1
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
2
|
Zhang T, Zhou L, Li R, Zhao H, Cui Y, Wang L, Xiao H. Stable Leonurus cardiaca L. polysaccharide-stabilized palladium nanoparticles for sensitive colorimetric detection of acetylcholine. Int J Biol Macromol 2024; 281:135680. [PMID: 39472158 DOI: 10.1016/j.ijbiomac.2024.135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Imbalances in acetylcholine levels within the human body readily precipitate neurological disorders. Hence, establishing a highly efficient and sensitive acetylcholine detection platform is of paramount importance. Palladium-based nanoparticles have high catalytic performance, which is of profoundly important in the development of nanozyme technology. Herein, we focused on extracting Leonurus cardiaca L. polysaccharide (LCLP) from Leonurus cardiaca L., which possesses an average molecular weight of 11,910 Da. Meanwhile, it has certain reducing power. Leonurus cardiaca L. polysaccharide-stabilized palladium nanoparticles (Pdn-LCLP NPs) were prepared. Pdn-LCLP NPs exhibited remarkable peroxidase-like properties due to their ability to decompose H2O2 into OH. In addition, Pdn-LCLP NPs were combined with the chromogenic substrate 3,3',5,5'-tetramethylbenzidine to form a colorimetric detection system for the detection of acetylcholine. The linear detection range and the limit of detection were 10 μM-200 μM and 1.02 μM (S/N = 3), respectively. This research broadened the horizon for the development of acetylcholine colorimetric biosensing systems.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Zhou
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Han Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China.
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Kim SM, Kim TY, Choi YS, Ok G, Lim MC. Characterization and Antibacterial Activity of Silver Nanoparticles Synthesized from Oxya chinensis sinuosa (Grasshopper) Extract. Microorganisms 2024; 12:2089. [PMID: 39458398 PMCID: PMC11509906 DOI: 10.3390/microorganisms12102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
In this study, silver nanoparticles (AgNPs) were synthesized using a green method from an extract of the edible insect Oxya chinensis sinuosa (O_extract). The formation of AgNPs (O_AgNPs) was confirmed via UV-vis spectroscopy, and their stability was assessed using Turbiscan analysis. The size and morphology of the synthesized particles were characterized using transmission electron microscopy and field-emission scanning electron microscopy. Dynamic light scattering and zeta potential analyses further confirmed the size distribution and dispersion stability of the particles. The average particle size was 111.8 ± 1.5 nm, indicating relatively high stability. The synthesized O_AgNPs were further characterized using X-ray photoelectron spectroscopy (XPS), high-resolution X-ray diffraction (HR-XRD), and Fourier transform infrared (FTIR) spectroscopy. XPS analysis confirmed the chemical composition of the O_AgNP surface, whereas HR-XRD confirmed its crystallinity. FTIR analysis suggested that the O_extract plays a crucial role in the synthesis process. The antibacterial activity of the O_AgNPs was demonstrated using a disk diffusion assay, which revealed effective activity against common foodborne pathogens, including Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. O_AgNPs exhibited clear antibacterial activity, with inhibition zones of 15.08 ± 0.45 mm for S. Typhimurium, 15.03 ± 0.15 mm for E. coli, 15.24 ± 0.66 mm for S. aureus, and 13.30 ± 0.16 mm for B. cereus. These findings suggest that the O_AgNPs synthesized from the O_extract have potential for use as antibacterial agents against foodborne bacteria.
Collapse
Affiliation(s)
- Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (S.-M.K.); (T.-Y.K.); (G.O.)
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong-si 17546, Republic of Korea
| | - Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (S.-M.K.); (T.-Y.K.); (G.O.)
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Gyeongsik Ok
- Research Group of Food Safety and Distribution, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (S.-M.K.); (T.-Y.K.); (G.O.)
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (S.-M.K.); (T.-Y.K.); (G.O.)
