1
|
Chen Y, Tang Z, Tang W, Ma C, He YC. Exploration of biomass fractionation and lignin removal for enhancing enzymatic digestion of wheat-stalk through deep eutectic solvent Cetyl trimethyl ammonium chloride:Lactic acid treatment. Int J Biol Macromol 2025; 306:141460. [PMID: 40015406 DOI: 10.1016/j.ijbiomac.2025.141460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The cationic surfactant-based deep eutectic solvents (DESs) have attracted extensive attention due to their effectual destruction of the natural anti-degradation barrier structure in lignocellulose. In this research, functional DES Cetyl trimethyl ammonium chloride:Lactic acid (CTAC:LA molar ratio 1:0.5 to 1:6) was fabricated for pretreating wheat-stalk. The relationships of accessibility, lignin removal, xylan separation, and enzymolysis efficiency were explored. The highest delignification (88.3 %) and xylan removal (89.0 %) were obtained through the treatment with CTAC:LA (1:4, mol/mol, 160 °C, 60 min), acquiring 86.8 % of enzymolysis efficiency. The structure of CTAC:LA-treated wheat-stalk was changed to porous state, while the accessibility and crystallinity were substantially improved to 668.2 mg/g and 57.6 %, respectively. The lignin surface area declined from 672.7 to 335.4 m2/g. Furthermore, the structure of lignin disrupted by CTAC:LA was analyzed by 2D-HSQC NMR, implying that CTAC:LA could cleave the CO covalent bond and CC bond and degrade the S- and H-units in wheat-stalk lignin through interaction. The potential pretreatment mechanism was proposed through comprehensive exploration at the molecular level and macro level, and this built pretreatment process held great promise for valorizing biomass into highly valuable chemicals.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Tang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Wei Tang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Agha HM, Jawad AH, Wilson LD, ALOthman ZA. Adsorptive performance of sustainable biosorbent from Macadamia integrifoli shell powder for toxic methylene blue dye removal: desirability functions and dye uptake mechanism. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-16. [PMID: 40277272 DOI: 10.1080/15226514.2025.2494697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Herein, the potential of Macadamia integrifolia nutshell powder (MSP) as a sustainable, renewable, and cost-effective biosorbent for methylene blue (MB) dye was evaluated. The physicochemical properties of MSP were characterized via XRD, FTIR, FESEM-EDX, and pHpzc analysis. The biosorption process was optimized using the Box-Behnken design (RSM-BBD), to evaluate the influence of MSP dose (0.02-0.1 g/100 mL), contact time (20-300 min), and solution pH (4-10). The desirability function further refined and validated the BBD results, demonstrating that maximum MB removal (98.7%) was achieved at an MSP dose of 0.09 g/100 mL, contact time of 276.1 min, and solution pH of 8.7. Kinetic modeling indicated that MB biosorption onto MSP conformed to the pseudo-second order (PSO) model. The intraparticle diffusion (IPD) model supports a multi-step adsorption process, consisting of surface adsorption, gradual diffusion, and equilibrium stages. The adsorption equilibrium data were well described by the Langmuir and Freundlich isotherm models, confirming a combination of monolayer and multilayer adsorption profiles. The maximum adsorption capacity (qmax) of MSP was estimated to be 128.3 mg/g. The biosorption mechanism was attributed to hydrogen bonding, π-π interactions, electrostatic forces, and pore filling, as evidenced by spectroscopy and bioadsorbent morphology results. The reusability study demonstrated that MSP retained significant adsorption capacity over multiple cycles, highlighting its moderate recyclability. These findings establish MSP as a highly efficient, scalable, and environmentally sustainable bioadsorbent for MB dye removal, offering a practical solution for wastewater treatment applications and options for sustainable water management.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Wang J, Dong Z, Li J, Lu J, Tan S, Feng Q, Xu Z. Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor. Int J Biol Macromol 2025; 297:139867. [PMID: 39814302 DOI: 10.1016/j.ijbiomac.2025.139867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/05/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications. In this study, green and sustainable cellulose nanofibers/sodium alginate/reduced graphene oxide aerogels (BCSRA) were synthesized, featuring a well-defined lamellar structure and a fiber cross-linked network, employing techniques such as bidirectional freeze-drying, ionic cross-linking, and thermal annealing. The unique internal architecture of BCSRA results in a compressive strength of up to 64.55 kPa at 70 % compression deformation and an extremely low density of merely 7.21 mg/cm3. Furthermore, BCSRA displays outstanding fatigue resistance, maintaining 82.17 % of its stress after 100 compression cycles at 70 % compressive strain and 86.99 % after 1000 cycles at 50 % compressive strain. Remarkably, when utilized as a flexible pressure sensor, BCSRA achieves a sensitivity of 5.71 kPa-1 and endures over 2200 cycles at 40 % compression, all while ensuring consistent electrical signal output. These properties underscore its significant potential for application in wearable flexible pressure sensors, capable of detecting various human movements.
