1
|
Zhao S, Wang L, Liang J, Jin F, Wang F. Preparation, characterization and microencapsulation of walnut (Juglans regia L.) peptides-zinc chelate. J Food Sci 2024; 89:5618-5632. [PMID: 39126687 DOI: 10.1111/1750-3841.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 08/12/2024]
Abstract
In this research, a novel kind of walnut (Juglans regia L.) peptides-zinc (Zn-WPs) chelate was obtained using the mass ratio of the walnut peptides (WPs) to ZnSO4.7H2O of 3.5:1 at pH 8.5 and 50°C for 84 min, with the chelation rate of 84.5%. In comparison to walnut peptides (WPs), the contents of aspartic acid and glutamic acid in Zn-WPs chelate are approximately 27%, indicating that hydrophilic amino acids predominantly bind with walnut peptides. Following chelation with zinc ions, the ultraviolet-visible (UV) characteristic absorption peak shifted from 213 nm to 210 nm, while the average particle size of the chelate increased to 8.0 ± 0.14 µm, presenting a loose spherical structure under scanning electron microscopy. These findings suggest the formation of new substances. Fourier-transform infrared spectroscopy (FTIR) revealed carboxyl, amino, and peptide bonds as the chelation sites of WPs and zinc. The IC50 of walnut peptides-zinc (Zn-WPs) chelate is 2.91 mg/mL, indicative of a favorable DPPH radical scavenging rate. Furthermore, Zn-WPs chelate microcapsules were produced via the spray drying method, achieving an encapsulation rate of 75.67 ± 0.83% under optimal conditions. These microcapsules demonstrate robust stability across diverse environmental conditions. This study underscores the potential of Zn-WPs and its chelate microcapsules to enhance stability and bioactivity under varying circumstances. PRACTICAL APPLICATION: In this study, a new walnut peptide-zinc (Zn-WPs) chelate was prepared. The presence of zinc ions changes the structure and properties of walnut peptides and improves its stability. The production of Zn-WPs chelate microcapsules enables Zn-WPs to have strong in vitro stability under different pH and simulated gastrointestinal digestion conditions. These results provide novel insights for developing the walnut peptides as bioactive ingredients in functional foods.
Collapse
Affiliation(s)
- Sibao Zhao
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lei Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jingyi Liang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Feng Jin
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- National Key Laboratory for Efficient Production of Forest Resources, Beijing Key Laboratory of Forestry Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Seo DH, Huh YH, Cheong HK, Kim EH, Lim JS, Lee MJ, Lee D, Ryu KS. Mechanism of Methylene Blue Inducing the Disulfide Bond Formation of Tubulin-Associated Unit Proteins. JACS AU 2024; 4:2451-2455. [PMID: 39055157 PMCID: PMC11267549 DOI: 10.1021/jacsau.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024]
Abstract
Methylene blue (MB) has recently completed a Phase-3 clinical trial as leuco-methylthioninium (LMT) bis(hydromethanesulfonate) for treating Alzheimer's disease. Herein, we investigated the mechanism underlying the MB inhibition of tubulin-associated unit (tau) aggregation by focusing on tau monomers. We found that MB causes disulfide bond formation, resulting in strong nuclear magnetic resonance chemical shift perturbations in a large area of tau proteins. The oxidized form of MB, namely methylthioninium (MT+), specifically catalyzed the oxidation of cysteine residues in tau proteins to form disulfide bonds directly using O2. This process is independent of the MT+-to-LMT redox cycle. Moreover, MT+ preferentially oxidized C291 and C322 in the lysine-rich R2 and R3 domains. Under in vivo brain physoxia conditions, LMT may convert to MT+, possibly interfering with tau fibrillation via disulfide bond formation.
Collapse
Affiliation(s)
- Dong-Hyun Seo
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
- KBSI
School of Bioscience, University of Science
and Technology, 162 Yeongudanji-Ro,
Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Yang Hoon Huh
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Hae-Kap Cheong
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Eun-Hee Kim
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Jong-Soo Lim
- Novorex
Inc., 240 Pangyoyeok-Ro, Seongnam-Si, Gyeonggi-Do 13493, South Korea
| | - Min Jung Lee
- Dong-A
ST Research Institute, Yongin-Si, Gyeonggi-Do 17073, South Korea
| | - Donghan Lee
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Kyoung-Seok Ryu
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
- KBSI
School of Bioscience, University of Science
and Technology, 162 Yeongudanji-Ro,
Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| |
Collapse
|
3
|
Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem 2024; 300:107306. [PMID: 38648940 PMCID: PMC11103939 DOI: 10.1016/j.jbc.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aβ and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aβ and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Sophia F Oliai
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Abdul Vahid A, Oliyantakath Hassan MS, Sahayaraj AE, Babu AT, Kizhakkeduth ST, Vijayan V. Modulation of Primary and Secondary Processes in Tau Fibril Formation by Salt-Induced Dynamics. ACS Chem Neurosci 2024; 15:1242-1253. [PMID: 38433380 DOI: 10.1021/acschemneuro.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The initial stages of amyloid fibrilization begin with the monomers populating aggregation-prone conformers. Characterization of such aggregation-prone conformers is crucial in the study of neurodegenerative diseases. The current study characterizes the aggregation pathway of two tau protein constructs that have been recently demonstrated to form Alzheimer's (AD) fibril structures with divalent ions and chronic traumatic encephalopathy (CTE) fibril structures with monovalent ions. The results highlight the involvement of identical residues in both the primary and secondary processes of both AD and CTE fibril propagation. Nuclear magnetic resonance relaxation experiments reveal increased flexibility of the motifs 321KCGS within R3 and 364PGGGN within R4 in the presence of MgCl2/NaCl, correlating with faster aggregation kinetics and indicating efficient primary nucleation. Notably, the seeded aggregation kinetics of the tau monomers in the presence and absence of metal ions are strikingly different. This correlates with the overall sign of the 15N-ΔR2 profile specifying the dominant mechanism involved in the process of aggregation.
