1
|
Chen Y, Liu Y, Meng Y, Jiang Y, Zhang X, Liu H, Reis MAM, Qi Q, Yang C, Liu R. Systems Metabolic Engineering of Genome-Reduced Pseudomonas putida for Efficient Production of Polyhydroxyalkanoate from p-Coumaric Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40372413 DOI: 10.1021/acs.jafc.5c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Pseudomonas putida KT2440, which harbors native aromatic catabolic pathways, has emerged as a cell factory for funnelling lignin derivatives to medium-chain-length polyhydroxyalkanoates (mcl-PHA). To enhance this bioconversion, we engineered the genome-reduced strain P. putida KTU-U27 (with higher PHA productivity than its parental strain KT2440) to further enhance mcl-PHA synthesis from the lignin-derived aromatic compound p-coumaric acid (p-CA). Three targeted strategies were employed: (i) blocking PHA degradation via deletion of phaZ; (ii) suppressing β-oxidation by deleting fadBA1 and fadBA2; and (iii) enhancing biosynthesis through overexpression of phaC1 and alkK, resulting in the engineered strain KTU-U27ΔZ2BA-P46C1K. Subsequent optimization of the carbon-to-nitrogen (C/N) ratio and high-density fed-batch fermentation further improved PHA productivity. To adapt the substrate toxicity, strain tolerance toward p-CA was augmented by overexpressing the ttg2ABCDE operon and the vacJ gene. Under optimized fed-batch fermentation conditions (initial C/N ratio of 8:4), the final strain KTU-U27ΔZ2BA-P46C1K-P46TJ achieved a cell dry weight of 2050 mg/L with a PHA content of 82.19 wt %, corresponding to a PHA yield of 1685 mg/L, which is the highest reported to date using p-CA as the sole carbon source. This integrated approach of combining genome reduction, metabolic engineering, and bioprocess optimization, provides a scalable platform for mcl-PHA production from lignin-derived aromatics, highlighting the potential of KTU-U27-based chassis for cost-effective lignin valorization.
Collapse
Affiliation(s)
- Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuting Jiang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Maria A M Reis
- Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Foka K, Ferousi C, Topakas E. Polyester-derived monomers as microbial feedstocks: Navigating the landscape of polyester upcycling. Biotechnol Adv 2025; 82:108589. [PMID: 40354902 DOI: 10.1016/j.biotechadv.2025.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/10/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Since their large-scale adoption in the early 20th century, plastics have become indispensable to modern life. However, inadequate disposal and recycling methods have led to severe environmental consequences. While traditional end-of-life plastics management had predominantly relied on landfilling, a paradigm shift towards recycling and valorization emerged in the 1970s, leading to the development of various, mostly mechanochemical, recycling strategies, together with the more recent approach of biological depolymerization and upcycling. Plastic upcycling, which converts plastic waste into higher-value products, is gaining attention as a sustainable strategy to reduce environmental impact and reliance on virgin materials. Microbial plastic upcycling relies on efficient depolymerization methods to generate monomeric substrates, which are subsequently metabolized by native or engineered microbial systems yielding valuable bioproducts. This review focuses on the second phase of microbial polyester upcycling, examining the intracellular metabolic pathways that enable the assimilation and bioconversion of polyester-derived monomers into industrially relevant compounds. Both biodegradable and non-biodegradable polyesters with commercial significance are considered, with emphasis on pure monomeric feedstocks to elucidate intracellular carbon assimilation pathways. Understanding these metabolic processes provides a foundation for future metabolic engineering efforts, aiming to optimize microbial systems for efficient bioconversion of mixed plastic hydrolysates into valuable bioproducts.