Collapse
Affiliation(s)
- Jinze Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoji Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiatian Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiarui Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sicong Tan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Tang J, Zhang W, Li S, Dong M, Jiang L, Hou S, Qin Y. Vaterite-type calcium carbonate and aminopropyltriethoxysilane-modified cellulose nanofibrils for preservation of aged paper. Int J Biol Macromol 2024; 283:137824. [PMID: 39566787 DOI: 10.1016/j.ijbiomac.2024.137824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Deacidification and structural reinforcement are critically important for the long-term preservation of paper cultural relics. In this study, a novel approach is presented to synergistically combine highly reactive vaterite-type calcium carbonate with aminopropyltriethoxysilane-modified cellulose nanofibrils (NH2-CNFs) for the restoration of aged paper. Employed as a deacidification agent, vaterite demonstrated superior efficacy at a low dosage in comparison with commercially available calcite-type calcium carbonate. Concurrently, the carboxylate content of NH2-CNFs was reduced, enhancing its hydrophobicity and thermal stability. A comprehensive characterization of both vaterite and NH2-CNFs was conducted using multiple analytical techniques. Upon application of this restoration system to aged paper samples, the pH and alkaline reserve were elevated to 8.05 and 0.637 mol/kg, respectively. The tensile strength of the paper sample was augmented by 15 %, while folding endurance and tearing resistance were enhanced by 139 % and 66 %, respectively. Notably, the integration of vaterite exhibited no deleterious impact on the mechanical properties of the paper substrate. Additionally, this treatment imparted a substantial anti-aging effect, as evidenced by the results of dry heat and UV-irradiation aging. Consequently, this research introduces a novel and efficacious methodology for the restoration of aged paper, offering promising implications for the conservation of historical documents.
Collapse
Affiliation(s)
- Jiayun Tang
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Weiming Zhang
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Shan Li
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China.
| | - Maolin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lihua Jiang
- Jintan District Archives of Changzhou, 213299 Changzhou, PR China
| | - Sixian Hou
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Yong Qin
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China.
| |
Collapse
|
5
|
Zhao Y, Ni S, Gao Y, Zhang X, Ji X, Zhang F. Study on the enhancement of paper tensile strength and hydrophobicity by adding PEI-KH560 in pulp suspension. Int J Biol Macromol 2024; 280:135933. [PMID: 39317280 DOI: 10.1016/j.ijbiomac.2024.135933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Novel eco-friendly strength agent has inspired much attention of researchers. Herein, the PEI-KH560 prepared by PEI (polyethyleneimine) and KH560 (γ-glycidyl ether propyl trimethoxysilane) was added in the pulp suspension to enhance the paper performance. The results showed that the m(PEI):m(KH560) ratio and PEI's molecular weight were closely related with the paper strength and hydrophobicity. The SEM morphology of paper surface showed that the fiber-fiber crosslinking reached the tightest, at the optimal m(PEI):m(KH560) ratio and PEI's molecular weight. The results showed that when the Mw (molecular weight) of PEI was 10,000 and the m(PEI):m(KH560) ratio was 1:2, the PEI-KH560 presented the best strengthening performance on the paper strength and hydrophobicity. Dry tensile index and wet tensile index could reach 29.9 N·m/g and 1.37 N·m/g after adding the PEI10000-KH560 in pulp suspension before the paper formation. Further, the effect of process conditions (temperature, time, the addition amount, and pulp concentration) on the strength and hydrophobicity of paper network structure was investigated, after adding PEI-KH560 into the pulp suspension. It was of great significance for studying the mechanism between the chemical structures of PEI-KH560 and paper performance, which provided valuable theoretical practice on the preparation of novel strength agent.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ying Gao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Xin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, China.
