SIGNIFICANCE: 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal models represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by covering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials.
Collapse
Affiliation(s)
- Iván Alonso-Fernández
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
7
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
8
|
Vach Agocsova S, Culenova M, Birova I, Omanikova L, Moncmanova B, Danisovic L, Ziaran S, Bakos D, Alexy P. Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4267. [PMID: 37374451 PMCID: PMC10301242 DOI: 10.3390/ma16124267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy.
Collapse
Affiliation(s)
- Sara Vach Agocsova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Martina Culenova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Ivana Birova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Leona Omanikova
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Barbora Moncmanova
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia; (L.D.); (S.Z.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Dusan Bakos
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia; (S.V.A.); (B.M.); (D.B.); (P.A.)
- Panara a.s., Krskanska 21, 949 05 Nitra, Slovakia; (I.B.); (L.O.)
| |
Collapse
|
9
|
Alghfeli L, Parambath D, Tag Eldeen LA, El-Serafi I, El-Serafi AT. Non-additive effect of the DNA methylation inhibitor, 5-Aza-dC, and glass as a culture surface on osteogenic differentiation. Heliyon 2022; 8:e12433. [PMID: 36590514 PMCID: PMC9794900 DOI: 10.1016/j.heliyon.2022.e12433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The clinical need for bone regenerative solutions is expanding with increasing life expectancy and escalating incidence of accidents. Several strategies are being investigated to enhance the osteogenic differentiation of stem cells. We previously reported two different approaches for this purpose, in monolayer and three-dimensional cell culture. The first approach was based on pretreating cells with 5-Aza-dC, a DNA methylation inhibitor, before the applying the differentiation media. The second approach was based on culturing cells on a glass surface during differentiation. In this study, we investigated the potential effect of combining both methods. Our results suggested that both approaches were associated with decreasing global DNA methylation levels. Cells cultured as a monolayer on glass surface showed enhancement in alkaline phosphatase activity at day 10, while 5-Aza-dC pretreatment enhanced the activity at day 5, irrespective of the culture surface. In three-dimensional pellet culture, 5-Aza-dC pretreatment enhanced osteogenesis through Runx-2 and TGF-β1 upregulation while the glass surface induced Osterix. Furthermore, pellets cultured on glass showed upregulation of a group of miRNAs, including pro-osteogenesis miR- 20a and miR -148b and anti-osteogenesis miR -125b, miR -31, miR -138, and miR -133a. Interestingly, 5-Aza-dC was not associated with a change of miRNAs in cells cultured on tissue culture plastic but reverted the upregulated miRNAs on the glass to the basal level. This study confirms the two approaches for enhancing osteogenic differentiation and contradicts their combination.
Collapse
Affiliation(s)
- Latifa Alghfeli
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Divyasree Parambath
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Loaa A. Tag Eldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Ibrahim El-Serafi
- Basic Medical Sciences Department, College of Medicine, Ajman University, United Arab Emirates
- Department of Biochemistry, Faculty of Medicine, Port-Said University, Egypt
| | - Ahmed T. El-Serafi
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Egypt
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| |
Collapse
|
10
|
Achievements in Mesoporous Bioactive Glasses for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14122636. [PMID: 36559130 PMCID: PMC9782017 DOI: 10.3390/pharmaceutics14122636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed.
Collapse
|
11
|
Injectability, Processability, Drug Loading, and Antibacterial Activity of Gentamicin-Impregnated Mesoporous Bioactive Glass Composite Calcium Phosphate Bone Cement In Vitro. Biomimetics (Basel) 2022; 7:biomimetics7030121. [PMID: 36134925 PMCID: PMC9496498 DOI: 10.3390/biomimetics7030121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Calcium phosphate cement (CPC) is similar to bone in composition and has plasticity, while mesoporous bioactive glass (MBG) has the advantage of releasing Si, which can promote osteogenic properties and drug loading capacity. A sol–gel-prepared MBG micro-powder (mMBG) and further impregnated antibiotic gentamicin sulfate (Genta@mMBG: 2, 3, and 4 mg/mL) antibiotic were added to CPC at different weight ratios (5, 10, and 15 wt.%) to study CPC’s potential clinical applications. Different ratios of mMBG/CPC composite bone cement showed good injectability and disintegration resistance, but with increasing mMBG addition, the working/setting time and compressive strength decreased. The maximum additive amount was 10 wt.% mMBG due to the working time of ~5 min, the setting time of ~10 min, and the compressive strength of ~51 MPa, indicating that it was more suitable for clinical surgical applications than the other groups. The 2Genta@mMBG group loaded with 2 mg/mL gentamicin had good antibacterial activity, and the 10 wt.% 2Genta@mMBG/CPC composite bone cement still had good antibacterial activity but reduced the initial release of Genta. 2Genta@mMBG was found to have slight cytotoxicity, so 2Genta@mMBG was composited into CPC to improve the biocompatibility and to endow CPC with more advantages for clinical application.
