1
|
Gong Y, Li S, Hu Y, Jin G, Zhou H, Lim LT, Xiao Q. Acidic and alkaline deep eutectic solvents pretreatment of Macadamia nutshells for production of cellulose nanofibrils and lignin nanoparticles. Int J Biol Macromol 2025; 300:140251. [PMID: 39864701 DOI: 10.1016/j.ijbiomac.2025.140251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline K2CO3/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals. Conversely, the CNFs produced with the ALDES pretreatment (ALCNFs) displayed irregular aggregates and nanofibril bundles. Additionally, the ACCNFs demonstrated higher crystallinity and contained small amounts of the oxalate half-ester compare to ALCNFs. During ACDES pretreatment, a large proportion of β-O-4, β-5, and β-β linkages in lignin disrupted and re-condensed to form lignin substructures, resulting in the assembly of cluster-like lignin nanoparticles pretreated with ACDES (ACLNP) aggregates. In contrast, lignin nanoparticles pretreated with ALDES (ALLNP) exhibited uniform nanospherical shapes because of the preservation of β linkages in lignin during the ALDES pretreatment. This work not only broadens the fabrication strategies for CNF and LNPs but also offered a promising approach for the valorization of lignocellulosic agricultural wastes.
Collapse
Affiliation(s)
- Yanqian Gong
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Shiyu Li
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Yumeng Hu
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Guanhong Jin
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Hui Zhou
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, N1G 2W1, Ontario, Canada
| | - Qian Xiao
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China.
| |
Collapse
|
2
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
3
|
Feng Y, Eberhardt TL, Meng F, Xu C, Pan H. Efficient extraction of lignin from moso bamboo by microwave-assisted ternary deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 400:130666. [PMID: 38583673 DOI: 10.1016/j.biortech.2024.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Applications of deep eutectic solvent (DES) systems to separate lignocellulosic components are of interest to develop environmentally friendly processes and achieve efficient utilization of biomass. To enhance the performance of a binary neutral DES (glycerol:guanidine hydrochloride), various Lewis acids (e.g., AlCl3·6H2O, FeCl3·6H2O, etc.) were introduced to synthesize a series of ternary DES systems; these were coupled with microwave heating and applied to moso bamboo. Among the ternary DES systems evaluated, the FeCl3-based DES effectively removed lignin (81.17%) and xylan (85.42%), significantly improving enzymatic digestibility of the residual glucan and xylan (90.15% and 99.51%, respectively). Furthermore, 50.74% of the lignin, with high purity and a well-preserved structure, was recovered. A recyclability experiment showed that the pretreatment performance of the FeCl3-based DES was still basically maintained after five cycles. Overall, the microwave-assisted ternary DES pretreatment approach proposed in this study appears to be a promising option for sustainable biorefinery operations.
Collapse
Affiliation(s)
- Yingying Feng
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road 210037, Nanjing, PR China
| | - Thomas L Eberhardt
- USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Fanyang Meng
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road 210037, Nanjing, PR China
| | - Chen Xu
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road 210037, Nanjing, PR China
| | - Hui Pan
- Jiangsu CoInnovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Longpan Road 210037, Nanjing, PR China.
| |
Collapse
|
4
|
Li F, Li Q, Lv J, Huang M, Ling Z, Meng Y, Chen F, Ji Z. A novel seawater hydrothermal-deep eutectic solvent pretreatment enhances the production of fermentable sugars and tailored lignin nanospheres from Pinus massoniana. Int J Biol Macromol 2024; 267:131596. [PMID: 38621560 DOI: 10.1016/j.ijbiomac.2024.131596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Lignocellulose biorefinery depended on effective pretreatment strategies is of great significance for solving the current global crisis of ecosystem and energy security. This study proposes a novel approach combining seawater hydrothermal pretreatment (SHP) and microwave-assisted deep eutectic solvent (MD) pretreatment to achieve an effective fractionation of Pinus massoniana into high value-added products. The results indicated that complex ions (Mg2+, Ca2+, and Cl-) in natural seawater served as Lewis acids and dramatically promoted the depolymerization of mannose and xylan into oligosaccharides with 40.17 % and 75.43 % yields, respectively. Subsequent MD treatment realized a rapid and effective lignin fractionation (~90 %) while retaining cellulose. As a result, the integrated pretreatment yielded ~85 % of enzymatic glucose, indicating an eightfold increase compared with untreated pine. Because of the increased hydrophobicity induced by the formation of acyl groups during MD treatment, uniform lignin nanospheres were successfully recovered from the DES. It exhibited low dispersibility (PDI = 2.23), small molecular weight (1889 g/mol), and excellent oxidation resistance (RSI = 5.94), demonstrating promising applications in functional materials. The mechanism of lignin depolymerization was comprehensively elucidated via FTIR, 2D-HSQC NMR, and GPC analyses. Overall, this study provides a novel and environmentally friendly strategy for lignocellulose biorefinery and lignin valorization.