Collapse
Affiliation(s)
- Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15772 Athens, Greece.
| |
Collapse
|
3
|
Song YJ, Zhao NL, Dai DR, Bao R. Prospects of Pseudomonas in Microbial Fuel, Bioremediation, and Sustainability. CHEMSUSCHEM 2025; 18:e202401324. [PMID: 39117578 DOI: 10.1002/cssc.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Microbial applications in agriculture and industry have gained significant attention due to their potential to address environmental challenges and promote sustainable development. Among these, the genus Pseudomonas stands out as a promising candidate for various biotechnological uses, thanks to its metabolic flexibility, resilience, and adaptability to diverse environments. This review provides a comprehensive overview of the current state and future prospects of microbial fuel production, bioremediation, and sustainable development, focusing on the pivotal role of Pseudomonas species. We emphasize the importance of microbial fuel as a renewable energy source and discuss recent advancements in enhancing biofuel generation using Pseudomonas strains. Additionally, we explore the critical role of Pseudomonas in bioremediation processes, highlighting its ability to degrade a wide spectrum of pollutants, including hydrocarbons, pesticides, and heavy metals, thereby reducing environmental contamination. Despite significant progress, several challenges remain. These include refining microbial strains for optimal process efficiency and addressing ecological considerations. Nonetheless, the diverse capabilities of Pseudomonas offer promising avenues for innovative solutions to pressing environmental issues, supporting the transition to a more sustainable future.
Collapse
Affiliation(s)
- Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Rong Dai
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Fan S, Ren H, Fu X, Kong X, Wu H, Lu Z. Genome streamlining of Pseudomonas putida B6-2 for bioremediation. mSystems 2024; 9:e0084524. [PMID: 39530686 DOI: 10.1128/msystems.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial transformation is a favored approach for environmental remediation. However, the effectiveness of microbial remediation has been limited by the lack of chassis cells with satisfactory contaminant degradation performance. Pseudomonas putida B6-2, with a wide substrate spectrum and high solvent tolerance, is a chassis strain with great potential for application in environmental remediation. Here, guided by bioinformatic analyses and genome-scale metabolic model (GEM) predictions, we successfully optimized P. putida B6-2 by rationally reducing its nonessential genetic components and generating a more robust genome-streamlined strain, P. putida BGR4. Several improvements were observed compared with the original P. putida B6-2 strain, including a 1.4 × 105-fold increase in electroporation efficiency, an 8.3-fold increase in conjugation efficiency, improved glycerol utilization capability, and increased phenol utilization after heterologous expression of the phenol monooxygenase encoded by dmpKLMNOP. Additionally, P. putida BGR4 exhibited enhanced tolerance to several stressors, including starvation, oxidative stress, and DNA damage. Transcriptomic analysis revealed that genome streamlining led to the upregulation of genes involved in the "carbon metabolism" and "tricarboxylic acid cycle" pathways in P. putida BGR4, which likely contributed to the superior phenotype of P. putida BGR4 in terms of carbon source utilization and contaminant degradation capabilities. Furthermore, the absence of four prophages was identified as a potential cause of the enhanced stress resistance observed in P. putida BGR4. Overall, we developed a combined genome-streamlining strategy involving bioinformatic analyses and GEM predictions and generated a more robust chassis strain, P. putida BGR4, which expands the repertoire of chassis cells for environmental remediation.IMPORTANCEDespite the development of many chassis cells, there is still a lack of robust chassis cells with satisfactory contaminant degradation performance. Targeted genome streamlining is an effective way to provide powerful chassis cells. However, genome streamlining does not always lead to the improved phenotypes of genome-streamlined chassis cells. In this research, a novel procedure that combined bioinformatic analyses and GEM predictions was proposed to guide genome streamlining and predict the effects of genome streamlining. This genome streamlining procedure was successfully applied to Pseudomonas putida B6-2, which was a chassis cell with great potential for application in environmental remediation and resulted in the generation of a more robust chassis cell, P. putida BGR4, thereby providing a superior chassis cell for efficient and sustainable environmental remediation and a valuable framework for guiding the genome streamlining of strains for other applications.
