1
|
Ferri M, Ganzerli F, Portone A, Petrachi T, Veronesi E, Morselli D, Degli Esposti M, Fabbri P. Skin Barrier Restoration by Waste-Derived Multifunctional Adhesive Hydrogel Based on Tannin-Modified Chitosan. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40388263 DOI: 10.1021/acsami.5c03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The development of multifunctional materials that actively enhance the wound healing process is critically important in addressing clinical and public healthcare challenges. Here, we report a multifunctional hydrogel obtained through physical cross-linking of chitosan and wood tannins for active wound management. Tannins, as polyphenolic wood-waste derivatives, act both as multifunctional additives and cross-linking agents, resulting in a stable and highly swellable hydrogel (>2000%·mg-1). The dressing is produced in the form of a dry and rigid film for easy transportation. After swelling, the material exhibits adequate Young's modulus (∼7 MPa, comparable to the stratum corneum's stiffness), improved flexibility, and suitable adhesion strength to adapt to joint movements. Polyphenolic tannins also provide the material with high antioxidant activity against DPPH radicals (100% RSA), showing potential for preventing complications during the inflammation phase. Moreover, tannins can completely block skin-damaging UV light without significantly altering the material's transparency, thus allowing constant visual wound monitoring. Wound healing investigations on abdominoplasty-derived skin demonstrated that tannins enhance the normal skin barrier restoration process, thereby facilitating the transition toward wound regeneration. This work offers a sustainable strategy for valorizing agri-food waste in a fully biobased material to address active wound management.
Collapse
Affiliation(s)
- Martina Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna 40131, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Firenze 50121, Italy
| | - Francesco Ganzerli
- Tecnopolo Mario Veronesi, Via 29 Maggio 6, Mirandola, Modena 41037, Italy
| | - Alberto Portone
- Tecnopolo Mario Veronesi, Via 29 Maggio 6, Mirandola, Modena 41037, Italy
| | - Tiziana Petrachi
- Tecnopolo Mario Veronesi, Via 29 Maggio 6, Mirandola, Modena 41037, Italy
| | - Elena Veronesi
- Tecnopolo Mario Veronesi, Via 29 Maggio 6, Mirandola, Modena 41037, Italy
| | - Davide Morselli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna 40131, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Firenze 50121, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna 40131, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Firenze 50121, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna 40131, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, Firenze 50121, Italy
| |
Collapse
|
2
|
Alissa M, Alghamdi A, Alshehri MA. Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats. Tissue Cell 2025; 93:102691. [PMID: 39708392 DOI: 10.1016/j.tice.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Rong Y, Zhao Z, Lv D, Yin R, Lu L, Xu Z, Ren L, Zhao P, Hu Z, Tao J, Cao X, Tang B. Tailored Metal-Phenolic Network with Hypoglycemic Polyphenol for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15163-15176. [PMID: 40025657 DOI: 10.1021/acsami.4c22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Diabetic foot ulcer is a common and serious complication of diabetes, with a high risk of amputation, recurrence, and mortality. Aiming at the characteristics of diabetic wounds and based on the result of network pharmacology, a tailored ligand cyanidin-3-O-glucoside (C3G) was selected to construct a metal-phenolic network (CM) through the self-assembly reaction with manganese ions. CM integrates the pharmacological advantages of C3G in antidiabetes and the anti-inflammatory activity of metal-phenolic networks by simulating the metal coordination structure of antioxidant enzymes. Reasonably, the wound areas of db/db mice with CM treatment rapidly decreased to 3.06% at day 14, accompanied by the improvement of tissue microenvironment. Mechanism investigation indicated that CM can not only reduce inflammation activation and immunoreaction but also increase gene transcripts in glucose metabolism, response to hypoxia, and angiogenesis. It is believed that this work opens a way for designing disease-specific metal-phenolic networks, and the CM with high biosafety promotes the clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yanchao Rong
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zirui Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongming Lv
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongye Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lei Ren
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhicheng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoling Cao
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bing Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
5
|
Zheng XQ, Zhang XH, Gao HQ, Huang LY, Ye JJ, Ye JH, Lu JL, Ma SC, Liang YR. Green Tea Catechins and Skin Health. Antioxidants (Basel) 2024; 13:1506. [PMID: 39765834 PMCID: PMC11673495 DOI: 10.3390/antiox13121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves (Camellia sinensis (L.) O. Kuntze). They have garnered significant attention due to their diverse health benefits and potential therapeutic applications, including as antioxidant and sunscreen agents. Human skin serves as the primary barrier against various external aggressors, including pathogens, pollutants, and harmful ultraviolet radiation (UVR). Skin aging is a complex biological process influenced by intrinsic factors such as genetics and hormonal changes, as well as extrinsic factors like environmental stressors, among which UVR plays a pivotal role in accelerating skin aging and contributing to various dermatological conditions. Research has demonstrated that GTCs possess potent antioxidant properties that help neutralize free radicals generated by oxidative stress. This action not only mitigates cellular damage but also supports the repair mechanisms inherent in human skin. Furthermore, GTCs exhibit anti-carcinogenic effects by inhibiting pathways involved in tumor promotion and progression. GTCs have been shown to exert anti-inflammatory effects