| |
Collapse
|
6
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024; 281:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Ahmima S, Naar N, Jędrzejczak P, Klapiszewska I, Klapiszewski Ł, Jesionowski T. Isolation and Characterization of Novel Cellulose Micro/Nanofibers from Lygeum spartum Through a Chemo-Mechanical Process. Polymers (Basel) 2024; 16:3001. [PMID: 39518211 PMCID: PMC11548440 DOI: 10.3390/polym16213001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as Lygeum spartum, a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose. This study investigates the extraction of novel cellulose micro/nanofibers from Lygeum spartum using a two-step method, including both alkali and mechanical treatment as post-treatment with ultrasound, as well as homogenization using water and dilute alkali solution as a solvent. To determine the structural properties of CNFs, a series of characterization techniques was applied. A significant correlation was observed between the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) results. The FTIR results revealed the elimination of amorphous regions and an increase in the energy of the H-bonding modes, while the XRD results showed that the crystal structure of micro/nanofibers was preserved during the process. In addition, they indicated an increase in the crystallinity index obtained with both methods (deconvolution and Segal). Thermal analysis based on thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed improvement in the thermal properties of the isolated micro/nanofibers. The temperatures of maximum degradation were 335 °C and 347 °C. Morphological analysis using a scanning electron microscope (SEM) and atomic force microscope (AFM) showed the formation of fibers along the axis, with rough and porous surfaces. The findings indicate the potential of Lygeum spartum as a source for producing high-quality micro/nanofibers. A future direction of study is to use the cellulose micro/nanofibers as additives in recycled paper and to evaluate the mechanical properties of the paper sheets, as well as investigate their use in smart paper.
Collapse
Affiliation(s)
- Sabrina Ahmima
- Laboratory of Macromolecular Synthesis and Thio-Organics Macromolecular, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, BP 32, El Alia, Bab Ezzouar, Alger 16111, Algeria;
| | - Nacira Naar
- Laboratory of Macromolecular Synthesis and Thio-Organics Macromolecular, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, BP 32, El Alia, Bab Ezzouar, Alger 16111, Algeria;
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| | - Izabela Klapiszewska
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland;
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.J.); (T.J.)
| |
Collapse
|
8
|
Las-Casas B, Arantes V. Exploring xylan removal via enzymatic post-treatment to tailor the properties of cellulose nanofibrils for packaging film applications. Int J Biol Macromol 2024; 274:133325. [PMID: 38908627 DOI: 10.1016/j.ijbiomac.2024.133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Hemicellulose plays a key role in both the production of cellulose nanofibrils (CNF) and their properties as suspensions and films. While the use of enzymatic and chemical pre-treatments for tailoring hemicellulose levels is well-established, post-treatment methods using enzymes remain relatively underexplored and hold significant promise for modifying CNF film properties. This study aimed to investigate the effects of enzymatic xylan removal on the properties of CNF film for packaging applications. The enzymatic post-treatment was carried out using an enzymatic cocktail enriched with endoxylanase (EX). The EX post-treated-CNFs were characterized by LALLS, XRD, and FEG-SEM, while their films were characterized in terms of physical, morphological, optical, thermal, mechanical, and barrier properties. Employing varying levels of EX facilitated the hydrolysis of 8 to 35 % of xylan, yielding CNFs with different xylan contents. Xylan was found to be vital for the stability of CNF suspensions, as its removal led to the agglomeration of nanofibrils. Nanostructures with preserved crystalline structures and different morphologies, including nanofibers, nanorods, and their hybrids were observed. The EX post-treatment contributed to a smoother film surface, improved thermostability, and better moisture barrier properties. However, as the xylan content decreased, the films became lighter (lower grammage), less strong, and more brittle. Thus, the enzymatic removal of xylan enabled the customization of CNF films' performance without affecting the inherent crystalline structure, resulting in materials with diverse functionalities that could be explored for use in packaging films.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Applied Bionanotechnology Laboratory, Department of Biotechnology, University of São Paulo, - Lorena School of Engineering, Lorena, São Paulo 12602-810, Brazil