Collapse
Affiliation(s)
- Siqing Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueni Fu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Dong Y, Zhai K, Li Y, Lv Z, Zhao M, Gan T, Ma Y. Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Curr Issues Mol Biol 2024; 46:12784-12799. [PMID: 39590355 PMCID: PMC11592762 DOI: 10.3390/cimb46110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in Pseudomonas putida is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs. To enhance glucose metabolism to flow to acetyl-CoA, which is an important precursor of mcl-PHA, multiple genes in glucose metabolism were inactive (branch pathway and negative regulatory) and overexpressed (positive regulatory) in this study. The two genes, gcd (encoding glucose dehydrogenase) and gltA (encoding citrate synthase), involved in glucose peripheral pathways and TCA cycles were separately and jointly knocked out in Pseudomonas putida QSRZ6 (ΔphaZΔhsdR), and the mcl-PHA synthesis was improved in the mutants; particularly, the mcl-PHA titer of QSRZ603 (ΔgcdΔgltA) was increased by 33.7%. Based on the glucose branch pathway truncation, mcl-PHA synthesis was further improved with hexR-inactivation (encoding a negative regulator in glucose metabolism). Compared with QSRZ603 and QSRZ6, the mcl-PHA titer of QSRZ607 (ΔgcdΔgltAΔhexR) was increased by 62.8% and 117.5%, respectively. The mutant QSRZ609 was constructed by replacing the endogenous promoter of gltB encoding a transcriptional activator of the two-component regulatory system GltR/GltS with the ribosome subunit promoter P33. The final mcl-PHA content and titers of QSRZ609 reached 57.3 wt% and 2.5 g/L, an increase of and 20.9% and 27.3% over that of the parent strain QSRZ605 and an increase of 110.4% and 159.9% higher as compared to QSRZ6, respectively. The fermentation was optimized with a feeding medium in shaker flacks; then, the mcl-PHA contents and titer of QSRZ609 were 59.1 wt% and 6.8 g/L, respectively. The results suggest that the regulation from glucose to acetyl-CoA by polygenic modification is an effective strategy for enhancing mcl-PHA synthesis, and the mutants obtained in this study can be used as chassis to further increase mcl-PHA production.
Collapse
Affiliation(s)
- Yue Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Keyao Zhai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yatao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhen Lv
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengyao Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tian Gan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchao Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Cruz-Romero CL, Chávez-Ramírez AU, Flores-Juárez CR, Arjona N, Álvarez-López A, del Bosque Plata L, Vallejo-Becerra V, Galindo-de-la-Rosa JDD. Biosynthesis of Polyhydroalkanoates Doped with Silver Nanoparticles Using Pseudomonas putida and Pseudomonas aeruginosa for Antibacterial Polymer Applications. Int J Mol Sci 2024; 25:8996. [PMID: 39201681 PMCID: PMC11354355 DOI: 10.3390/ijms25168996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
In this study, the biosynthesis of polyhydroxyalkanoates (PHAs) was carried out using Pseudomonas putida and Pseudomonas aeruginosa. These PHAs were produced using reagent-grade glycerol and crude glycerol as the carbon sources. The objective was to compare the production of PHAs and to functionalize these polymers with silver nanoparticles to provide antibacterial properties for potential biomedical applications. The findings from the physical and chemical analyses confirmed the successful synthesis and extraction of PHAs, achieving comparable yields using both crude glycerol and reagent-grade glycerol as carbon sources across both strains. Approximately 16% higher PHAs production was obtained using Pseudomonas putida compared to Pseudomonas aeruginosa, and no significant difference was observed in the production rate of PHAs between the two carbon sources used, which means that crude glycerol could be utilized even though it has more impurities. Notably, PHAs functionalized with silver nanoparticles showed improved antibacterial effectiveness, especially those derived from reagent-grade glycerol and the Pseudomonas aeruginosa strain.
