1
|
Zhang H, Hirao H. Mechanism of Regio- and Enantioselective Hydroxylation of Arachidonic Acid Catalyzed by Human CYP2E1: A Combined Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:2080-2092. [PMID: 39932478 DOI: 10.1021/acs.jcim.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regio- and enantioselective hydroxylation of free fatty acids by human cytochrome P450 2E1 (CYP2E1) plays an important role in metabolic regulation and has significant pathological implications. Despite extensive research, the detailed hydroxylation mechanism of CYP2E1 remains incompletely understood. To clarify the origins of regioselectivity and enantioselectivity observed for CYP2E1-mediated fatty acid hydroxylation, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were performed. MD simulations provided key insights into the proximity of arachidonic acid's carbon atoms to the reactive iron(IV)-oxo moiety in compound I (Cpd I), with the ω-1 position being closest, indicating higher reactivity at this site. QM/MM calculations identified hydrogen abstraction as the rate-determining step, with the ω-1S transition state exhibiting the lowest energy barrier, consistent with experimentally observed enantioselectivity. Energy decomposition analysis revealed that variations in quantum mechanical energy (ΔEQM) significantly influence reaction barriers, with the most efficient hydrogen abstraction occurring at the ω-1S and ω-2R positions. These findings underscore the importance of substrate positioning within the active site in determining product selectivity. Comparisons with two related P450s, P450BM3 and P450SPα, further highlighted the critical role of active site architecture and substrate positioning in modulating selectivity. While surrounding residues do not directly dictate product selectivity, they shape the active site environment and influence substrate positioning. Furthermore, our analysis revealed a previously unrecognized catalytic role of Ala299. These findings provide a deeper mechanistic understanding of human CYP2E1 and offer valuable insights for its precise engineering in targeted C-H functionalization.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
2
|
Zhang S, Fang X, Wang Z, Bordbar F, Lin J, Liu M, Li Z. VNN2 regulates hepatic steroid synthesis in response to dietary changes. Gene 2025; 937:149128. [PMID: 39613052 DOI: 10.1016/j.gene.2024.149128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) plays a crucial role in regulating hepatic fat oxidation. Previous studies have identified VNN2 as a potential PPARα target gene in chicken liver. However, the specific function of VNN2 in hepatic lipid metabolism remains unclear. We utilized datasets GSM5764402, GSM5764403, GSE128340, GSE129840, and PRJEB44038 to investigate the expression pattern and potential function of VNN2 in chicken liver. Our analysis included RNA sequencing, qPCR, and triglyceride and total cholesterol assays for verification. Through analysis of single-cell RNA sequencing (scRNA-seq) data, we localized VNN2 expression at the cellular level and identified potential downstream targets of VNN2. We further examined these potential targets in VNN2 overexpressed and knockdown Leghorn male hepatoma (LMH) cells. Our findings revealed that VNN2 is highly expressed in hepatocytes with elevated lipid metabolism and steroid biosynthesis activity. This study confirms that VNN2 promotes steroid biosynthesis by upregulating MSMO1 and FDPS, providing new insights into its role in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiang Fang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaochuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China
| | - Farhad Bordbar
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiefeng Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China
| | - Manqing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zhenhui Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China; Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Nawaz MZ, Khalid HR, Mirza MU, Xu L, Haider SZ, Al-Ghanim KA, Barceló D, Zhu D. Elucidating the bioremediation potential of laccase and peroxidase enzymes from Bacillus ligniniphilus L1 in antibiotic degradation: A computationally guided study. BIORESOURCE TECHNOLOGY 2024; 413:131520. [PMID: 39321942 DOI: 10.1016/j.biortech.2024.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
This study showcased the antibiotic degradation abilities of laccase and catalase-peroxidase from Bacillus ligniniphilus L1, an extremophile, against 18 common antibiotics using computationally guided approach. Molecular docking and simulation identified six enzyme-antibiotic complexes for laccase and four for catalase-peroxidase, demonstrating significant binding affinity and stability. Enzyme activity assays corroborated computational results, indicating both enzymes could degrade all tested antibiotics with varying efficiencies. L1 laccase outperformed commercial laccase against five antibiotics, notably vancomycin, levofloxacin, tobramycin, linezolid, and rifamycin, with enhanced degradation potential upon ABTS addition. Catalase-peroxidase from L1 exhibited superior degradation efficiency over commercial peroxidase against vancomycin, linezolid, tobramycin, and clindamycin. Overall, this study underscores the computational approach's utility in understanding enzyme-mediated antibiotic degradation, offering insights into environmental contaminant remediation.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hafiz Rameez Khalid