| | - Valdeir Arantes
- Applied Bionanotechnology Laboratory, Department of Biotechnology, University of São Paulo, - Lorena School of Engineering, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
9
|
Gao Y, Yang W, Yi W, Ni S, Fu Y, Qin M, Zhang F. Effect of molecular weight of PEI on the strength and hydrophobic performance of fiber-based papers via PEI-KH560 surface sizing. Int J Biol Macromol 2024; 273:133070. [PMID: 38866292 DOI: 10.1016/j.ijbiomac.2024.133070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In recent years, researchers have put much attention on the improvements and upgrades of novel wet strength agent in the papermaking fields, especially in the usage of household paper. Herein, PEIM-KH560 by polyethyleneimine (PEI) and γ-glycidyl ether propyl trimethoxysilane (KH560) was synthesized with five molecular weights (Mw) of PEI at 600, 1800, 10,000, 70,000 and 750,000. Results showed that the molecular weight greatly influenced the physicochemical properties of PEI-KH560, such as the size and thermal stability. The intrinsic cationic charge of PEI-KH560 provided the bonding sites with the paper fibers, forming strengthened fiber-fiber joints. It was shown that the dry, wet strength and hydrophobicity of cellulosic paper sheets were obviously improved. When the m (PEI):m(KH560) is 1:2, the strength of papers after sizing by Mw of PEI at 600 and 1800 is the most obvious, with the dry strength increased by 227.9 % and 187.5 %, and the wet strength increased by 183.8 % and 207.8 %, respectively. The maximum hydrophobicity was found at the PEI1800-KH560 with the contact angle value of 130.6°. The resultant environmental-friendly agent (PEI-KH560) obtained in this work provides valuable significance for the preparation of household and food packaging paper.
Collapse
Affiliation(s)
- Yali Gao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weisheng Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenbo Yi
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingjuan Fu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Menghua Qin
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, China.
| |
Collapse
|
10
|
Tu Q, Gao W, Zhou J, Wu J, Zeng J, Wang B, Xu J. Characteristics of Dialdehyde Cellulose Nanofibrils Derived from Cotton Linter Fibers and Wood Fibers. Molecules 2024; 29:1664. [PMID: 38611944 PMCID: PMC11013838 DOI: 10.3390/molecules29071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Two types of cellulose nanofibrils (CNFs) were isolated from cotton linter fibers and hardwood fibers through mechanical fibrillation methods. The dialdehyde cellulose nanofibrils (DACNFs) were prepared through the periodate oxidation method, and their morphological and structural properties were investigated. The characteristics of the DACNFs during the concentration process were also explored. The AFM analysis results showed that the mean diameters of wood fiber-based CNFs and cotton fiber-based CNFs were about 52.03 nm and 69.51 nm, respectively. However, the periodate oxidation treatment process obviously reduced the nanofibril size and destroyed the crystalline region of the nanofibrils. Due to the high crystallinity of cotton fibers, the cotton fiber-based DACNFs exhibited a lower aldehyde content and suspension stability compared to the wood fiber-based DACNFs. For the concentration process of the DACNF suspension, the bound water content of the concentrated cotton fiber-based DACNFs was lowered to 0.41 g/g, which indicated that the cotton fiber-based DACNFs could have good redispersibility. Both the wood fiber-based and cotton fiber-based DACNF films showed relatively good transmittance and mechanical strength. In addition, to the cotton fiber-based DACNF films had a very low swelling ratio, and the barrier water vapor and oxygen properties of the redispersed cotton fiber-based DACNF films decreased by very little. In sum, this study has demonstrated that cotton fibers could serve as an effective alternative to wood fibers for preparing CNFs, and that cotton fiber-based DACNFs have huge application prospects in the field of packaging film materials due to their stable properties during the concentration process.
Collapse
Affiliation(s)
- Qiyuan Tu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Junjie Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
| | - Jinglin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Q.T.); (J.Z.); (J.W.); (J.Z.); (B.W.); (J.X.)