Collapse
Affiliation(s)
- Carmen Liliana Cruz-Romero
- Facultad de Ingeniería, División de Investigación y Posgrado, Centro Universitario Cerro de las Campanas, Universidad Autónoma de Querétaro, Querétaro, Qro. C.P. 76010, Mexico; (C.L.C.-R.); (A.Á.-L.)
| | - Abraham Ulises Chávez-Ramírez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Qro. C.P. 76703, Mexico; (A.U.C.-R.); (N.A.)
| | - Cyntia R. Flores-Juárez
- División Industrial Área de Nanotecnología, Universidad Tecnológica de Querétaro, Querétaro, Qro. C.P. 76148, Mexico;
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Qro. C.P. 76703, Mexico; (A.U.C.-R.); (N.A.)
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, División de Investigación y Posgrado, Centro Universitario Cerro de las Campanas, Universidad Autónoma de Querétaro, Querétaro, Qro. C.P. 76010, Mexico; (C.L.C.-R.); (A.Á.-L.)
| | | | - Vanessa Vallejo-Becerra
- Facultad de Ingeniería, División de Investigación y Posgrado, Centro Universitario Cerro de las Campanas, Universidad Autónoma de Querétaro, Querétaro, Qro. C.P. 76010, Mexico; (C.L.C.-R.); (A.Á.-L.)
| | - Juan de Dios Galindo-de-la-Rosa
- Facultad de Ingeniería, División de Investigación y Posgrado, Centro Universitario Cerro de las Campanas, Universidad Autónoma de Querétaro, Querétaro, Qro. C.P. 76010, Mexico; (C.L.C.-R.); (A.Á.-L.)
| |
Collapse
|
7
|
Kumar Sachan RS, Devgon I, Mohammad Said Al-Tawaha AR, Karnwal A. Optimizing Polyhydroxyalkanoate production using a novel Bacillus paranthracis isolate: A response surface methodology approach. Heliyon 2024; 10:e35398. [PMID: 39170281 PMCID: PMC11336651 DOI: 10.1016/j.heliyon.2024.e35398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from sewage water, identifying it using Whole Genome Sequence. This study represents the first report on optimizing PHA production using B. paranthracis RSKS-3, employing Design Expert 12.0 software. Our findings reveal that four factors (temperature, inoculum size, potassium dihydrogen phosphate, and magnesium sulfate) significantly affect PHA production in the Plackett-Burman design experiment. Through Response Surface Methodology, we optimized PHA production to 0.647 g/L with specific values for potassium dihydrogen phosphate (0.55 %), inoculum size (3 %), magnesium sulfate (0.055 %), and a temperature of 35 °C, in agreement with the predicted value of 0.630 g/L. This optimization resulted in a substantial 13.29-fold increase in PHA production from 0.34 g/L to 4.52 g/L, underscoring the promising role of B. paranthracis RSKS-3 in eco-friendly PHA production and advancing sustainable bioproduct development.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | | | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
8
|
González-Rojo S, Paniagua-García AI, Díez-Antolínez R. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. Microorganisms 2024; 12:1668. [PMID: 39203509 PMCID: PMC11357511 DOI: 10.3390/microorganisms12081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The industrial production of polyhydroxyalkanoates (PHAs) faces several limitations that hinder their competitiveness against traditional plastics, mainly due to high production costs and complex recovery processes. Innovations in microbial biotechnology offer promising solutions to overcome these challenges. The modification of the biosynthetic pathways is one of the main tactics; allowing for direct carbon flux toward PHA formation, increasing polymer accumulation and improving polymer properties. Additionally, techniques have been implemented to expand the range of renewable substrates used in PHA production. These feedstocks are inexpensive and plentiful but require costly and energy-intensive pretreatment. By removing the need for pretreatment and enabling the direct use of these raw materials, microbial biotechnology aims to reduce production costs. Furthermore, improving downstream processes to facilitate the separation of biomass from culture broth and the recovery of PHAs is critical. Genetic modifications that alter cell morphology and allow PHA secretion directly into the culture medium simplify the extraction and purification process, significantly reducing operating costs. These advances in microbial biotechnology not only enhance the efficient and sustainable production of PHAs, but also position these biopolymers as a viable and competitive alternative to petroleum-based plastics, contributing to a circular economy and reducing the dependence on fossil resources.
