1
|
Guo X, Fu Z, Liu X, He H, Li Q, Fan S, Zhao L. Tailoring the structures and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalic acid) blends via reactive graphene oxide. Int J Biol Macromol 2025; 302:140455. [PMID: 39900164 DOI: 10.1016/j.ijbiomac.2025.140455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
In conventional elastomer-toughened PLA blends, the huge sacrifice in strength and modulus due to poor compatibility is a major problem plaguing such materials. In this work, oxide-epoxy-graphene (SGO-GMA) nanoparticles that can chemically react with both components of PLA/PBAT blends are prepared to serve as compatibilizer by "thiol-ene click" reaction. It is found that SGO-GMA tends to be dispersed in the PBAT phase thermodynamically. However, the one-step process, SGO-GMA is dispersed in both PBAT and PLA phases because of the chemical reaction limiting its migration, and the crystallization rate of the PLA phase is significantly increased. In contrast, in the two-step process, SGO-GMA is anchored at the interface by the in-situ reaction between epoxy groups in GMA with PLA and PBAT. Consequently, the mechanical properties of the samples prepared using a two-step process demonstrate a significant advantage. Specifically, incorporating 1 wt% SGO-GMA into PLA/PBAT blends results in simultaneous enhancements in tensile strength, elongation at break, and impact strength by 7.9%, 40.7%, and 57.1%, respectively. The improved mechanical properties that based on the roles functionalized GO compatibilization are expected to facilitate the application of PLA in tissue engineering materials, in vivo and in vitro medical devices and other fields.
Collapse
Affiliation(s)
- Xiaoming Guo
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhenjiang Fu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xin Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Haifeng He
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qi Li
- Qingdao Sibokezhan Intelligent Technology Co., Ltd. Qingdao 266112, China
| | - Shiwen Fan
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Lifen Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
2
|
Xue B, Li J, Yang Q, Wei D, Wu G. Study on the Effects of Vibration Force Field on the Mixing and Structural Properties of PLA/PBS/EGMA Blends. Polymers (Basel) 2025; 17:947. [PMID: 40219338 PMCID: PMC11991171 DOI: 10.3390/polym17070947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigates the effects of a vibration force field on the mixing and structural properties of polylactic acid (PLA), polybutylene succinate (PBS), and ethylene-glycidyl methacrylate terpolymer (EGMA) blends. A balanced triple-screw dynamic extrusion process was utilized to prepare PLA/PBS/EGMA composites under various vibration parameters, specifically amplitude and frequency. The results indicate that the introduction of a vibration force field significantly enhances the dispersion of the PLA/PBS/EGMA blend, leading to improved mechanical properties, thermal stability, and crystallization behavior. When the vibration frequency was 6 Hz and the amplitude was 1.0 mm, the impact strength increased from the steady-state value of 70.86 KJ/m2 to 88.21 KJ/m2. When the amplitude was 0.4 mm and the frequency was 10 Hz, the impact strength reached 81.86 KJ/m2. The orthogonal experimental design and entropy method analysis revealed that vibration frequency and amplitude play a dominant role in optimizing mechanical performance, whereas processing temperature and rotor speed exhibit minimal impact. Scanning electron microscopy (SEM) analysis confirmed that the vibration force field reduces phase separation, promoting a finer and more homogeneous dispersion of PBS and EGMA within the PLA matrix. Additionally, TGA and DTG curves suggest that when the vibration amplitude and frequency are lower than specific thresholds, the thermal stability of the blend deteriorates. In contrast, when they exceed those thresholds, thermal stability improves. For instance, with an amplitude of 1.0 mm, the initial degradation temperature (T5) climbs from 328.6 °C to 333.7 °C. At a frequency of 10 Hz, T5 reaches 333.1 °C. These findings provide theoretical support for the application of vibration-assisted extrusion in the development of high-performance biodegradable polymer blends.