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| |
Collapse
|
11
|
Costa LR, de Amorim Dos Santos A, Dias MC, Silva LE, Wood DF, Williams TG, Hein PRG, Tonoli GHD. Potential of NIR spectroscopy for predicting cellulose nanofibril quality in commercial bleached Kraft pulp of Eucalyptus. Carbohydr Polym 2024; 329:121802. [PMID: 38286526 DOI: 10.1016/j.carbpol.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024]
Abstract
Multivariate models were developed to classify cellulose nanofibril (CNF) fibrillation by a quality index from near infrared (NIR) spectra. Commercial pulps of Eucalyptus spp. were used to produce cellulose nanofibrils by means of a fibrillator mill. After each of the five passes through the mill, samples were collected and analyzed for energy consumption and fiber classification. As a standard, pulps were oxidized with TEMPO reagent followed by a single pass through the mill to compare the resulting quality of CNFs produced by each method. NIR spectra of CNFs were associated with quality indices determined by conventional laboratory analyses that included morphology, turbidity, mechanical properties, X-ray diffraction and quality index measurements. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to the spectral and experimental data. Fibrillator milling to obtain CNFs was efficient and resulted in gel formation following the third pass through the mill. NIR spectroscopy combined with PLS-DA was used successfully to create a model to classify quality of CNFs with 96 % certainty in 3 wt% solutions. These findings suggest that NIR spectroscopy holds promise for estimating CNF quality in suspension, particularly in real-time industrial applications where reliable estimates are crucial.
Collapse
Affiliation(s)
- Lívia Ribeiro Costa
- Secretary of State for Environment and Sustainable Development by Minas Gerais, Belo Horizonte, Brazil.
| | | | | | - Luiz Eduardo Silva
- Department of Forest Science, Federal University of Lavras, Lavras, Brazil
| | | | | | | | | |
Collapse
|
12
|
Tian R, Zhu B, Hu Y, Liu Q, Bian J, Li M, Ren J, Peng F. Selectively fractionate hemicelluloses with high molecular weight from poplar thermomechanical pulp by tetramethylammonium hydroxide. Int J Biol Macromol 2024; 254:127499. [PMID: 38287562 DOI: 10.1016/j.ijbiomac.2023.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Selective fractionation of hemicelluloses is of great significance for realizing high-value application of hemicelluloses and comprehensive utilization of lignocellulosic biomass. Tetramethylammonium hydroxide (TMAH) solvent has been confirmed as a promising solvent to selectively fractionate hemicelluloses from holocellulose. Herein, TMAH solvent was adopted to pretreat poplar thermomechanical pulp (PTMP) for the selective fractionation of hemicelluloses and enhancement of enzymatic hydrolysis performance of residues. The maximal hemicelluloses yield (65.0 %) and excellent cellulose retention rate (93.3 %) were achieved after pretreatment by the 25 wt% TMAH solvent, while the delignification was only 33.9 %. The hemicelluloses fractions could be selectively fractionated with high molecular weights (109,800-118,500 g/mol), the contents of Klason lignin in them were low (3.2-5.9 %), and the dominating structure of them was 4-O-methylglucurono-β-D-xylan. Compared to the H2SO4 and NaOH methods, the hemicelluloses fractionated by TMAH method exhibited higher yields, more complete structures and higher molecular weights. Furthermore, the crystalline structure of cellulose practically remained stable, and the highest yield of enzymatic hydrolysis glucose was 57.5 %, which was 3.3 times of that of PTMP. The fractionation effectiveness of TMAH solvent was not significantly reduced after repeatedly recycling. This work demonstrated TMAH solvent could selectively fractionate hemicelluloses from PTMP and efficiently promote sustainable poplar-based biorefinery.
Collapse
Affiliation(s)
- Rui Tian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Bolang Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Productin of Forest Resources, Beijing 100083, China.