Collapse
Affiliation(s)
- Silvia González-Rojo
- Department of Chemistry and Applied Physics, Chemical Engineering Area, Campus de Vegazana s/n, University of León, 24071 León, Spain
| | - Ana Isabel Paniagua-García
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| | - Rebeca Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, 24358 León, Spain; (A.I.P.-G.); (R.D.-A.)
| |
Collapse
|
9
|
Kim K, Choe D, Cho S, Palsson B, Cho BK. Reduction-to-synthesis: the dominant approach to genome-scale synthetic biology. Trends Biotechnol 2024; 42:1048-1063. [PMID: 38423803 DOI: 10.1016/j.tibtech.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Advances in systems and synthetic biology have propelled the construction of reduced bacterial genomes. Genome reduction was initially focused on exploring properties of minimal genomes, but more recently it has been deployed as an engineering strategy to enhance strain performance. This review provides the latest updates on reduced genomes, focusing on dual-track approaches of top-down reduction and bottom-up synthesis for their construction. Using cases from studies that are based on established industrial workhorse strains, we discuss the construction of a series of synthetic phenotypes that are candidates for biotechnological applications. Finally, we address the possible uses of reduced genomes for biotechnological applications and the needed future research directions that may ultimately lead to the total synthesis of rationally designed genomes.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Suhyung Cho
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Kim WY, Kim SJ, Seo HR, Yang Y, Lee JS, Hur M, Lee BH, Kim JG, Oh MK. Medium Chain Length Polyhydroxyalkanoate Production by Engineered Pseudomonas gessardii Using Acetate-formate as Carbon Sources. J Microbiol 2024; 62:569-579. [PMID: 38700774 DOI: 10.1007/s12275-024-00136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 08/07/2024]
Abstract
Production of medium chain length polyhydroxyalkanoate (mcl-PHA) was attempted using Pseudomonas gessardii NIBRBAC000509957, which was isolated from Sunchang, Jeollabuk-do, Republic of Korea (35°24'27.7"N, 127°09'13.0"E) and effectively utilized acetate and formate as carbon sources. We first evaluated the utilization of acetate as a carbon source, revealing optimal growth at 5 g/L acetate. Then, formate was supplied to the acetate minimal medium as a carbon source to enhance cell growth. After overexpressing the acetate and formate assimilation pathway enzymes, this strain grew at a significantly higher rate in the medium. As this strain naturally produces PHA, it was further engineered metabolically to enhance mcl-PHA production. The engineered strain produced 0.40 g/L of mcl-PHA with a biomass content of 30.43% in fed-batch fermentation. Overall, this strain can be further developed to convert acetate and formate into valuable products.
Collapse
Affiliation(s)
- Woo Young Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Jin Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hye-Rin Seo
- Department of Biological Science, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jong Seok Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Moonsuk Hur
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jong-Geol Kim
- Department of Biological Science, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Deng RX, Li HL, Wang W, Hu HB, Zhang XH. Engineering Pseudomonas chlororaphis HT66 for the Biosynthesis of Copolymers Containing 3-Hydroxybutyrate and Medium-Chain-Length 3-Hydroxyalkanoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8684-8692. [PMID: 38564621 DOI: 10.1021/acs.jafc.