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea
| |
Collapse
|
4
|
Wen Y, Xue C, Ji D, Zhang Y, Zhang M, Gong W, Li Z, Li Y. Green construction of self-floating polysaccharide-based hydrogels with catalytic activity for efficient organic pollutants reduction. Int J Biol Macromol 2024; 271:132507. [PMID: 38768920 DOI: 10.1016/j.ijbiomac.2024.132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
This study employed an anionic heteropolysaccharide extracted from overgrown Enteromorpha and homopolysaccharide pullulan to fabricate a self-floating hydrogel by introducing bubble templates. Subsequently, green in-situ reduction and immobilization of silver nanoparticles (Ag NPs) in the hydrogel were successfully achieved without additional reducing agents. The heteropolysaccharide from Enteromorpha provides carboxyl and sulfate groups for Ag+ ions complexation, which is beneficial for the in-situ reduction of Ag NPs and inhibits their aggregation. The incorporation of bubble templates facilitates the creation of a hierarchical pore structure in the hydrogel, giving it self-floating properties for easy recycling, while the hierarchical network with rich anchor sites ensuring adequate traction for Ag NPs dispersion and stabilization. By adjusting polysaccharide content and using bubble templates, Ag NPs smaller than 10 nm can be obtained. The composite hydrogel exhibits tunable catalytic activity and excellent degradation towards Rhodamine B, Methyl Orange, and 4-Nitrophenol, with the normalized rate constant (knor) of 78.89, 59.08, and 30.42 min-1 g-1, respectively. Notably, the reduction efficiency remained above 98 % after 6 recycles with little leaching of Ag NPs, benefiting from its self-floating ability for easy recovery in practical applications.
Collapse
Affiliation(s)
- Yutong Wen
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Chunlong Xue
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Deluo Ji
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Ye Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Meng Zhang
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Weiqian Gong
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Zhiqi Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China
| | - Ying Li
- Key Laboratory of Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, PR China.
| |
Collapse
|
5
|
Yang X, Niu Y, Fan Y, Zheng T, Fan J. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Int J Biol Macromol 2024; 269:131928. [PMID: 38688339 DOI: 10.1016/j.ijbiomac.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Xiao S, Lao Y, Liu H, Li D, Wei Q, Ye L, Lu S. A nanocomposite hydrogel loaded with Ag nanoparticles reduced by aloe vera polysaccharides as an antimicrobial multifunctional sensor. Int J Biol Macromol 2024; 267:131541. [PMID: 38614183 DOI: 10.1016/j.ijbiomac.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Developing high-performance hydrogels with anti-freeze, and antimicrobial properties is crucial for the practical application of flexible sensors. In this study, we prepared silver nanoparticles (AgNPs) with aloe polysaccharide (AP) as a reducing agent. Then, the AP/AgNPs were added to a system of polyvinyl alcohol and borax crosslinked in water/glycerol to obtain a multifunctional conductive hydrogel. The incorporated AgNPs improved the conductivity (0.39 S/m) and mechanical properties (elongation at break: 732.9 %, fracture strength: 1267.6 kPa) of the hydrogel. In addition, resultant hydrogel exhibited potential for sensing strain, temperature, and humidity. When used as a strain sensor, the hydrogel system exhibited low detection limit (0.1 %), and fast response (0.08 s). The resistance of the hydrogel decreased with an increase in the absorbed moisture content, enabling humidity detection (25-95 %) to monitor breathing status. As a temperature sensor, the hydrogel supported a wide detection range (-50 to +90 °C) and sensitivity (-30-0 °C, temperature coefficient of resistance (TCR) = -5.64 %/°C) to detect changes in the ambient temperature. This study proposes a simple method for manufacturing multifunctional hydrogel sensors, which broadens their application prospects in wearable sensing and electronic products.