Collapse
Affiliation(s)
- Bin Xue
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China; (J.L.); (D.W.); (G.W.)
| | - Jun Li
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China; (J.L.); (D.W.); (G.W.)
| | - Qu Yang
- School of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Danxiang Wei
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China; (J.L.); (D.W.); (G.W.)
| | - Guiting Wu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China; (J.L.); (D.W.); (G.W.)
| |
Collapse
|
3
|
Wang P, Liu J, Yang L, Zhou Y, Gao S, Hu X, Dong S, Liu W, Cao T, Sun D. Poly(lactide)/poly(butylene adipate-co-terephthalate)/carbon nanotubes composites with robust mechanical properties, fatigue-resistance and dielectric properties. Int J Biol Macromol 2025; 295:139464. [PMID: 39788223 DOI: 10.1016/j.ijbiomac.2025.139464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results. The CNT can be anchored at the interface between PLA and PBAT owing to the interaction between EFI and CNT, and the synergistic effect of CNT and EFI on the interfacial structure and phase structure can significantly enhance the mechanical properties of the materials. When the CNT content is 3 wt%, the composite has a tensile strength of 30.4 MPa and an elongation at break of 279.3 %, which are 30 % and 48 % higher than that of PLA/PBAT blend, and it also exhibits excellent dielectric properties with a dielectric constant of 25.2 and a dielectric loss of 11.6. Moreover, the composites also have excellent fatigue resistance owing to the refined interfacial structure and compact CNT network.
Collapse
Affiliation(s)
- Ping Wang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China.
| | - Jiajia Liu
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Li Yang
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Yiyang Zhou
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China.
| | - Shang Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Xinyun Hu
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Shi Dong
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Wenxiu Liu
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Tian Cao
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China; Anhui Province International Research Center on Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China; National and Local Joint Engineering Research Center for Special Wire and Cable Branch Center of Anhui Jianzhu University, Hefei 230601, China
| | - Daosheng Sun
- Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
| |
Collapse
|
4
|
Pîrvu CI, Sover A, Abrudeanu M. Participation of Polymer Materials in the Structure of Piezoelectric Composites. Polymers (Basel) 2024; 16:3603. [PMID: 39771453 PMCID: PMC11678843 DOI: 10.3390/polym16243603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO3, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications. This review discusses the evolution of lead-free ceramics, the challenges in improving polymer-ceramic interfaces, and innovations like 3D printing and surface functionalization, which enhance charge transfer and material durability. It also covers the effects of radiation on these materials, particularly in nuclear applications, and strategies to enhance radiation resistance. The review concludes that polymer materials play a critical role in advancing piezoelectric composite technologies by addressing environmental and functional challenges, paving the way for future innovations.
Collapse
Affiliation(s)
- Cosmin Ionuț Pîrvu
- Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania
- Institute for Nuclear Research, Câmpului Street nr. 1, 115400 Mioveni, Romania
| | - Alexandru Sover
- Faculty of Engineering, ANSBACH University of Applied Sciences, Residenzstraße 8, 91522 Ansbach, Germany;
| | - Mărioara Abrudeanu
- Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania
- Technical Sciences Academy of Romania, Calea Victoriei nr. 118, Sector 1, 010093 Bucuresti, Romania
| |
Collapse
|
5
|
Giner-Grau S, Lazaro-Hdez C, Pascual J, Fenollar O, Boronat T. Enhancing Polylactic Acid Properties with Graphene Nanoplatelets and Carbon Black Nanoparticles: A Study of the Electrical and Mechanical Characterization of 3D-Printed and Injection-Molded Samples. Polymers (Basel) 2024; 16:2449. [PMID: 39274081 PMCID: PMC11398012 DOI: 10.3390/polym16172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
This study investigates the enhancement of polylactic acid (PLA) properties through the incorporation of graphene nanoplatelets (GNPs) and carbon black (CB) for applications in 3D printing and injection molding. The research reveals that GNPs and CB improve the electrical conductivity of PLA, although conductivity remains within the insulating range, even with up to 10% wt of nanoadditives. Mechanical characterization shows that nanoparticle addition decreases tensile strength due to stress concentration effects, while dispersants like polyethylene glycol enhance ductility and flexibility. This study compares the properties of materials processed by injection molding and 3D printing, noting that injection molding yields isotropic properties, resulting in better mechanical properties. Thermal analysis indicates that GNPs and CB influence the crystallization behavior of PLA with small changes in the melting behavior. Dynamic Mechanical Thermal Analysis (DMTA) results show how the glass transition temperature and crystallization behavior fluctuate. Overall, the incorporation of nanoadditives into PLA holds potential for enhanced performance in specific applications, though achieving optimal conductivity, mechanical strength, and thermal properties requires careful optimization of nanoparticle type, concentration, and dispersion methods.