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are promising alternatives to petroleum-based plastics, owing to their biodegradability and superior material properties. Here, the controllable biosynthesis of scl-co-mcl PHA containing 3-hydroxybutyrate (3HB) and mcl 3-hydroxyalkanoates was achieved in Pseudomonas chlororaphis HT66. First, key genes involved in fatty acid β-oxidation, the de novo fatty acid biosynthesis pathway, and the phaC1-phaZ-phaC2 operon were deleted to develop a chassis strain. Subsequently, an acetoacetyl-CoA reductase gene phaB and a PHA synthase gene phaC with broad substrate specificity were heterologously expressed for producing and polymerizing the 3HB monomer with mcl 3-hydroxyalkanoates under the assistance of native β-ketothiolase gene phaA. Furthermore, the monomer composition of scl-co-mcl PHA was regulated by adjusting the amount of glucose and dodecanoic acid supplemented. Notably, the cell dry weight and scl-co-mcl PHA content reached 14.2 g/L and 60.1 wt %, respectively, when the engineered strain HT11Δ::phaCB was cultured in King's B medium containing 5 g/L glucose and 5 g/L dodecanoic acid. These results demonstrated that P. chlororaphis can be a platform for producing scl-co-mcl PHA and has the potential for industrial application.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Liu H, Chen Y, Wang S, Liu Y, Zhao W, Huo K, Guo H, Xiong W, Wang S, Yang C, Liu R. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Int J Biol Macromol 2023; 253:126732. [PMID: 37678685 DOI: 10.1016/j.ijbiomac.2023.126732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Bio-based plastics polyhydroxyalkanoates (PHAs) are considered as a good substitutive to traditional fossil-based plastics because PHAs outcompete chemical plastics in several important properties, such as biodegradability, biocompatibility, and renewability. However, the industrial production of PHA (especially medium-chain-length PHA, mcl-PHA) is greatly restricted by the cost of carbon sources. Currently, xylose and cellobiose derived from lignocellulose are potential substrates for mcl-PHA production. In this study, Pseudomonas putida KTU-U27, a genome-streamlined strain derived from a mcl-PHA producer P. putida KT2440, was used as the optimal chassis for the construction of microbial cell factories with the capacity to efficiently produce mcl-PHA from xylose and cellobiose by introducing the xylose and cellobiose metabolism modules and enhancing the transport of xylose and cellobiose. The lag phases of the xylose- and cellobiose-grown engineered strains were almost completely eliminated and the xylose- and cellobiose-utilizing performance was greatly improved via adaptive laboratory evolution. In shake-flask fermentation, the engineered strain 27A-P13-xylABE-Ptac-tt and 27A-P13-bglC-P13-gts had a mcl-PHA content of 41.67 wt% and 45.18 wt%, respectively, and were able to efficiently utilize xylose or cellobiose as the sole carbon source for cell growth. Herein, microbial production of mcl-PHA using xylose as the sole carbon source has been demonstrated for the first time. Meanwhile, the highest yield of mcl-PHA produced from cellobiose has been obtained in this study. Interestingly, the engineered strains derived from genome-reduced P. putida strains showed higher xylose- and cellobiose-utilizing performance and higher PHA yield than those derived from P. putida KT2440. This study highlights enormous potential of the engineered strains as promising platforms for low-cost production of mcl-PHA from xylose- and cellobiose-rich substrates.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Liu P, Zheng Y, Yuan Y, Han Y, Su T, Qi Q. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:51-59. [PMID: 37714010 DOI: 10.1016/j.wasman.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Polyethylene terephthalate (PET) is the most widely consumed polyester plastic and can be recycled by many chemical processes, of which glycolysis is most cost-effective and commercially viable. However, PET glycolysis produces oligomers due to incomplete depolymerization, which are undesirable by-products and require proper disposal. In this study, the PET oligomers from chemical recycling processes were completely bio-depolymerized into monomers and then used for the biosynthesis of biodegradable plastics polyhydroxyalkanoates (PHA) by co-cultivation of two engineered microorganisms Escherichia coli BL21 (DE3)-LCCICCG and Pseudomonas putida KT2440-ΔRDt-ΔZP46C-M. E. coli BL21 (DE3)-LCCICCG was used to secrete the PET hydrolase LCCICCG into the medium to directly depolymerize PET oligomers. P. putida KT2440-ΔRDt-ΔZP46C-M that mastered the metabolism of aromatic compounds was engineered to accelerate the hydrolysis of intermediate products mono-2-(hydroxyethyl) terephthalate (MHET) by expressing IsMHETase, and biosynthesize PHA using ultimate products terephthalate and ethylene glycol depolymerized from the PET oligomers. The population ratios of the two microorganisms during the co-cultivation were characterized by fluorescent reporter system, and revealed the collaboration of the two microorganisms to bio-depolymerize and bioconversion of PET oligomers in a single process. This study provides a biological strategy for the upcycling of PET oligomers and promotes the plastic circular economy.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuanfei Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