Collapse
Affiliation(s)
- Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | | | - Allwin Ebenezer Sahayaraj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| |
Collapse
|
5
|
Chen C, Li W, Gao J, Cao W, Qin X, Zheng H, Lin H, Chen Z. Purification, Characterization, cDNA Cloning, and Bioinformatic Analysis of Zinc-Binding Protein from Magallana hongkongensis. Molecules 2024; 29:900. [PMID: 38398650 PMCID: PMC10892192 DOI: 10.3390/molecules29040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Oysters contain significant amounts of the zinc element, which may also be found in their proteins. In this study, a novel zinc-binding protein was purified from the mantle of the oyster Magallana hongkongensis using two kinds of gel filtration chromatograms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that its molecular weight was approximately 36 kDa. The protein identified by the Q-Exactive mass spectrometer shared the highest sequence identity with carbonic anhydrase derived from Crassostrea gigas concerning amino acid sequence similarity. Based on homologous cloning and RACE PCR, the full-length cDNA of carbonic anhydrase from Magallana hongkongensis (designated as MhCA) was cloned and sequenced. The cDNA of MhCA encodes a 315-amino-acid protein with 89.74% homology to carbonic anhydrase derived from Crassostrea gigas. Molecular docking revealed that the two zinc ions primarily form coordination bonds with histidine residues in the MhCA protein. These results strongly suggest that MhCA is a novel zinc-binding protein in Magallana hongkongensis.
Collapse
Affiliation(s)
- Citing Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
| | - Wan Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (C.C.); (W.L.); (W.C.); (X.Q.); (H.Z.); (H.L.); (Z.C.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
6
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
7
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
8
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Construction of porous materials from Pickering high internal-phase emulsions stabilized by zein-Hohenbuehelia serotina polysaccharides nanoparticles and their adsortion performances. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Structural and physicochemical characteristics, stability, toxicity and antioxidant activity of peptide-zinc chelate from coconut cake globulin hydrolysates. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Yatoui D, Tsvetkov PO, La Rocca R, Baksheeva VE, Allegro D, Breuzard G, Ferracci G, Byrne D, Devred F. Binding of two zinc ions promotes liquid-liquid phase separation of Tau. Int J Biol Macromol 2022; 223:1223-1229. [PMID: 36375666 DOI: 10.1016/j.ijbiomac.2022.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Tau is a naturally disordered microtubule associated protein which forms intraneuronal aggregates in several neurodegenerative diseases including Alzheimer's disease (AD). It was reported that zinc interaction with tau protein can trigger its aggregation. Recently we identified three zinc binding sites located in the N-terminal part, repeat region and the C-terminal part of tau. Here we characterized zinc binding to each of the three sites using isothermal titration calorimetry (ITC) and determined the impact of each site on aggregation using dynamic light scattering (DLS) assays. First, we confirmed the presence of three zinc binding sites on tau and determined the thermodynamic parameters of binding of zinc to these sites. We found a high-affinity zinc binding site located in the repeat region of tau and two N- and C-terminus binding sites with a lower binding constant for zinc. Second, we showed that tau aggregation necessitates zinc binding to the high affinity site in the R2R3 region, while LLPS necessitates zinc binding to any two binding sites. With regard to the role of zinc ions in the aggregation of proteins in neurodegenerative diseases, these findings bring new insights to the understanding of the aggregation mechanism of tau protein induced by zinc.
Collapse
Affiliation(s)
- Dahbia Yatoui
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Philipp O Tsvetkov
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France.
| | - Romain La Rocca
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Viktoriia E Baksheeva
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Diane Allegro
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Gilles Breuzard
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Deborah Byrne
- Institut de Microbiologie de la Méditerranée, CNRS, FR3479, Aix-Marseille Université, 13402 Marseille, France
| | - François Devred
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France.
| |
Collapse
|
12
|
Zhang J, Ye Z. Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro. Molecules 2022; 27:molecules27227936. [PMID: 36432037 PMCID: PMC9692753 DOI: 10.3390/molecules27227936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
To promote the application of almond expellers, sweet almond expeller globulin (amandin) was extracted for the preparation of bioactive peptides. After dual enzymatic hydrolysis, Sephadex G-15 gel isolation, reverse-phase high-performance liquid chromatography purification and ESI-MS/MS analysis, two novel peptides Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (1164.45 Da) and Leu-Asp-Arg-Leu-Glu (644.77 Da) were identified in sweet almond expeller amandin hydrolysates. Leu-Asp-Arg-Leu-Glu (LDRLE) of excellent zinc-chelating capacity (24.73 mg/g) was selected for preparation of peptide-zinc chelate. Structural analysis revealed that zinc ions were mainly bonded to amino group and carboxyl group of LDRLE. Potential toxicity and some physicochemical properties of LDRLE and Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (VDLVAEVPRGL) were predicted in silico. The results demonstrated that both LDRLE and VDLVAEVPRGL were not toxic. Additionally, zinc solubility of LDRLE-zinc chelate was much higher than that of zinc sulphate and zinc gluconate at pH 6.0−10.0 and against gastrointestinal digestion at 37 °C (p < 0.05). However, incubation at 100 °C for 20−60 min significantly reduced zinc-solubility of LDRLE-zinc chelate. Moreover, the chelate showed higher zinc transport ability in vitro than zinc sulphate and zinc gluconate (p < 0.05). Therefore, peptides isolated from sweet almond expeller amandin have potential applications as ingredient of zinc supplements.
Collapse
|