through modulation of inflammatory signaling pathways. Chronic inflammation is known to contribute significantly to both premature aging and various dermatological diseases such as psoriasis or eczema. By regulating these pathways effectively, GTCs may alleviate symptoms associated with inflammatory conditions. GTCs can enhance wound healing processes by stimulating angiogenesis. They also facilitate DNA repair mechanisms within dermal fibroblasts exposed to damaging agents. The photoprotective properties attributed to GTCs further underscore their relevance in skincare formulations aimed at preventing sun-induced damage. Their ability to screen UV light helps shield underlying tissues from harmful rays. This review paper aims to comprehensively examine the beneficial effects of GTCs on skin health through an analysis encompassing in vivo and in vitro studies alongside insights into molecular mechanisms underpinning these effects. Such knowledge could pave the way for the development of innovative strategies focused on harnessing natural compounds like GTCs for improved skincare solutions tailored to combat environmental stresses faced by the human epidermis.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Xue-Han Zhang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Han-Qing Gao
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Lan-Ying Huang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Shi-Cheng Ma
- Wuzhou Liubao Tea Research Association, #18, Sanlong Avenue, Changzhou District, Wuzhou 543001, China;
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| |
Collapse
|
6
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Sharma A, Dheer D, Puri V, Alsayari A, Wahab S, Kesharwani P. Insights of biopolymeric blended formulations for diabetic wound healing. Int J Pharm 2024; 656:124099. [PMID: 38614431 DOI: 10.1016/j.ijpharm.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Diabetic wounds (DWs) pose a significant health burden worldwide, with their management presenting numerous challenges. Biopolymeric formulations have recently gained attention as promising therapeutic approaches for diabetic wound healing. These formulations, composed of biocompatible and biodegradable polymers, offer unique properties such as controlled drug release, enhanced wound closure, and reduced scarring. In this review, we aim to provide a comprehensive overview of the current state of research and future prospects regarding the application of biopolymeric formulations for diabetic wound healing. The review begins by highlighting the underlying pathophysiology of DWs, including impaired angiogenesis, chronic inflammation, and compromised extracellular matrix (ECM) formation. It further explores the key characteristics of biopolymeric materials, such as their biocompatibility, biodegradability, and tunable physicochemical properties, which make them suitable for diabetic wound healing applications. The discussion further delves into the types of biopolymeric formulations utilized in the treatment of DWs. These include hydrogels, nanoparticles (NP), scaffolds, films, and dressings. Furthermore, the review addresses the challenges associated with biopolymeric formulations for diabetic wound healing. In conclusion, biopolymeric formulations present a promising avenue for diabetic wound healing. Their unique properties and versatility allow for tailored approaches to address the specific challenges associated with DWs. However, further research and developments are required to optimize their therapeutic efficacy, stability, manufacturing processes, and regulatory considerations. With continued advancements in biopolymeric formulations, the future holds great promise for improving the management and outcomes of DWs.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Feng Q, Zhang M, Zhang G, Mei H, Su C, Liu L, Wang X, Wan Z, Xu Z, Hu L, Nie Y, Li J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B 2024; 12:3719-3740. [PMID: 38529844 DOI: 10.1039/d3tb02898d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.
Collapse
Affiliation(s)
- Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Guanning Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Chongying Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Lisa Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Xiaoxia Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Ziqianhong Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Liangkui Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| |
Collapse
|
9
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
10
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
11
|
Liu K, Zhao D, Zhao H, Yu Y, Yang M, Ma M, Zhang C, Guan F, Yao M. Mild hyperthermia-assisted chitosan hydrogel with photothermal antibacterial property and CAT-like activity for infected wound healing. Int J Biol Macromol 2024; 254:128027. [PMID: 37952801 DOI: 10.1016/j.ijbiomac.2023.128027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Infected wounds pose a serious threat to public health and pose a significant challenge and financial burden worldwide. The treatment of infected wounds is now an urgent problem to be solved. Herein, mild hyperthermia-assisted hydrogels composed of carboxymethyl chitosan (CMCs), oxidized dextran (Odex), epigallocatechin gallate (EGCG) and PtNPs@PVP (CAT-like nanoenzymes) were proposed for the repair of infected wounds. The incorporation of PtNPs@PVP nanoenzymes give the hydrogels excellent photothermal property and CAT-like activity. When the temperature is maintained at 42-45 °C under 808 nm near infrared (NIR) exposure, the CMCs/Odex/EGCG/Nanoenzymes (COEN2) hydrogel demonstrated highly enhanced antibacterial ability (95.9 % in vivo), hydrogen peroxide (H2O2) scavenging ratio (85.1 % in vitro) and oxygen supply (20.7 mg/L in vitro). Furthermore, this mild-heat stimulation also promoted angiogenesis in the damaged skin area. Overall, this multifunctional hydrogel with antibacterial, antioxidant, oxygen supply, hemostasis, and angiogenesis capabilities has shown great promise in the repair of infected wounds. This study establishes the paradigm of enhanced infected wound healing by mild hyperthermia-assisted H2O2 scavenging, oxygen supplemental, and photothermal antibacterial hydrogels.