15
|
Huo K, Wang S, Zhao W, Guo H, Xiong W, Liu R, Yang C. Creating an efficient 1,2-dichloroethane-mineralizing bacterium by a combination of pathway engineering and promoter engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163140. [PMID: 37001652 DOI: 10.1016/j.scitotenv.2023.163140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Currently, 1,2-dichloroethane (DCA) is frequently detected in groundwater and has been listed as a potential human carcinogen by the U.S. EPA. Owing to its toxicity and recalcitrant nature, inefficient DCA mineralization has become a bottleneck of DCA bioremediation. In this study, the first engineered DCA-mineralizing strain KTU-P8DCA was constructed by functional assembly of DCA degradation pathway and enhancing pathway expression with a strong promoter P8 in the biosafety strain Pseudomonas putida KT2440. Strain KTU-P8DCA can metabolize DCA to produce CO2 and utilize DCA as the sole carbon source for cell growth by quantifying 13C stable isotope ratios in collected CO2 and in lyophilized cells. Strain KTU-P8DCA exhibited superior tolerance to high concentrations of DCA. Excellent genetic stability was also observed in continuous passage culture. Therefore, strain KTU-P8DCA has enormous potential for use in bioremediation of sites heavily contaminated with DCA. In the future, our strategy for pathway construction and optimization is expected to be developed as a standard pipeline for creating a wide variety of new contaminants-mineralizing microorganisms. The present study also highlights the power of synthetic biology in creating novel degraders for environmental remediation.
Collapse
Affiliation(s)
- Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Liu Y, Zhao W, Wang S, Huo K, Chen Y, Guo H, Wang S, Liu R, Yang C. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9. Int J Biol Macromol 2022; 223:240-251. [PMID: 36347367 DOI: 10.1016/j.ijbiomac.2022.10.275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Microbial production of bioplastics polyhydroxyalkanoates (PHA) has opened new avenues to resolve "white pollution" caused by petroleum-based plastics. PHAs consisting of short- and medium-chain-length monomers, designated as SCL-co-MCL PHAs, exhibit much better thermal and mechanical properties than PHA homopolymers. In this study, a halophilic bacterium Halomonas cupida J9 was isolated from highly saline wastewater and proven to produce SCL-co-MCL PHA consisting of 3-hydroxybutyrate (3HB) and 3-hydroxydodecanoate (3HDD) from glucose and glycerol. Whole-genome sequencing and functional annotation suggest that H. cupida J9 may possess three putative PHA biosynthesis pathways and a class I PHA synthase (PhaCJ9). Interestingly, the purified His6-tagged PhaCJ9 from E. coli BL21 (DE3) showed polymerizing activity towards 3HDD-CoA and a phaCJ9-deficient mutant was unable to produce PHA, which indicated that a low-substrate-specificity PhaCJ9 was exclusively responsible for PHA polymerization in H. cupida J9. Docking simulation demonstrated higher binding affinity between 3HB-CoA and PhaCJ9 and identified the key residues involved in hydrogen bonds formation between 3-hydroxyacyl-CoA and PhaCJ9. Furthermore, His489 was identified by site-specific mutagenesis as the key residue for the interaction of 3HDD-CoA with PhaCJ9. Finally, PHA was produced by H. cupida J9 from glucose and glycerol in shake flasks and a 5-L fermentor under unsterile conditions. The open fermentation mode makes this strain a promising candidate for low-cost production of SCL-co-MCL PHAs. Especially, the low-specificity PhaCJ9 has great potential to be engineered for an enlarged substrate range to synthesize tailor-made novel SCL-co-MCL PHAs.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|