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Lingxia Xu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Zeeshan Haider
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Daochen Zhu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Nawaz MZ, Haider SZ, Zhe L, Mirza MU, Khalid HR, Alghamdi HA, Zhu D. Evaluating the estrogen degradation potential of laccase and peroxidase from Bacillus ligniniphilus L1 through integrated computational and experimental approaches. Int J Biol Macromol 2024; 282:137187. [PMID: 39489256 DOI: 10.1016/j.ijbiomac.2024.137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
This study investigated the degradation potential of laccase and catalase-peroxidase from the extremophilic marine bacterium Bacillus ligniniphilus L1 against endogenous and synthetic estrogen compounds using an integrated computational and experimental approach. Molecular docking identified five estrogen compounds exhibiting reliable bindings with enzymes, which were then subjected to enzyme activity assays. The degradation potential of the two enzymes against five selected estrogen compounds were investigated and compared with their commercial counterparts. Laccase from L1 showed higher degradation potential against estrone (47.02 % without and 62.21 % with ABTS) compared to commercial laccase (39 % without and 54.20 % with ABTS). For estradiol valerate, commercial laccase showed a slightly higher degradation (52.47 %) than L1 laccase (49.94 %), but with ABTS, L1 laccase performed better (74.15 % vs. 68.03 %). Notably, L1 catalase-peroxidase demonstrated significantly higher degradation for all tested compounds compared to its commercial counterpart with efficiencies of 96.16 %, 89.09 %, 74.94 %, 64.91 %, and 62.80 % against estropipate, quinestrol, estradiol valerate, estriol and estrone, respectively, revealing its potential for commercial applications. Molecular dynamics simulations revealed the interaction and stability of enzyme-estrogen complexes, with MMGBSA binding energy calculations supporting experimental results. These findings highlight the usefulness of the computational approach in elucidating the molecular mechanisms underlying enzyme-mediated bioremediation of environmental contaminants.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Syed Zeeshan Haider
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liang Zhe
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Hafiz Rameez Khalid
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huda Ahmad Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Nawaz MZ, Khalid HR, Shahbaz S, Al-Ghanim KA, Pugazhendhi A, Zhu D. Discovery of putative inhibitors of human Pkd1 enzyme: Molecular docking, dynamics and simulation, QSAR, and MM/GBSA. ENVIRONMENTAL RESEARCH 2024; 257:119336. [PMID: 38838751 DOI: 10.1016/j.envres.2024.119336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hafiz Rameez Khalid
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sabeen Shahbaz
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Chen W, Li W, Wu D, Zhang Z, Li Z, Li L, Wu T, Yang Y. Exploring of multi-functional umami peptides from Stropharia rugosoannulata: Saltiness-enhancing effect and mechanism, antioxidant activity and potential target sites. Food Chem 2024; 439:138138. [PMID: 38134569 DOI: 10.1016/j.foodchem.2023.138138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Umami peptides enhance flavor and offer potential health benefits. We analyzed the taste-value profiles of five novel umami peptides from Stropharia rugosoannulata using E-tongue, exhibiting significant saltiness characteristics. While the peptides PHEMQ and SEPSHF exhibited higher saltiness, their mixture with salt did not enhance saltiness compared to individual peptides. Surprisingly, SGCVNEL, which was initially weak in saltiness, showed remarkably enhanced saltiness when mixed with salt, possibly due to have strong binding with receptors. Molecular docking elucidated the salt-forming mechanism of TMC4, highlighting the P2-domain and hydrogen bonds' role in the composite structure stability. Evaluation of the antioxidant activity evaluation demonstrated dose-dependent effects primarily through free radical scavenging via the single-electron transfer potential mechanism for SGCVNEL, EPLCNQ, and ESCAPQL. Docking experiments with antioxidant targets revealed varied binding stabilities, indicating diverse antioxidant effects of the peptides. These findings provide valuable insights into the exploration and application of versatile bioactive flavor peptides.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, Henan, PR China
| | - Ting Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China.