Collapse
Affiliation(s)
- Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Donghui Zhao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengwen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Zheng S, Wang H, Han J, Dai X, Lv Y, Sun T, Liu H. Microbiota-derived imidazole propionate inhibits type 2 diabetic skin wound healing by targeting SPNS2-mediated S1P transport. iScience 2023; 26:108092. [PMID: 37876799 PMCID: PMC10590984 DOI: 10.1016/j.isci.2023.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Imidazole propionate (ImP) is a recently discovered metabolite of T2DM-related gut microbiota. The effect of ImP on T2DM wound healing has not been studied yet. In this research, the changes of ImP-producing bacteria on the skin are firstly evaluated. 16sRNA sequencing results showed that the abundance of ImP-producing bacteria-Streptococcus in the intestine and skin of T2DM mice is significantly increased. Animal experiments show that ImP can inhibit the process of wound healing and inhibit the formation of blood vessels in the process of wound healing. Molecular mechanism research results show that ImP can inhibit S1P secretion mediated by SPNS2, and inhibit the activation of Rho signaling pathway, thereby affecting the angiogenesis process of HUVEC cells. This work also provides a potential drug HMPA that promotes T2DM wound healing.
Collapse
Affiliation(s)
- Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongqi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
14
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
15
|
Zhang Q, Yan Y, Li Z, Du J, Zhang K, Zhang L, Wang T, Bianco A, Ge S, Ma B. A uniform-unsaturated crosslinking strategy to construct injectable alginate hydrogel. Int J Biol Macromol 2023; 254:127726. [PMID: 39491139 DOI: 10.1016/j.ijbiomac.2023.127726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
The controllable crosslinking between the constituting building blocks plays a key role in endowing the hydrogel with injectability through the formation of a uniform 3D interconnected network. Herein, a uniform-unsaturated crosslinking strategy has been devised to quickly construct injectable sodium alginate (SA) hydrogels. Under vigorous stirring, a moderate amount of metal ions can uniformly coordinate with the guluronate moieties of SA molecules, avoiding the locally excessive crosslinking and the loss of injectability caused by traditional dropping and soaking methods. The injectability of SA hydrogels can be regulated by easily adjusting the concentration of metal ions, and 0.2% (w/v) is the optimal concentration of CaCl2 for the preparation of injectable SA-Ca hydrogel. Meanwhile, multiple metal ions mediated crosslinking also has been achieved conveniently, expanding the functions. Importantly, SA hydrogels can function as the general platform of composites made of various molecules and materials, for targeting drug delivery, tissue repair, wound infection treatment, and so on. Further, injectable SA-0.2%Cu hydrogel as a model to treat wound infections can promote the healing of full-thickness skin. This study provides a super facile and universal strategy to prepare various SA injectable hydrogels with low cost, which hold great potential in biomedical applications and clinical transformation.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Zhao Li
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Jing Du
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Kai Zhang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Liguo Zhang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Ting Wang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg 67000, France.