Collapse
Affiliation(s)
- Salvador Giner-Grau
- Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain
| | - Carlos Lazaro-Hdez
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Javier Pascual
- Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain
| | - Octavio Fenollar
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Teodomiro Boronat
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
6
|
Ji E, Zhou H, Xu G, Wang X, Wang L, Gao J, Yan J. Insights into heterogeneous surface induced bubble nucleation mechanisms in cellulose reinforced polylactic acid foams. Int J Biol Macromol 2024; 268:131659. [PMID: 38641275 DOI: 10.1016/j.ijbiomac.2024.131659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
As the most abundant natural homo-polymer, cellulose has the potential to enhance polymer properties reducing the cost of raw materials. In this work, the carboxylate cellulose nanofiber (CNF-C) was selected to modify polylactic acid (PLA) foams, and the density functional theory was constructed to help analyze the foaming mechanism quantitatively. The theoretical results showed that the ordered structure, the carboxyl and the hydroxyl of CNF-C were more conducive to providing much stronger CO2 adsorption for bubble nucleation, where the predicted critical bubble size decreased and the cell density increased with the addition of CNF-C. The experimental results revealed that the CNF-C promoted the rheological properties and crystallization behaviors of PLA samples, the PLA/CNF-C foams were characterized with uniform structures, the average cell size decreased from 21.39 μm to 0.19 μm, and the cell number density increased from 2.65×1010cell/cm3 to 2.30×1014cell/cm3. Those improvements resulted in an increase of 394.0 % for the compressive strength of the prepared foams. Generally, the high-performance PLA/CNF-C foams were fabricated successfully without compromising the properties of bio-based and biodegradable, the foaming mechanism was analyzed combining theoretical results with experimental data, and it was believed to provide a guide for cellulose reinforcing biodegradable polymer materials.
Collapse
Affiliation(s)
- Enle Ji
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Hongfu Zhou
- Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Guohe Xu
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Xiangdong Wang
- Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Linyan Wang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China.
| | - Jianping Gao
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Jundian Yan
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| |
Collapse
|
7
|
Pesaranhajiabbas E, Misra M, Mohanty AK. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review. Int J Biol Macromol 2023; 253:126231. [PMID: 37567528 DOI: 10.1016/j.ijbiomac.2023.126231] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Being less dependent on non-renewable resources as well as protecting the environment from waste streams have become two critical primers for a global movement toward replacing conventional plastics with renewable and biodegradable polymers. Despite all these efforts, only a few biodegradable polymers have paved their way successfully into the market. Polylactic acid is one of these biodegradable polymers that has been investigated thoroughly by researchers as well as manufactured on a large industrial scale. It is synthesized from lactic acid obtained mainly from the biological fermentation of carbohydrates, which makes this material a renewable polymer. Besides its renewability, it benefits from some attractive mechanical performances including high strength and stiffness, though brittleness is a major drawback of this biopolymer. Accordingly, the development of blends and biocomposites based on polylactic acid with highly flexible biodegradable polymers, specifically poly(butylene adipate co terephthalate) has been the objective of many investigations recently. This paper focuses on the blends and biocomposites based on these two biopolymers, specifically their mechanical, rheological, and biodegradation, the main characteristics that are crucial for being considered as a biodegradable substitution for conventional non-biodegradable polymers.