Collapse
Affiliation(s)
- Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiang Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiachen Lv
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingjun Huang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Meng
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Liao Y, Ge W, Liu M, Bi W, Jin C, Chen DDY. Eco-friendly regeneration of lignin with acidic deep eutectic solvent for adsorption of pollutant dyes for water cleanup. Int J Biol Macromol 2024; 260:129677. [PMID: 38266831 DOI: 10.1016/j.ijbiomac.2024.129677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
In this study, a simple and eco-friendly method was used to treat alkaline lignin with an acidic deep eutectic solvent (DES) to obtain regenerated lignin for the efficient adsorption of pollutant dyes from aqueous environment. Based on the yield and adsorption capacity of the sorbent for these dyes, conditions such as the type and concentration of DES component, solid-to-liquid ratio, reaction time, and temperature were optimized. By characterizing and comparing alkali lignin with regenerated lignin, a series of reactions were demonstrated to occur during the DES treatment process. The performance and mechanism of methylene blue and rhodamine B adsorption on regenerated lignin were studied systematically, and the maximum adsorbed amounts were 348.29 and 551.05 mg/g at 323 K, respectively. This study provides a new strategy for the green preparation of functionalized lignin and its use in the water pollutant treatment.
Collapse
Affiliation(s)
- Yuqing Liao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Can Jin
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
6
|
Pena C, Rodil E, Rodríguez H. Capacity of Aqueous Solutions of the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate to Partially Depolymerize Lignin at Ambient Temperature and Pressure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1136-1145. [PMID: 38183298 PMCID: PMC10797632 DOI: 10.1021/acs.jafc.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Lignin is a very attractive and abundant biopolymer with the potential to be a biorenewable source of a large number of value-added organic chemicals. The current state-of-the-art methods fail to provide efficient valorization of lignin in this regard without the involvement of harsh conditions and auxiliary substances that compromise the overall sustainability of the proposed processes. Making an original approach from the set of mildest temperature and pressure conditions, this work identifies and explores the capacity of an aqueous solution of the nonvolatile ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) to partially depolymerize technical lignin (Indulin AT) by means of a treatment consisting in the simple contact at ambient temperature and pressure. Among a considerable number of valuable phenolic molecules that were identified in the resulting fluid, vanillin (yield of about 3 g/kg) and guaiacol (yield of about 1 g/kg) were the monophenolic compounds obtained in a higher concentration. The properties of the post-treatment solids recovered remain similar to those of the original lignin, although with a relatively lower abundance of guaiacyl units (in agreement with the generation of guaiacyl-derived phenolic molecules, such as vanillin and guaiacol). The assistance of the treatment with UV irradiation in the presence of nanoparticle catalysts does not lead to an improvement in the yields of phenolic compounds.
Collapse
Affiliation(s)
- Carlos
A. Pena
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| | - Eva Rodil
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| | - Héctor Rodríguez
- CRETUS, Department of Chemical
Engineering, Universidade de Santiago de
Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Ma CY, Luo XT, Xu LH, Sun Q, Wen JL, Liang XF, Liu HZ, Yuan TQ. Structural elucidation and targeted valorization of untractable lignin from pre-hydrolysis liquor of xylose production via a simple and robust separation approach. Int J Biol Macromol 2023; 253:127029. [PMID: 37742903 DOI: 10.1016/j.ijbiomac.2023.127029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Effective separation of lignin macromolecules from the xylose pre-hydrolysates (XPH) during the xylose production, thus optimizing the separation and purification process of xylose, is of great significance for reducing the production costs, achieving the high value-added utilization of lignin and increasing the industrial revenue. In this study, a simple and robust method (pH adjustment) for the separation of lignin from XPH was proposed and systematically compared with the conventional acid-promoted lignin precipitation method. The results showed that the lignin removal ratio (up to 60.34 %) of this simple method was higher than that of the conventional method, and the proposed method eliminated the necessity of heating and specialized equipment, which greatly reduced the separation cost. Meanwhile, this simple method does not destroy the components in XPH (especially xylose), ensuring the yield of the target product. On the other hand, the obtained lignin was nano-scale with less condensed structures, which also possessed small molecular weights with narrow distribution, excellent antioxidant activity (8-14 times higher than commercial antioxidants) and UV protection properties. In conclusion, the proposed simple separation method could effectively separate lignin from XPH at low cost, and the obtained lignin had potential commercial applications, which would further enhance the overall profitability of industrial production.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xi-Tao Luo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Xiang-Feng Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hui-Zhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