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
16
|
Nan W, Wang F, Wang H, Xiao W, Li L, Zhang C, Zhang Y, Dai L, Xu Z, Wan G, Wang Y, Chen H, Zhang Q, Hao Y. Synergistic wound repair effects of a composite hydrogel for delivering tumor-derived vesicles and S-nitrosoglutathione. J Mater Chem B 2023; 11:9987-10002. [PMID: 37823264 DOI: 10.1039/d3tb01512b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Treating chronic wounds requires transition from proinflammatory M1 to anti-inflammatory M2 dominant macrophages. Based on the role of tumor extracellular vesicles (tEVs) in regulating the phenotypic switching from M1 to M2 macrophages, we propose that tEVs may have a beneficial impact on alleviating the overactive inflammatory microenvironment associated with refractory wounds. On the other hand, as a nitric oxide donor, S-nitrosoglutathione (GSNO) can regulate inflammation, promote angiogenesis, enhance matrix deposition, and facilitate wound healing. In this study, a guar gum-based hydrogel with tEVs and GSNO was designed for the treatment of diabetic refractory wounds. This hybrid hydrogel was formed through the phenyl borate bonds, which can automatically disintegrate in response to the high reactive oxygen species (ROS) level at the site of refractory diabetic wounds, releasing tEVs and GSNO. We conducted a comprehensive evaluation of this hydrogel in vitro, which demonstrated excellent performance. Meanwhile, using a full-thickness excision model in diabetic mice, the wounds exposed to the therapeutic hydrogel healed completely within 21 days. The increased closure rate was associated with macrophage polarization and collagen deposition, accelerated fibroblast proliferation, and increased angiogenesis in the regenerating tissues. Therefore, this multifunctional hybrid hydrogel appears to be promising for clinical applications.
Collapse
Affiliation(s)
- Wenbin Nan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Fan Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Wenchi Xiao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linxiao Li
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Chao Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yulu Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Linna Dai
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Zhihao Xu
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Guoyun Wan
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Yongxue Wang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Hongli Chen
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Qiqing Zhang
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, 300000, P. R. China
| | - Yongwei Hao
- College of Life Science and Technology, Nano Biomedical Materials Research Center, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| |
Collapse
|
17
|
Li T, Luo Y, Wu S, Xia X, Zhao H, Xu X, Luo X. Super-Rapid In Situ Formation of a Silver Ion-Induced Supramolecular Hydrogel with Efficient Antibacterial Activity for Root Canal Disinfection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321566 DOI: 10.1021/acsami.3c03335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels prepared using low-molecular-weight gelators have attracted considerable attention for biomedical applications. However, in situ supramolecular hydrogels are limited in terms of their prolonged gelation time and/or unstable nature at high temperatures. In this study, we constructed a stable supramolecular Ag-isoG hydrogel through super-rapid in situ formation, wherein hydrogelation process occurred instantaneously upon mixing isoG and Ag+ within 1 s under ambient conditions. Interestingly, unlike most nucleoside-based supramolecular hydrogels, this Ag-isoG hydrogel remains stable even at a high temperature (100 °C). Moreover, the as-designed hydrogel demonstrated significant antibacterial activity against Staphylococcus aureus and the oral bacterium Streptococcus mutans owing to the strong chelating ability of Ag ions, and the hydrogel exhibited relatively low cytotoxicity in root canal and an easy removal feature by saline. The hydrogel was then applied to a root canal infection model, which demonstrated strong antibacterial activity against Enterococcus faecalis, with performance even better than that of the regular calcium hydroxide paste. This feature makes the Ag-isoG hydrogel a prospective alternative material as intracanal medicaments for root canal treatment.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yu Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shihong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
18
|
Chang R, Zhao D, Zhang C, Liu K, He Y, Guan F, Yao M. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int J Biol Macromol 2023; 226:870-884. [PMID: 36526064 DOI: 10.1016/j.ijbiomac.2022.12.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Bacterial infection and subsequent reactive oxygen species (ROS) damage are major factors that delay wound healing in infected skin. Recently, photothermal therapy (PTT), as a new antibacterial method, has shown great advantages in the treatment of infected skin wound. Antibacterial and antioxidant hydrogels can reduce bacterial colonization and infection, scavenge ROS, relieve inflammation, and accelerate wound healing. In this study, an enzyme-crosslinked hyaluronic acid-tyramine (HT) hydrogel loaded with antioxidant and photothermal silver nanoparticles (AgNPs), named HTA, was developed as functional wound dressing to promote the infected skin wound healing. Natural antioxidant tannic acids (TA) were used as both reducing and stabilizing agents to facilely synthesize the silver nanoparticles capped with TA (AgNPs@TA). The incorporation of AgNPs@TA significantly enhanced the antioxidant, antibacterial, photothermal antibacterial, adhesive, and hemostatic abilities of the resulted HTA hydrogel. Besides, HTA hydrogel has rapid gelation, well injection and biocompatibility. In vivo results on the Staphylococcus aureus and Escherichia coli co-infected mouse skin wound model showed that HTA0.4 (containing 0.4 mg/mL AgNPs@TA) hydrogel combined with near infrared ray radiation highly alleviated inflammation, promoted angiogenesis, and accelerated the healing process. Therefore, this nanocomposite hydrogel wound dressing with antibacterial and antioxidant capabilities has great application potential in the treatment of infected skin wounds.
Collapse
Affiliation(s)
- Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Donghui Zhao
- School of Pharmacy, School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|