1
|
Chen JY, Weng YX, Han YH, Ye RH, Huang DH. A novel pencil graphite electrode modified with an iron-based conductive metal-organic framework exhibited good ability in simultaneous sensing bisphenol A and bisphenol S. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116065. [PMID: 38330872 DOI: 10.1016/j.ecoenv.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Bisphenol A (BPA) and its substitute bisphenol S (BPS) are desirable materials widely used in manufacturing plastic products but can pose carcinogenic risks to humans. A new conductive iron-based metal-organic framework (Fe-HHTP)-modified pencil graphite electrode (PGE) for electrochemically sensing BPA and BPS was prepared and fully characterized by SEM, TEM, FT-IR, XRD, and XPS. Results showed that the optimal conditions for preparing Fe-HHTP/PGE were a pH of 6.5, a Fe-HHTP concentration of 2 mg·mL-1, a deposition potential of 0 V, and a deposition time of 100 s. The Fe-HHTP/PGE prepared under such conditions harbored a significant electrocatalytic activity with a detection limit of 0.8 nM for BPA and 1.7 nM for BPS (S/N = 3). Correspondingly, the electrochemical response current was linearly correlated to BPA and BPS, ranging from 0.01 to 100 μM. Fe-HHTP/PGE also obtained satisfactory recoveries by 93.8-102.1% and 96.0-101.3% for detecting BPA and BPS in plastic food packaging samples. Our work has provided a novel electrochemical tool to simultaneously detect BPA and BPS in food packaging samples and environmental matrixes.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Ying-Xin Weng
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Rui-Hong Ye
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Di-Hui Huang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China.
| |
Collapse
|
2
|
Shen H, Xie J, Gao W, Wang L, Chen L, Qian H, Yu S, Feng B, Yang F. Detection limit of FT-IR-based bacterial typing based on optimized sample preparation and typing model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123633. [PMID: 37952427 DOI: 10.1016/j.saa.2023.123633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Accurate and efficient bacterial typing methods are crucial to microbiology. Fourier transform infrared (FT-IR) spectroscopy enables highly distinguishable fingerprint identification of closely related bacterial strains by producing highly specific fingerprints of bacteria, which is increasingly being considered as an alternative to genotypic methods, such as pulsed field gel electrophoresis (PFGE) and whole genome sequencing (WGS), for bacterial typing. Compared with genotypic methods, FT-IR has significant advantages of convenient operation, fast speed, and low cost. Fundamental research into the detection limit based on optimized analytical conditions for FT-IR bacterial typing, which can avoid excessive bacterial culture time or sampling volume, is particularly important, especially in clinical practice. However, the corresponding parameters have not been fully investigated. In this study, we developed a simplified and reliable procedure for sample preparation, optimized the data analysis procedure, and evaluated the FT-IR detection limit based on the above conditions. In particular, we combined the film mold and calcium fluoride plate for sample preparation. We evaluated the detection limit (about 108 CFU/mL) after parameter optimization using hierarchical cluster analysis (HCA) and artificial neural network (ANN). The optimization and evaluation of these key fundamentals will better promote future application of FT-IR-based bacterial typing.
Collapse
Affiliation(s)
- Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | | | - Heng Qian
- Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
3
|
Crisp AR, Short B, Rowan L, Ramage G, Rehman IU, Short RD, Williams C. Investigating the chemical pathway to the formation of a single biofilm using infrared spectroscopy. Biofilm 2023; 6:100141. [PMID: 37449091 PMCID: PMC10336410 DOI: 10.1016/j.bioflm.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diagnosing biofilm infections has remained a constant challenge for the last 50 years. Existing diagnostic methods struggle to identify the biofilm phenotype. Moreover, most methods of biofilm analysis destroy the biofilm making the resultant data interpretation difficult. In this study we introduce Fourier Transform Infra-Red (FTIR) spectroscopy as a label-free, non-destructive approach to monitoring biofilm progression. We have utilised FTIR in a novel application to evaluate the chemical composition of bacterial biofilms without disrupting the biofilm architecture. S. epidermidis (RP62A) was grown onto calcium fluoride slides for periods of 30 min-96 h, before semi-drying samples for analysis. We report the discovery of a chemical marker to distinguish between planktonic and biofilm samples. The appearance of new proteins in biofilm samples of varying maturity is exemplified in the spectroscopic data, highlighting the potential of FTIR for identifying the presence and developmental stage of a single biofilm.