Collapse
Affiliation(s)
- Ehsan Pesaranhajiabbas
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada
| | - Manjusri Misra
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| | - Amar K Mohanty
- School of Engineering, Thornbrough Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada; Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
| |
Collapse
|
8
|
Zhao X, Yu J, Wang X, Huang Z, Zhou W, Peng S. Strong synergistic toughening and compatibilization enhancement of carbon nanotubes and multi-functional epoxy compatibilizer in high toughened polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends. Int J Biol Macromol 2023; 250:126204. [PMID: 37573914 DOI: 10.1016/j.ijbiomac.2023.126204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/01/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Different carbon nanotubes (CNTs) contents on high-toughness polylactic acid (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends were prepared by one-step melt blending using multifunctional epoxy oligomers (ADR) as reactive compatibilizer. During reactive blending, the PLA or PBAT chains were grafted onto the CNTs by allowing the carboxyl or hydroxyl groups to react with epoxy groups and form a branched CNTs-based copolymer. The branched copolymer at the interface between PLA and PBAT was dispersed through emulsion to improve the polymer-polymer or polymer-nanoparticle entanglement between the molecular chains. Interfacial adhesion, interface layer stability, and system viscoelasticity and compatibility were improved as indicated by rheological curves and dynamic mechanical analysis. The strength and toughness of the sample were simultaneously improved by the addition of CNTs and ADR. The impact strength reached 35.3 kJ/m2, which was approximately 7 times that of the PLA/PBAT blend, and the tensile strength was also increased from 33.6 MPa to 42.8 MPa. The properties of PLA/PBAT blend synergistically modified by ADR and CNTs were obviously better than those of PLA/PBAT blend modified by ADR or CNTs. The toughening synergistic effect of ADR and CNTs on PLA/PBAT was observed with efficiency reaching 3.05. With the further understanding of the toughening mechanism, the branched CNTs-based copolymers and CNTs clusters induce a synergistic effect, which increased the interfacial adhesion and ability of energy dissipation and stress transmission.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jiajie Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Zepeng Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Weiyi Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
9
|
Wu M, Ren Q, Zhu X, Li W, Luo H, Wu F, Wang L, Zheng W, Cui P, Yi X. Super toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure. Int J Biol Macromol 2023:125490. [PMID: 37348589 DOI: 10.1016/j.ijbiomac.2023.125490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Biodegradable poly(lactic acid) (PLA) foams have drawn increasing attention due to environmental challenges and petroleum crisis. However, it still remains a challenge to prepare PLA foams with fine cellular structures and high impact property, which significantly hinders its widespread application. Herein, phase interface-enhanced PLA/ poly(butylene adipate-co-terephthalate) (PBAT) blend foam, modified by a reactive compatibilizer through a simple reactive extrusion, was produced via a core-back foam injection molding technique. The obtained PLA blend foams displayed an impact strength as high as 49.1 kJ/m2, which was 9.3 and 6.4 times that of the unmodified PLA/PBAT blend and its corresponding foam, respectively. It proved that the interfacial adhesion and cell size both strongly affected the impact strength of injection-molded PLA/PBAT foams, and two major conclusions were proposed. First, enhancing interfacial adhesion could cause a brittle-tough transition of PLA/PBAT foams. Additionally, for foams with high interfacial adhesion, small cell size (<12 μm) was more favorable for the stretching of cells and extension of the whitened region in comparison with big cell size (cell size >60 μm), leading to the drastic toughening of PLA blends. This study provides a feasible, industrially scalable and practical strategy to prepare super toughened and fully biodegradable PLA materials.
Collapse
Affiliation(s)
- Minghui Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China; Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, PR China
| | - Qian Ren
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuyu Zhu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China
| | - Wanwan Li
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China
| | - Haibin Luo
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China
| | - Fei Wu
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China
| | - Long Wang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ping Cui
- Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, PR China
| | - Xiaosu Yi
- Faculty of Science and Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315000, PR China
| |
Collapse
|
10
|
Wang Z, Tu J, Gao Y, Xu P, Ding Y. Fabricating super tough polylactic acid based composites by interfacial compatibilization of imidazolium polyurethane modified carbon nanotubes. Int J Biol Macromol 2023:125079. [PMID: 37245756 DOI: 10.1016/j.ijbiomac.2023.125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The interfacial compatibilization and dispersion of carbon nanotubes (CNTs) in incompatible poly(lactic acid)/poly(butylene terephthalate adipate) (PLA/PBAT) composites are key points for evaluating the performance of the composites. To address this, a novel compatibilizer, sulfonate imidazolium polyurethane (IPU) containing PLA and poly(1,4-butylene adipate) segments modified CNTs, employed in conjunction with multi-component epoxy chain extender (ADR) to toughen synergistically PLA/PBAT composites. The thermal stability, rheological behavior, morphology, and mechanical properties of PLA/PBAT composites were performed by TGA, DSC, dynamic rheometer, SEM, tensile, and notched Izod impact measure. Moreover, the elongation at break and notched Izod impact strength of PLA5/PBAT5/4C/0.4I composites achieved 341 % and 61.8 kJ/m2 respectively, whose tensile strength was 33.7 MPa. The interfacial compatibilization and adhesion were enhanced because of the interface reaction catalyzed by IPU and the refined co-continuous phase structure. The CNTs non-covalently modified by IPU that bridged at the PBAT phase and interface transferred the stress into the matrix, prevented the development of microcracks, and absorbed impact fracture energy in the form of pull-out of the matrix, inducing shear yielding and plastic deformation. This new type of compatibilizer with modified CNTs is of great significance for realizing the high performance of PLA/PBAT composites.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Jiaying Tu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Yifei Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| | - Pei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China.