Collapse
Affiliation(s)
- Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Liangdong Ye
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
7
|
Li R, He M, Cui Y, Ji X, Zhang L, Lan X, Wang L, Han Z, Xiao H. Silver-palladium bimetallic nanoparticles stabilized by elm pod polysaccharide with peroxidase-like properties for glutathione detection and photothermal anti-tumor ability. Int J Biol Macromol 2024; 264:130673. [PMID: 38458290 DOI: 10.1016/j.ijbiomac.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Noble metal nanoparticles show good application prospects in biosensors and anti-tumor drug research. Herein, the near-spherical silver‑palladium bimetallic nanoparticles supported by elm pod polysaccharide (EPP-AgPd1.5 NPs) were prepared by using the elm pod polysaccharide (EPP). EPP acts as a stabilizer and reducing agent due to its water solubility and weak reducing ability. The particle size of EPP-AgPd1.5 NPs was 33.6 ± 5.5 nm. In addition, EPP-AgPd1.5 NPs had peroxidase-like activity to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB by catalyzing H2O2 to OH. Based on the peroxidase-like activity of EPP-AgPd1.5 NPs, a method for detecting glutathione was established, and the detection limit and linear range of glutathione concentration were 0.279 μM and 0-400 μM, respectively. More importantly, the photothermal conversion efficiency of EPP-AgPd1.5 NPs reached 39.7 %, and their inhibition rate in HeLa cells reached 69.9 %. Silver‑palladium bimetallic nanoparticles stabilized by EPP had good performance in glutathione detection and anti-tumor drugs.
Collapse
Affiliation(s)
- Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Mengmeng He
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Xianbing Ji
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xifan Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
8
|
Li HF, Pan ZC, Chen JM, Zeng LX, Xie HJ, Liang ZQ, Wang Y, Zeng NK. Green synthesis of silver nanoparticles using Phlebopus portentosus polysaccharide and their antioxidant, antidiabetic, anticancer, and antimicrobial activities. Int J Biol Macromol 2024; 254:127579. [PMID: 37918606 DOI: 10.1016/j.ijbiomac.2023.127579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
Silver nanoparticles (AgNPs) by green synthesis from fungi polysaccharides are attracting increasing attention owing to their distinctive features and special applications in numerous fields. In this study, a cost-effective and environmentally friendly biosynthesizing AgNPs method with no toxic chemicals involved from the fruiting body polysaccharide of Phlebopus portentosus (PPP) was established and optimized by single factor experiment and response surface methodology. The optimum synthesis conditions of polysaccharide-AgNPs (PPP-AgNPs) were identified to be the reaction time of 140 min, reaction temperature of 94 °C, and the PPP: AgNO3 ratio of 1:11.5. Formation of PPP-AgNPs was indicated by visual detection of colour change from yellowish to yellowish brown. PPP-AgNPs were characterized by different methods and further evaluated for biological activities. That the Ultraviolet-visible (UV-Vis.) spectroscopy displayed a sharp absorption peak at 420 nm confirmed the formation of AgNPs. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The lattice indices of (111), (200), (220), and (331), which indicated a faced-centered-cubic of the Ag crystal structure of PPP-AgNPs, was confirmed by X-ray diffraction (XRD) and the particles were found to be spherical through high resolution transmission electron microscopy (HRTEM). Energy dispersive X-ray spectroscopy (EDS) determined the presence of silver in PPP-AgNPs. The percentage relative composition of elements was determined as silver (Ag) 82.5 % and oxygen (O) 17.5 % for PPP-AgNPs, and did not exhibit any nitrogen peaks. The specific surface area of PPP-AgNPs was calculated to be 0.5750 m2/g with an average pore size of 24.33 nm by BET analysis. The zeta potential was -4.32 mV, which confirmed the stability and an average particle size of 64.5 nm was calculated through dynamic light scattering (DLS). PPP-AgNPs exhibited significant free radical scavenging activity against DPPH with an IC50 value of 0.1082 mg/mL. The MIC values of PPP-AgNPs for E. coli, S. aureus, C. albicans, C. glabrata, and C. parapsilosis are 0.05 mg/mL. The IC50 value of the inhibition of PPP-AgNPs against α-glucosidase was 11.1 μg/mL, while the IC50 values of PPP-AgNPs against HepG2 and MDA-MB-231 cell lines were calculated to be 14.36 ± 0.43 μg/mL and 40.05 ± 2.71 μg/mL, respectively. According to the evaluation, it can be concluded that these green-synthesized and eco-friendly PPP-AgNPs are helpful to improve therapeutics because of significant antioxidant, antimicrobial, antidiabetic, and anticancer properties to provide new possibilities for clinic applications.