8
|
Zhang M, Tian R, Tang S, Wu K, Wang B, Liu Y, Zhu Y, Lu H, Liang B. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. Int J Biol Macromol 2023:125219. [PMID: 37285885 DOI: 10.1016/j.ijbiomac.2023.125219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The structure and properties of lignin can vary depending on the type of lignocellulosic biomass it comes from and the separation techniques used, and also affects its suitability for different applications. In this work, the structure and properties of lignin isolated from moso bamboo, wheat straw, and poplar wood by different treatment processes were compared. Results show that deep eutectic solvent (DES) extracted lignin exhibits well-preserved structures (including β-O-4, β-β, and β-5 linkages), a low molecular weight (Mn = 2300-3200 g/mol), and relatively homogeneous lignin fragments (1.93 < PDI < 2.33) compared to dealkaline lignin (DL) and milled wood lignin (MWL). Besides, lignin samples extracted by DES have a regular nanostructure, higher carbon residue content (>40 %), and excellent antioxidant properties (the free radical scavenging index >20). Among the three types of biomass, the structural destruction of lignin in straw is the most obvious, which is due to the degradation of β-O-4 and β-β linkages during DES treatment. These findings can contribute to a better understanding of the structural changes that occur in various treatment processes from different lignocellulosic biomass, and help maximize the targeted development of their applications based on the characteristics of lignin.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Rubo Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Siyang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kejing Wu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Binshen Wang
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Yingying Liu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Yingming Zhu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| | - Houfang Lu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China.
| | - Bin Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
9
|
Li J, Liu B, Liu L, Luo Y, Zeng F, Qin C, Liang C, Huang C, Yao S. Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. BIORESOURCE TECHNOLOGY 2023; 376:128855. [PMID: 36898555 DOI: 10.1016/j.biortech.2023.128855] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Organic acid pretreatment is an effective method for green separation of lignocellulosic biomass. However, repolymerization of lignin seriously affects the dissolution of hemicellulose and the conversion of cellulose during organic acid pretreatment. Therefore, a new organic acid pretreatment, levulinic acid (Lev) pretreatment, was studied for the deconstruction of lignocellulosic biomass without adding additional additives. The preferred separation of hemicellulose was realized at Lev concentration 7.0%, temperature 170 °C, and time 100 min. The separation of hemicellulose increased from 58.38% to 82.05% compared with acetic acid pretreatment. It was found that the repolymerization of lignin was effectively inhibited in the efficient separation of hemicellulose. This was attributed to the fact that γ-valerolactone (GVL) is a good green scavenger of lignin fragments. The lignin fragments in the hydrolysate were effectively dissolved. The results provided theoretical support for creating green and efficient organic acid pretreatment and effectively inhibiting lignin repolymerization.
Collapse
Affiliation(s)
- Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
10
|
Zhan Q, Lin Q, Wu Y, Liu Y, Wang X, Ren J. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization. BIORESOURCE TECHNOLOGY 2023; 376:128887. [PMID: 36925080 DOI: 10.1016/j.biortech.2023.128887] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Developing an environmentally friendly and efficient pretreatment to utilize wheat straw is essential to a sustainable future. An acid biphasic system with 2-methyltetrahydrofuran (2-MeTHF) organic solvent and dilute p-toluenesulfonic acid (p-TsOH) were employed for the simultaneous fractionation of three components. Results showed that the biphasic system had excellent cellulose protection and high removal of hemicellulose and lignin. In detail, Under the optimal conditions (0.1 M p-TsOH, 2-MeTHF: H2O = 1:1 (v:v), 140 °C, 3 h), mostly cellulose retained in the residues (95.69%), 57.18% of lignin was removed and high yield of hemicellulose-based C5 sugars was achieved (77.49%). In the further process of dehydration of pre-hydrolysate dichloromethane (DCM) as an organic phase, the yield of furfural was 80.07% (170 °C-80 min). The saccharification of residue reached 95.82%. p-TsOH/2-MeTHF/H2O pretreatment was desirable for high selectivity fractionation. Important chemicals for bioenergy including furfural, monosaccharides and lignin are obtained.