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Xu P, Zhang C, Niu D, Yang W, Chen S, Liu T, Shen Y, Ma P. Highly toughened poly (lactic acid)/poly (butylene adipate-terephthalate) blends in-situ compatibilized by MMA-co-GMA copolymers with different epoxy group content. Int J Biol Macromol 2023:125017. [PMID: 37245750 DOI: 10.1016/j.ijbiomac.2023.125017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Poor compatibility limits the wide application of biodegradable poly (lactic acid)/poly (butylene adipate-terephthalate) (PLA/PBAT) blends in packaging industry. How to prepare compatibilizers with high efficiency and low cost by simple methods is a challenge. In this work, methyl methacrylate-co-glycidyl methacrylate (MG) copolymer with different epoxy group content are synthesized as reactive compatibilizers to resolve this issue. The effects of glycidyl methacrylate and MG contents on phase morphology and physical properties of the PLA/PBAT blends are systematically investigated. During melt blending, MG migrates to the phase interface, and then grafts with PBAT to form PLA-g-MG-g-PBAT terpolymers. When the molar ratio of MMA and GMA in MG is 3:1, the reaction activity of MG with PBAT is the highest and the compatibilization effect is the best. When the M3G1 content is 1 wt%, the tensile strength and the fracture toughness are increased to 37. 1 MPa and 120 MJ/m3, which increase by 34 % and 87 %, respectively. The size of PBAT phase decreases from 3.7 μm to 0.91 μm. Therefore, this work provides a low-cost and simple method to prepare the compatibilizers with high efficiency for the PLA/PBAT blend, and provides a new basis for the design of epoxy compatibilizers.
Collapse
Affiliation(s)
- Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ce Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Suli Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
12
|
Wang Q, Chen X, Zeng S, Chen P, Xu Y, Nie W, Xia R, Zhou Y. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties. Int J Biol Macromol 2023; 240:124515. [PMID: 37085066 DOI: 10.1016/j.ijbiomac.2023.124515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Renewable yet biodegradable natural fiber (e.g., cellulose nanofiber (CNF)) reinforced bio-based polymers (e.g., polylactic acid (PLA)) are being applied for the manufacture of clean packaging products. The interface incompatibility between hydrophilic CNF and hydrophobic PLA still restricts the promotion of high-performance bio-based products. Herein, a polycondensate-coated CNF hybrid, wherein silane, aluminate, and titanate coupling agent monomers were in-situ polymerized onto the CNF surface via dehydration self-condensation, was designed and further employed as strengthening/toughening nanofillers for fabricating the CNF-reinforced PLA composite. Results showed that the polycondensate coatings could efficiently promote the dispersion of CNFs and enhance interfacial compatibility between CNFs and PLA. Attributing to the synergistic effect of polycondensate coatings and CNFs, a considerable improvement in processing, mechanical and thermal properties was obtained in resultant CNF/PLA composites. With adding 2.5 wt% polycondensate-coated CNFs, the tensile strength, Young's modulus, and tensile toughness of CNF-reinforced PLA composites was raised by about 27 %, 51 % and 68 %, respectively; also, such composite possessed greater elasticity and higher melt strength than pure PLA. This study provides a novel interface control strategy to fabricate low-cost yet high-performance PLA-based composites for sustainable packaging application.