Collapse
|
12
|
van der Heide D, Cidonio G, Stoddart M, D'Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication 2022; 14. [PMID: 36007496 DOI: 10.1088/1758-5090/ac8cb2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022]
Abstract
In most cases, bone injuries heal without complications, however, there is an increasing number of instances where bone healing needs major clinical intervention. Available treatment options have severe drawbacks, such as donor site morbidity and limited availability for autografting. Bone graft substitutes containing growth factors would be a viable alternative, however they have been associated with dose-related safety concerns and lack control over spatial architecture to anatomically match bone defect sites. 3D printing offers a solution to produce patient specific bone graft substitutes that are customized to the patient bone defect with temporal control over the incorporated therapeutics to maximize their efficacy. Inspired by the natural constitution of bone tissue, composites made of inorganic phases, such as nanosilicate particles, calcium phosphate, and bioactive glasses, combined with biopolymer matrices have been investigated as building blocks for the biofabrication of bone constructs. Besides capturing elements of the bone physiological structure, these inorganic/organic composites can be designed for specific cohesivity, rheological and mechanical properties, while both inorganic and organic constituents contribute to the composite bioactivity. This review provides an overview of 3D printed composite biomaterial-inks for bone tissue engineering. Furthermore, key aspects in biomaterial-ink design, 3D printing techniques, and the building blocks for composite biomaterial-inks are summarized.
Collapse
Affiliation(s)
- Daphne van der Heide
- AO Research Institute Davos, Clavadelerstrasse, 8, Davos Platz, Davos, Graubünden, 7270, SWITZERLAND
| | - Gianluca Cidonio
- Istituto Italiano di Tecnologia Center for Life Nano Science, 3D Microfluidic Biofabrication Laboratory, Roma, Lazio, 00161, ITALY
| | - Martin Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Davos, Graubünden, 7270, SWITZERLAND
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, Graubünden, 7270, SWITZERLAND
| |
Collapse
|
13
|
Ganapathy A, Chen D, Elumalai A, Albers B, Tappa K, Jammalamadaka U, Hoegger MJ, Ballard DH. Guide for starting or optimizing a 3D printing clinical service. Methods 2022; 206:41-52. [PMID: 35964862 DOI: 10.1016/j.ymeth.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022] Open
Abstract
Three-dimensional (3D) printing has applications in many fields and has gained substantial traction in medicine as a modality to transform two-dimensional scans into three-dimensional renderings. Patient-specific 3D printed models have direct patient care uses in surgical and procedural specialties, allowing for increased precision and accuracy in developing treatment plans and guiding surgeries. Medical applications include surgical planning, surgical guides, patient and trainee education, and implant fabrication. 3D printing workflow for a laboratory or clinical service that produces anatomic models and guides includes optimizing imaging acquisition and post-processing, segmenting the imaging, and printing the model. Quality assurance considerations include supervising medical imaging expert radiologists' guidance and self-implementing in-house quality control programs. The purpose of this review is to provide a workflow and guide for starting or optimizing laboratories and clinical services that 3D-print anatomic models or guides for clinical use.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Anusha Elumalai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Brian Albers
- 3D Printing Center, Barnes Jewish Hospital, St. Louis, MO, USA.
| | - Karthik Tappa
- Anatomic 3D Printing and Visualization Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - David H Ballard
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Safavi MS, Bordbar-Khiabani A, Khalil-Allafi J, Mozafari M, Visai L. Additive Manufacturing: An Opportunity for the Fabrication of Near-Net-Shape NiTi Implants. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2022; 6:65. [DOI: 10.3390/jmmp6030065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nickel–titanium (NiTi) is a shape-memory alloy, a type of material whose name is derived from its ability to recover its original shape upon heating to a certain temperature. NiTi falls under the umbrella of metallic materials, offering high superelasticity, acceptable corrosion resistance, a relatively low elastic modulus, and desirable biocompatibility. There are several challenges regarding the processing and machinability of NiTi, originating from its high ductility and reactivity. Additive manufacturing (AM), commonly known as 3D printing, is a promising candidate for solving problems in the fabrication of near-net-shape NiTi biomaterials with controlled porosity. Powder-bed fusion and directed energy deposition are AM approaches employed to produce synthetic NiTi implants. A short summary of the principles and the pros and cons of these approaches is provided. The influence of the operating parameters, which can change the microstructural features, including the porosity content and orientation of the crystals, on the mechanical properties is addressed. Surface-modification techniques are recommended for suppressing the Ni ion leaching from the surface of AM-fabricated NiTi, which is a technical challenge faced by the long-term in vivo application of NiTi.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - Aydin Bordbar-Khiabani
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 144961-4535, Iran
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|