| |
Collapse
|
13
|
Guo J, Li J, Liu D, Xu Y. Insight into key obstacles and technological strategy for enzymatic digestion of full cellulose fraction from poplar sawdust. BIORESOURCE TECHNOLOGY 2024; 391:129994. [PMID: 37944623 DOI: 10.1016/j.biortech.2023.129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lignocellulosic biomass mainly consists of hemicellulose, lignin, and cellulose, which differently affect the enzymatic digestibility of cellulose. As for the typical representative for inert woody biomass, three components of cellulose were proposed conceptually for poplar sawdust, i.e., active cellulose, inert cellulose, and resistant cellulose. Dilute sulfuric acid pretreatment, hydrogen peroxide-sulfuric acid delignification, and sulfuric acid-assisted glycerol swelling were, respectively, proven to break the three obstacle mechanisms that affect the cellulase of poplar. The removal of key obstacles improved the cellulase digestibility of poplar enzyme-hydrolyzed residues by 188.7 %, and glucose yield increased from 34.6 % to 99.9 %. Therefore, a total of 39.5 g glucose was obtained from 100 g poplar sawdust by integrating the above three technologies. This work presented insight into and removed the key obstacles to enzymatic digestibility of poplar cellulose and developed an integrated technology to effectively convert full cellulose fraction to glucose from woody biomass.
Collapse
Affiliation(s)
- Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Jing Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Dylan Liu
- Food Science and Sustainability, Institute of Innovation, Science and Sustainability, Federation University Australia
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
14
|
Li S, Tang J, Jiang L, Jiao L. Conservation of aged paper using reduced cellulose nanofibrils/aminopropyltriethoxysilane modified CaCO 3 particles coating. Int J Biol Macromol 2024; 255:128254. [PMID: 37992922 DOI: 10.1016/j.ijbiomac.2023.128254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Deacidification and strengthening play pivotal roles in the enduring conservation of aged paper. In this study, we innovatively propose the use of reduced cellulose nanofibrils (rCNFs) and aminopropyltriethoxysilane modified CaCO3 (APTES-CaCO3) for preserving aged paper. The sodium borohydride-mediated reduction of cellulose nanofibrils diminished the carboxylate content and O/C mass ratio in rCNFs, which in turn amplified the swelling of rCNFs and their crosslinking potential with paper fibers. By introducing amino groups to the CaCO3 surface, the dispersion property of APTES-CaCO3 in organic solvent was enhanced, as well as the deacidification ability and the retention on the paper. The distinct structures and attributes of rCNFs and APTES-CaCO3 were characterized by various techniques. Following the conservation application to aged paper using this system, a desired internal pH value of 8.31 and an alkaline reserve of 0.8056 mol/kg were achieved, alongside a 33.6 % elevation in the tensile index. The aging resistance of the treated paper was evaluated by dry heat and hygrothermal aging tests. The findings revealed that the treatment bestowed the treated paper with outstanding anti-aging properties, notably in terms of internal pH, alkaline reserve and mechanical robustness. Additionally, the paper's brightness was amplified, while its color alteration remained negligible.
Collapse
Affiliation(s)
- Shan Li
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China.
| | - Jiayun Tang
- School of Petrochemical Engineering, Changzhou University, 213164 Changzhou, PR China
| | - Lihua Jiang
- Jintan District Archives of Changzhou, 213299 Changzhou, PR China.
| | - Liang Jiao
- Southeast University Chengxian College, 210088 Nanjing, PR China
| |
Collapse
|
15
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
16
|
Dias MC, Zidanes UL, Mascarenhas ARP, Setter C, Scatolino MV, Martins MA, Mori FA, Belgacem MN, Tonoli GHD, Ferreira SR. Mandacaru cactus as a source of nanofibrillated cellulose for nanopaper production. Int J Biol Macromol 2023; 235:123850. [PMID: 36863677 DOI: 10.1016/j.ijbiomac.2023.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
In this work, nanofibrillated cellulose (NFC) was extracted from cactus Cereus jamacaru DC. (mandacaru) for nanopaper production. The technique adopted includes alkaline treatment, bleaching, and grinding treatment. The NFC was characterized according to its properties and scored based on a quality index. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Correspondingly, the optical and physical-mechanical properties of the nanopapers were investigated. The chemical constituents of the material were analyzed. The sedimentation test and the zeta potential analyzed the stability of the NFC suspension. The morphological investigation was performed using environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis revealed that Mandacaru NFC has high crystallinity. Thermogravimetric analysis (TGA) and mechanical analysis were also used and revealed good thermal stability and good mechanical properties of the material. Therefore, the application of mandacaru is interesting in sectors such as packaging and electronic device development, as well as in composite materials. Given its score of 72 points on a quality index, this material was presented as an attractive, facile, and innovative source for obtaining NFC.