Collapse
Affiliation(s)
- Qiming Wang
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xinyi Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Pengpeng Chen
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ying Xu
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Wangyan Nie
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Ru Xia
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yifeng Zhou
- Anhui Province Key Laboratory of Environment-Friendly Polymer Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
13
|
Chen X, Gao S, Yang L, Song J, Song T, Ling J, Shi M, Liu J, Wu X, Wang P. Highly toughened and heat-resistant poly(L-lactide)/polyvinylidene fluoride materials through simply interfacial interaction control via epoxy chain extender. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Nath K, Ghosh SK, Katheria A, Das P, Das NC. Facile production of binary polymer/carbonic nanofiller‐based biodegradable electromagnetic interference shield films with low electrical percolation threshold. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Krishnendu Nath
- Rubber Technology Centre Indian Institute of Technology Kharagpur India
| | - Suman Kumar Ghosh
- Rubber Technology Centre Indian Institute of Technology Kharagpur India
| | - Ankur Katheria
- Rubber Technology Centre Indian Institute of Technology Kharagpur India
| | - Palash Das
- Rubber Technology Centre Indian Institute of Technology Kharagpur India
| | | |
Collapse
|
15
|
Mechanically robust and flame-retardant poly(lactide)/poly(butylene adipate-co-terephthalate) composites based on carbon nanotubes and ammonium polyphosphate. Int J Biol Macromol 2022; 221:573-584. [PMID: 36087754 DOI: 10.1016/j.ijbiomac.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022]
Abstract
In order to synchronously improve mechanical and flame retardant properties of polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) composites, a series of multifunctional composites containing multi-walled carbon nanotubes (CNTs), ammonium polyphosphate (APP) and a commercial multifunctional epoxy oligomer (MEO) as chain extender were prepared via melt blending. The results show that the optimal flame retardant properties of PLA5-PBAT5/10A/6C composite containing 6 % CNTs and 10 wt% APP, presented the limited oxygen index reached 28.3 % and exhibited a decrease in peak heat release rate (pHRR) and total heat release (THR) to 368 kJ/m2 and 72 MJ/m2, respectively because of the co-continuous phase, CNTs network and condensed effect of APP. Meanwhile, the construction of co-continuous phases endows PLA5-PBAT5 with better mechanical compared to PLA8-PBAT2 composites. The elongation at break reaches (245.9 %) and notched impact strength (16.5 kJ/m2) of PLA5-PBAT5/10A/6C were higher than the PLA8-PBAT2/10A/6C by 16.0 and 283.7 %.
Collapse
|
16
|
Han P, Yang L, Zhang S, Gu Z. Constructing a Superior Interfacial Microstructure on Carbon Fiber for High Interfacial and Mechanical Properties of Epoxy Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2778. [PMID: 36014643 PMCID: PMC9412289 DOI: 10.3390/nano12162778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The interface quality is crucial for the properties of carbon fiber-reinforced polymer- matrix composites (CFRPs). In order to improve the interfacial and mechanical properties of CFRPs, a superior gradient modulus interfacial microstructure is constructed on the carbon fiber (CF) surface by chemically grafting a self-assembly carboxyl-terminated hyperbranched polymer (HP-COOH). A monofilament debonding test, a short beam shear test, an impact test and a dynamic mechanical thermal analysis (DMTA) were conducted to investigate the properties of the modified composite. Prominent improvements of 79.6% for the interfacial shear strength, 51.5% for the interlaminar shear strength, and 49.2% for the impact strength, as well as superior heat-resistance properties are achieved for composites with the gradient modulus interface over those of the untreated CF composites. The mechanism for performance improvement is mainly attributed to the enhanced CF surface energy, mechanical interlocking, and chemical bonding interactions. In particular, an atomic force microscopy (AFM) test proved that the gradient modulus interfacial microstructure formed by HP-COOH could widen the interface layer thickness and buffer the sharp variations in the modulus from CF to resin, thereby transmitting an external force and reducing the stress concentration. This work provides a facile and efficient strategy for constructing a superior and versatile interface for high- performance composites.