Collapse
Affiliation(s)
- Qiwen Zhan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yao Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Zhu Y, Yang TX, Qi BK, Li H, Zhao QS, Zhao B. Acidic and alkaline deep eutectic solvents (DESs) pretreatment of grapevine: Component analysis, characterization, lignin structural analysis, and antioxidant properties. Int J Biol Macromol 2023; 236:123977. [PMID: 36906200 DOI: 10.1016/j.ijbiomac.2023.123977] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Deep eutectic solvents (DESs) have been extensively applied to pretreat lignocellulose; however, comparative research on acidic and alkaline DES pretreatment is relatively lacking. Herein, pretreatment of grapevine agricultural by-products with seven DESs were compared in terms of removal of lignin and hemicellulose and component analysis of the pretreated residues. Among the tested DESs, both acidic choline chloride-lactic (CHCl-LA), and alkaline potassium carbonate-ethylene glycol (K2CO3-EG) were effective in delignification. Thereafter, the CHCl-LA and K2CO3-EG extracted lignin was compared by analyzing their physicochemical structure changes and antioxidant properties. The results showed that the thermal stability, molecular weight, and phenol hydroxyl percentage of CHCl-LA lignin were inferior to K2CO3-EG lignin. It was found that the high antioxidant activity of K2CO3-EG lignin was mainly attributed to the abundant phenol hydroxyl, guaiacyl (G), and para-hydroxy-phenyl (H). By comparing acidic and alkaline DES pretreatments and their lignin nuances in biorefining, novel insights are derived for the scheduling and selection of DES for lignocellulosic pretreatment.
Collapse
Affiliation(s)
- Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Xiao Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Department of Biomedicine, Beijing City University, Beijing 100094, PR China
| | - Ben-Kun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr 2023; 64:7201-7219. [PMID: 36815260 DOI: 10.1080/10408398.2023.2181762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
13
|
Sun Q, Wang HM, Ma CY, Hong S, Sun Z, Yuan TQ. Dynamic structural evolution of lignin macromolecules and hemicelluloses during Chinese pine growth. Int J Biol Macromol 2023; 235:123688. [PMID: 36801284 DOI: 10.1016/j.ijbiomac.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
To comprehend the biosynthesis processes of conifers, it is essential to investigate the disparity between the cell wall shape and the interior chemical structures of polymers throughout the development of Chinese pine. In this study, branches of mature Chinese pine were separated according to their growth time (2, 4, 6, 8 and 10 years). The variation of cell wall morphology and lignin distribution was comprehensively monitored by scanning electron microscopy (SEM) and confocal Raman microscopy (CRM), respectively. Moreover, the chemical structures of lignin and alkali-extracted hemicelluloses were extensively characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The thickness of latewood cell walls increased steadily from 1.29 μm to 3.38 μm, and the structure of the cell wall components became more complicated as the growth time increased. Based on the structural analysis, it was found that the content of β-O-4 (39.88-45.44/100 Ar), β-β (3.20-10.02/100 Ar) and β-5 (8.09-15.35/100 Ar) linkages as well as the degree of polymerization of lignin increased with the growth time. The complication propensity increased significantly over 6 years before slowing to a trickle over 8 and 10 years. Furthermore, alkali-extracted hemicelluloses of Chinese pine mainly consist of galactoglucomannans and arabinoglucuronxylan, in which the relative content of galactoglucomannans increased with the growth of the pine, especially from 6 to 10 years.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
González-González RB, Iqbal HM, Bilal M, Parra-Saldívar R. (Re)-thinking the bio-prospect of lignin biomass recycling to meet Sustainable Development Goals and circular economy aspects. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100699. [DOI: 10.1016/j.cogsc.2022.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
15
|
Zhang S, Dong Z, Shi J, Yang C, Fang Y, Chen G, Chen H, Tian C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. BIORESOURCE TECHNOLOGY 2022; 361:127699. [PMID: 35905874 DOI: 10.1016/j.biortech.2022.127699] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Lignin of high purity and structural integrity was isolated from the enzymatic residue of corn stover. Degradation of the lignin by laccase, lignin peroxidase, and manganese peroxidase was investigated. Structural changes in the lignin after degradation were characterized by scanning electron microscopy, nitrogen adsorption and Fourier transform infrared spectroscopy, and the enzymatic products were systematically analyzed by gas chromatography mass spectrometry. The highest percentage of lignin degradation was obtained with a mixture of three enzymes (25.79%): laccase (Lac), the starting enzyme of the mixed enzyme reaction, worked with lignin peroxidase (LiP), and manganese peroxidase (MnP) to further degrade lignin. This degradation destroyed the macromolecular structure of lignin, broke its key chemical bonds, and opened benzene rings, thus producing more acidic compounds. This study elucidated the concept of degrading lignin from corn stover using the Lac, LiP and MnP enzymes synergistically, thus providing a theoretical basis for the biodegradation of lignin.
Collapse
Affiliation(s)
- Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130012, China
| | - Zijian Dong
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jia Shi
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130012, China
| | - Chengrui Yang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130012, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130012, China
| | - Huan Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130012, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|