Collapse
Affiliation(s)
- Matheus Cordazzo Dias
- Department of Forest Engineering, State University of Amapá, AP. Av. Pres. Vargas, 650- Central, Macapá, AP 68900-070, Brazil; Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil.
| | - Uasmim Lira Zidanes
- Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| | - Adriano Reis Prazeres Mascarenhas
- Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil; Department of Forest Engineering, Federal University of Rondônia, 76940-000 Rolim de Moura, RO, Brazil
| | - Carine Setter
- Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| | - Mário Vanoli Scatolino
- Department of Agronomic and Forest Sciences, Federal Rural University of Semi-arid, 59625-900 Mossoró, RN, Brazil
| | - Maria Alice Martins
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil
| | - Fábio Akira Mori
- Department of Forest Science, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| | - Mohamed Naceur Belgacem
- Université Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, 38000, Grenoble, France
| | | | - Saulo Rocha Ferreira
- Department of Engineering, Federal University of Lavras, C.P. 3037, 37200-900 Lavras, MG, Brazil
| |
Collapse
|
17
|
Zhao J, Ren Y, Xie Y, Wang H, Wang T, Tang W, Jin Z, Ling Z, Yong Q. Allomorphic regulation of bamboo cellulose by mild alkaline peroxide for holocellulose nanofibrils production. Int J Biol Macromol 2022; 223:49-56. [PMID: 36349657 DOI: 10.1016/j.ijbiomac.2022.10.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The exploration of sustainable lignocellulosic nanomaterials with unique properties and applicable functions is receiving growing interest. In this work, holocellulose nanofibrils (HCNFs) were prepared from moso bamboo using mild alkaline peroxide bleaching method (MAPB) followed by mechanical nanofibrillation. MAPB was proved to effectively remove lignin and retain hemicellulose. Meanwhile, partial allomorphic changes from cellulose I to cellulose II were revealed together with varying degrees of crystallinity. Thermogravimetric analysis (TGA) experiment showed an increasing thermal stability trend due to more allomorphic changes into anti-parallel cellulose II. Well-dispersed HCNFs suspensions were successfully prepared by homogenization and HCNFs films with high transparency and flexibility were fabricated. The films reached the maximum tensile strength of 55.8 MPa and tensile strain of 1.55 % along with a calculated toughness of 25 MJ/m3. Moreover, the prepared materials are biocompatible and completely non-toxic, which will theoretically support the application of HCNFs materials in fields of biology, medicine and food industry.
Collapse
Affiliation(s)
- Jinyi Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxuan Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hanhua Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Jin
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Lee CL, Chin KL, H’ng PS, Hafizuddin MS, Khoo PS. Valorisation of Underutilized Grass Fibre (Stem) as a Potential Material for Paper Production. Polymers (Basel) 2022; 14:5203. [PMID: 36501601 PMCID: PMC9736732 DOI: 10.3390/polym14235203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
An integrated and feasible approach was proposed using the underutilized grass fibre (stem) derived from Napier grass and sugarcane for paper production in this study. To enhance paper strength, pre-hydrolysis and beating techniques have been used to improve the chemical pulps and mechanical pulping process, respectively. Napier grass and sugarcane are promising non-wood sources for pulp production, owing to their high cellulose and low lignin and extractive content. With the additional mild alkaline pre-treatment to the mechanical pulping process, the lignin content was greatly reduced. The results reveal that the mechanical pulping with alkaline pre-treatment may indeed potentially replace the most prevalent pulping process (chemical pulping). As evidenced by the paper strength properties, mechanical pulping is far more suitable for grass-type biomass, particularly Napier grass, which had a folding endurance capability five times greater than chemical pulping. Furthermore, the remaining high hemicellulose content from mechanical pulping contributed to a high pulp yield, while also facilitating the fibrillation on the sugarcane's laboratory paper handsheet. The findings also demonstrated that the additional beating process from chemical pulping causes the fibres to be drawn toward each other, resulting in a more robust fibre network that contributes to good paper strength. Consequently, this work sheds new light on the development of advanced paper derived from grass fibre.
Collapse
Affiliation(s)
- Chuan Li Lee
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kit Ling Chin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Paik San H’ng
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Sahfani Hafizuddin
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Pui San Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|