Collapse
Affiliation(s)
- Ping Han
- College of Physics, Qingdao University, Qingdao 266071, China
- Weihai Innovation Institute, Qingdao University, Weihai 264200, China
| | - Lina Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Susu Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Zheng Gu
- Weihai Innovation Institute, Qingdao University, Weihai 264200, China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
- Weifang Key Laboratory of Environmentally Friendly Macromolecular Flame Retardant Materials, Weifang 262715, China
- Shandong Engineering Laboratory of Environmentally Friendly Macromolecular Flame Retardant Materials, Weifang 262715, China
| |
Collapse
|
17
|
Ye C, Yu F, Huang Y, Hua M, Zhang S, Feng J. Hydrochar as an environment-friendly additive to improve the performance of biodegradable plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155124. [PMID: 35405227 DOI: 10.1016/j.scitotenv.2022.155124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Plastic additives affect the properties of plastics, which further determine the application range of plastics. However, most plastic additives have environmental friendliness or performance issues limiting their application. Hydrochar (HC) from waste biomass by hydrothermal carbonization has been proved to contain organic matter as function substances, like a binder, and is environment-friendly material. Currently, hydrochar as a plastic additive has not been previously reported. In this study, the HC/PBAT composites were produced by hydrochar blending with poly (butylene adipate-co-terephthalate) (PBAT) which is a biodegradable polymer. The hydrochar produced at different hydrothermal carbonization temperatures (180 °C, 210 °C, 240 °C, 270 °C, and 300 °C) and the addition of hydrochar (10 wt%, 20 wt%) were investigated. The results showed that the elastic modulus of the composites was increased by 27.4 MPa and 32.5 MPa compared with virgin PBAT while adding 10 wt% and 20 wt% hydrochar, respectively. Moreover, the stiffness of the composite was improved, and the balance of stiffness and toughness of the composites was effectively maintained when adding 10 wt% hydrochar treated at 300 °C. The elongation at break, tensile strength, and the elastic modulus of its composites were 630.8 ± 13.7%, 23.0 ± 0.4 MPa, and 100.5 ± 2.7 MPa, respectively. Furthermore, the crystallization temperature of the composites was increased after hydrochar was added into PBAT, and the maximum was 87.9 °C. It also means that hydrochar has a great nucleation effect during plastic processing. Therefore, hydrochar can be used as an environment-friendly additive to promote the performance of biodegradable plastic and promise to be applied in the field of biodegradable plastics.
Collapse
Affiliation(s)
- Cheng Ye
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanqin Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingda Hua
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
18
|
Chai J, Wang G, Zhang A, Dong G, Li S, Zhao J, Zhao G. Microcellular injection molded lightweight and tough poly (L-lactic acid)/in-situ polytetrafluoroethylene nanocomposite foams with enhanced surface quality and thermally-insulating performance. Int J Biol Macromol 2022; 215:57-66. [PMID: 35718146 DOI: 10.1016/j.ijbiomac.2022.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
High-performance microcellular polymer foams have been widely used all over the world, while the excessive usage of petroleum-based polymers caused serious environmental problems. As the eco-friendly awareness is increasing significantly, poly (L-lactic acid) (PLLA), as a typical biomass polymer, has gradually attracted widespread attention. However, the slow crystallization and poor melt strength of PLLA lead to low foaming ability and thus limiting its industrial applications. Herein, a novel and scalable strategy by coupling in-situ fibrillation and mold-opening microcellular injection molding (MOMIM) was developed to fabricate lightweight and tough PLLA/polytetrafluoroethylene (PTFE) foams. Thanks to the reticulated in-situ PTFE nanofibrils with a diameter of 100-200 nm, the crystallization and viscoelasticity of PLLA were dramatically promoted, and further contributing to its foaming ability. The expansion ratio of the MOMIM PLLA/PTFE foam was increased by 86 % compared with the regular microcellular injection molded (RMIM) PLLA foam. Moreover, the lower foam density and the toughening effect of PTFE nanofibrils resulted in the outstanding ductility of the PLLA/PTFE foams, whose tensile elongation, flexural strength, and impact strength were maximally increased by 52 %, 28 %, and 48 %, compared with PLLA foams. More importantly, the thermally-insulating performance and surface quality of PLLA/PTFE foams were also greatly improved.
Collapse
Affiliation(s)
- Jialong Chai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Guilong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China; School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Aimin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| | - Guiwei Dong
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Shuai Li
- School of Mechanical & Vehicle Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Jinchuan Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China.
| | - Guoqun Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|