Collapse
Affiliation(s)
- Hong-Fu Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zhang-Chao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jiao-Man Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Lei-Xia Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hui-Jing Xie
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Zhi-Qun Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; College of Science, Hainan University, Haikou 570228, China
| | - Yong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
9
|
Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J. Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food. Int J Biol Macromol 2023; 253:126552. [PMID: 37660849 DOI: 10.1016/j.ijbiomac.2023.126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Organophosphorus pesticides can inhibit the activity of acetylcholinesterase and cause neurological diseases. Therefore, it is crucial to establish an efficient and sensitive platform for organophosphorus pesticide detection. In this work, we extracted aloe polysaccharide (AP) from aloe vera with the number average molecular weight of 27760 Da and investigated its reducing property. We prepared aloe polysaccharide stabilized platinum nanoflowers (AP-Ptn NFs), their particle size ranges were 29.4-67.3 nm. Furthermore, AP-Ptn NFs exhibited excellent oxidase-like activity and the catalytic kinetics followed the typical Michaelis-Menten equation. They showed strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of organophosphorus pesticides in food using biocompatible AP-Ptn NFs. The detection range was 0.5 μg/L - 140 mg/L, which was wider than many previously reported nanozyme detection systems. This colorimetric biosensor had good selectivity and good promise for bioassay analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Sihang Liu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Zhang
- Shanxi Datong University, College of Chemical and Environmental Engineering, Datong 037009, China
| |
Collapse
|
10
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
11
|
Li R, Zhao Y, Zhang T, Ju Z, Ji X, Cui Y, Wang L, Xiao H. Pd nanoparticles stabilized by bitter gourd polysaccharide with peroxidase properties for H 2O 2 detection. Int J Biol Macromol 2023; 233:123513. [PMID: 36739057 DOI: 10.1016/j.ijbiomac.2023.123513] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
The development of nanozymes using noble metal nanoparticles to replace natural peroxidase in bio-related detection has been gain great interest. Noble metal nanoparticles with small size have large specific surface area. However, small noble metal nanoparticles tend to aggregate without stabilizer. In this paper, small Pd nanoparticles (3-6 nm) stabilized by bitter gourd polysaccharide (Pdn-BGP NPs) were prepared by using bitter gourd polysaccharide as reducing agent and stabilizing agent. Pd25-BGP NPs had peroxidase-like catalytic property. And the catalytic kinetics of Pd25-BGP NPs towards substrates conformed to the Michaelis-Menten equation. Furthermore, a method was established to detect H2O2 using Pd25-BGP NPs. The linear range and detection limit of this method was 20-320 μM and 2.04 μM, respectively. Finally, Pd25-BGP NPs had good biocompatibility when the concentration was less than 80 μg/mL. The prepared Pd nanoparticles with high stability showed their good prospect in H2O2 detection.
Collapse
Affiliation(s)
- Ruyu Li
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Yu Zhao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zejin Ju
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yanshuai Cui
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Longgang Wang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Haiyan Xiao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
12
|
Daptomycin-Biomineralized Silver Nanoparticles for Enhanced Photothermal Therapy with Anti-Tumor Effect. Polymers (Basel) 2022; 14:polym14142787. [PMID: 35890563 PMCID: PMC9322905 DOI: 10.3390/polym14142787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Silver nanoparticles as photothermal agents have the problems of low stability and low photothermal conversion efficiency. Amphiphilic daptomycin can improve the stability of silver nanoparticles, thereby improving their photothermal conversion efficiency. Herein, daptomycin-biomineralized silver nanoparticles (Dap-AgNPs) were prepared by reducing silver nitrate with sodium borohydride in the presence of daptomycin as a stabilizer and biomineralizer. The Dap-AgNPs had good solution stability and peroxidase-like activity. Furthermore, the photothermal conversion efficiency of the Dap-AgNPs was as high as 36.8%. The Dap-AgNPs displayed good photothermal stability under irradiation. More importantly, the Dap-AgNPs showed good cell compatibility with HeLa cells and HT-29 cells without irradiation by 808-nanometer near-infrared light at a concentration of 0.5 mM, and the cell viability was greater than 85.0%. However, the Dap-AgNPs displayed significant anti-tumor ability with irradiation by 808-nanometer near-infrared light, which was due to the increasing temperature of the culture medium caused by the Dap-AgNPs. In conclusion, Dap-AgNPs have potential applications as photothermal agents in the treatment of tumors.
Collapse
|