Collapse
Affiliation(s)
- Amy R. Crisp
- Engineering Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Bryn Short
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laurence Rowan
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Robert D. Short
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | | |
Collapse
|
4
|
Varga C. FT-IR measurement as a simple tool for following formation of acidic functional groups in maleic anhydride containing polymers. MethodsX 2023; 11:102453. [PMID: 37920869 PMCID: PMC10618756 DOI: 10.1016/j.mex.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Titration is a measurement for maleic-anhydride containing polymers with significant chemicals consumption, time and human resource requirement meanwhile all the carbonyl groups have to be supposed to be in the cyclic form but it is not always the situation. Core of the FT-IR method has been determination of carbonyl groups in various chemical environments. The FT-IR method is developed to obtain more precise and prompt results about anhydride rings in the copolymer chain than with titration in the whole coupling number range with minimal chemicals consumption. Quantitatively apprising FT-IR results peaks of carbonyl groups have been considered since those yield well-isolated and high intensity peaks in the spectrum. Two distinct methods have been adopted for integration of areas under the selected stretching vibrations. Not all the anhydrides have been supposed to be in ring form in the copolymers but partially in acidic form that can be only taken into account by double counting during titration instead of the correctly single counting. FT-IR spectrum has been feasible for tracing that progress but titration isn't. Moreover, if difference between acid number from titration and FT-IR methods based on the chemical structure is high compatibilizing additive synthesis requires excess of reagents.•A method enabling the identification of carbonyl groups in maleic-anhydride containing polymers in various chemical environment without chemical consumption.•The method is based on the calculation of functional group ratios applying the integrated area of selected absorption peaks.
Collapse
Affiliation(s)
- Csilla Varga
- Sustainability Solutions Research Lab, University of Pannonia, 10. Egyetem str., Veszprém 8200, Hungary
| |
Collapse
|
5
|
Martínez-Robles S, González-Ballesteros E, Reyes-Esparza J, Trejo-Teniente I, Jaramillo-Loranca BE, Téllez-Jurado A, Vázquez-Valadez VH, Angeles E, Vargas Hernández G. Effect of β - hydroxy - γ -aminophosphonate (β - HPC) on the hydrolytic activity of Nocardia brasiliensis as determined by FT-IR spectrometry. Front Microbiol 2023; 14:1089156. [PMID: 36778890 PMCID: PMC9909415 DOI: 10.3389/fmicb.2023.1089156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The use of immunomodulatory and metabolic modulating drugs has been considered a better strategy to improve the efficacy of conventional treatments against pathogens and metabolic diseases. L-carnitine is relevant in fatty acid metabolism and energy production by β-oxidation, but it also has a beneficial therapeutic immunomodulatory effect. The β-hydroxy-γ-aminophosphonate (β-HPC) was developed, synthesized and studied in different pathologies as a more soluble and stable analog than L-carnitine, which has been studied in bacterial physiology and metabolism; therefore, we set out to investigate the direct effect of β-HPC on the metabolism of N. brasiliensis, which causes actinomycetoma in Mexico and is underdiagnosed. To analyze the effect of β-HPC on the metabolic capacity of the bacterium for the hydrolysis of substrate casein, L-tyrosine, egg yolk, and tween 80, Fourier transform infrared spectroscopy (FT-IR) was employed. It was found that β-HPC increases the metabolic activity of N. brasiliensis associated with increased growth and increased hydrolysis of the substrates tested. By the effect of β-HPC, it was observed that, in the hydrolysis of L-tyrosine, the aromatic ring and functional groups were degraded. At 1515 cm-1, any distinctive signal or peak for this amino acid was missing, almost disappearing at 839, 720, 647, and 550 cm-1. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, and CO. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, COO, and P = O signals, characteristic of amino acids, in addition to the increase of the amide I and II bands. In Tween 80 the H-C = and C = C signals disappear and the ether signals are concentrated, it was distinguished by the intense band at 1100 cm-1. Egg yolk showed a large accumulation of phosphate groups at 1071 cm-1, where phosvitin is located. FT-IR has served to demonstrate that β-HPC is a hydrolysis enhancer. Furthermore, by obtaining the spectrum of N. brasiliensis, we intend to use it as a quick comparison tool with other spectra related to actinobacteria. Eventually, FT-IR may serve as a species identification option.
Collapse
Affiliation(s)
- Sandra Martínez-Robles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico,Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,*Correspondence: Sandra Martínez-Robles,
| | - Erik González-Ballesteros
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Isaí Trejo-Teniente
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | | | - Alejandro Téllez-Jurado
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Enrique Angeles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Genaro Vargas Hernández
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,Genaro Vargas Hernández,
| |
Collapse
|