| |
Collapse
|
7
|
Sai Varshini M, Reddy RA, Krishnamurthy PT, Selvaraj D. Rational Design of Dual Inhibitors for Alzheimer's Disease: Insights from Computational Screening of BACE1 and GSK-3β. Curr Comput Aided Drug Des 2024; 20:998-1012. [PMID: 37921183 DOI: 10.2174/0115734099270256231018072007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most concerned neurodegenerative disorders across the world characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to cognitive decline and memory loss. Targeting key pathways involved in AD like Aβ and NFT pathways, are crucial for the development of effective therapeutic strategies. In this study, we aimed to identify and establish promising dual inhibitors targeting BACE1 and GSK-3β, two proteins implicated in Aβ and NFT formation respectively. METHODS We have used molecular docking, ADME property analysis, and MMGBSA calculations for the identification of hit molecules and further evaluation of binding affinity, drug-like properties, and stability against BACE1 and GSK-3β. RESULTS Our results demonstrated strong binding affinities of ZINC000034853956 towards the active sites of both proteins, with favorable interactions involving key residues crucial for inhibitory activity. Additionally, ZINC000034853956 exhibited favorable drug-like properties. MD simulations revealed the stable binding of ZINC000034853956 to both BACE1 and GSK-3β over a 50 ns period, with consistent ligand-protein interactions, such as hydrogen bonding and hydrophobic contacts. These findings highlight the potential of ZINC000034853956 as a promising candidate for AD treatment, acting as a dual inhibitor targeting both BACE1 and GSK-3β. Overall, our study provides valuable insights into the potential of ZINC000034853956 as a dual inhibitor for AD. The strong binding affinity, favorable drug-like properties, and stability observed in MD simulations support its suitability for further optimization and preclinical studies. CONCLUSION Further investigations are warranted to elucidate the precise molecular mechanisms and therapeutic benefits of ZINC000034853956. Our findings offer hope for the development of novel therapeutic interventions targeting crucial pathways involved in AD neurodegeneration.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| | | | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, TN, India
| |
Collapse
|
8
|
Yu W, Hu S, Yang R, Lin L, Mao C, Jin M, Gu Y, Li G, Jiang B, Gong Y, Lu E. Upregulated Vanins and their potential contribution to periodontitis. BMC Oral Health 2022; 22:614. [PMID: 36527111 PMCID: PMC9758802 DOI: 10.1186/s12903-022-02583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.
Collapse
Affiliation(s)
- Weijun Yu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Shucheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Ruhan Yang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Lin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Chuanyuan Mao
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Min Jin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuting Gu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Guanglong Li
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Bin Jiang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuhua Gong
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Eryi Lu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
9
|
Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR, Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B. Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process. Molecules 2022; 27:4169. [PMID: 35807415 PMCID: PMC9268380 DOI: 10.3390/molecules27134169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.
Collapse
Affiliation(s)
- Md Rifat Hasan
- Department of Mathematics, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Department of Applied Mathematics, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif 21944, Saudi Arabia;
| | - Burhan Zain Fakhurji
- iGene Medical Training and Molecular Research Center, Jeddah 21589, Saudi Arabia;
| | | | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| | - Foysal Ahammad
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| |
Collapse
|