1
|
Wang N, Wang W, Su Y, Zhang J, Sun B, Ai N. The current research status of immobilized lipase performance and its potential for application in food are developing toward green and healthy direction: A review. J Food Sci 2025; 90:e70038. [PMID: 39961802 DOI: 10.1111/1750-3841.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 05/09/2025]
Abstract
Immobilized lipases have received great attention in food, environment, medicine, and other fields due to their easy separation, high stability (temperature, pH), and high storage properties. After immobilization, lipase transforms from a homogeneous to a heterogeneous state, making it easier to recover from the reaction substrate and achieve recycling, which is in line with the concept of green chemistry and reduces protein contamination in the product. There are various materials for enzyme immobilization, including polysaccharides from natural sources, inorganic compounds, carbon nanotubes, metal-organic framework materials, and so forth. Magnetic immobilization carriers have been widely studied due to their ability to achieve separation by adding a magnetic field. Its immobilization method can be simply divided into two categories: physical action (adsorption, embedding) and chemical binding (covalent, cross-linking). Some studies mainly discuss the immobilization support materials, immobilization methods, and applications of immobilized lipases in food. On this basis, our review also focuses on the changes in crosslinking agents for immobilized lipases, different methods to promote immobilization, new trends in the study of immobilized lipases, and proposes prospects for immobilized lipase research in the food industry.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Yufeng Su
- Inner Mongolia Yili Industrial Group Co., Hohhot, China
| | - Jinglin Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, PR China
| |
Collapse
|
2
|
Xiao Z, Jiang B, Xiang L, Zhang R, Chen J. Tailored magnetic silica-immobilized D-allulose 3-epimerase with enhanced stability and recyclability for efficient D-allulose production. Int J Biol Macromol 2025; 284:137896. [PMID: 39571841 DOI: 10.1016/j.ijbiomac.2024.137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
D-allulose, a low-calorie functional sweetener, is produced by the enzymatic conversion of d-fructose via D-allulose 3-epimerase (DAE) and holds significant market potential, particularly for individuals with obesity and diabetes. However, the limited reusability and stability of DAE have restricted its industrial application. In this study, we developed functional superparamagnetic supports by integrating diatomite, a biomineralized silica-based material, with cobalt ferrite nanoparticles through a green chemical co-precipitation method. The covalent attachment of DAE enzymes to these magnetic supports resulted in enzyme-metal hybrid catalysts (DAE@mDE-NH2) that exhibited enhanced stability and facilitated recovery and reuse via magnetic separation. These catalysts showed superior stability in acidic conditions and high temperatures, with a 24-fold increase in half-life at 60 °C compared to free DAE. They also exhibited remarkable durability, retaining 95.36 % of their activity after six months of storage at 4 °C and 70.08 % activity after 12 consecutive cycles. Utilizing this robust and recyclable biocatalyst, 147.7 g/L of D-allulose was obtained from 500 g/L of d-fructose. This study presents a sustainable strategy for advancing the production of high-value functional sweeteners like D-allulose while providing new insights into enzyme immobilization for biocatalytic processes.
Collapse
Affiliation(s)
- Ziqun Xiao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Longbei Xiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ran Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zhang W, Zhang M, Song J, Zhang Y, Nian B, Hu Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. CHEMOSPHERE 2024; 362:142735. [PMID: 38950743 DOI: 10.1016/j.chemosphere.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Jifei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Putra SSS, Chew CY, Hayyan A, Elgharbawy AAM, Taskin-Tok T, Hayyan M, Ngoh GC, Saleh J, Al Abdulmonem W, Alghsham RS, Nor MRM, Aldaihani AGH, Basirun WJ. Nanodiamonds and natural deep eutectic solvents as potential carriers for lipase. Int J Biol Macromol 2024; 270:132245. [PMID: 38729477 DOI: 10.1016/j.ijbiomac.2024.132245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
This study investigates the use of nanodiamonds (ND) as a promising carrier for enzyme immobilization and compares the effectiveness of immobilized and native enzymes. Three different enzyme types were tested, of which Rhizopus niveus lipase (RNL) exhibited the highest relative activity, up to 350 %. Under optimized conditions (1 h, pH 7.0, 40 °C), the immobilized ND-RNL showed a maximum specific activity of 0.765 U mg-1, significantly higher than native RNL (0.505 U mg-1). This study highlights a notable enhancement in immobilized lipase; furthermore, the enzyme can be recycled in the presence of a natural deep eutectic solvent (NADES), retaining 76 % of its initial activity. This aids in preserving the native conformation of the protein throughout the reusability process. A test on brine shrimp revealed that even at low concentrations, ND-RNL had minimal toxicity, indicating its low cytotoxicity. The in silico molecular dynamics simulations performed in this study offer valuable insights into the mechanism of interactions between RNL and ND, demonstrating that RNL immobilization onto NDs enhances its efficiency and stability. All told, these findings highlight the immense potential of ND-immobilized RNL as an excellent candidate for biological applications and showcase the promise of further research in this field.
Collapse
Affiliation(s)
| | - Chia Yong Chew
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Sustainable Process Engineering Centre (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Amal A M Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia; Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia.
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey; Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, PO Box 550, Muscat P.C.130, Sultanate of Oman.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jehad Saleh
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohd Roslan Mohd Nor
- Halal Research Group, Academy of Islamic Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
5
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
6
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
7
|
Xiao Z, Zhao Z, Jiang B, Chen J. Enhancing enzyme immobilization: Fabrication of biosilica-based organic-inorganic composite carriers for efficient covalent binding of D-allulose 3-epimerase. Int J Biol Macromol 2024; 265:130980. [PMID: 38508569 DOI: 10.1016/j.ijbiomac.2024.130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
D-allulose, an ideal low-calorie sweetener, is primarily produced through the isomerization of d-fructose using D-allulose 3-epimerase (DAE; EC 5.1.3.30). Addressing the gap in available immobilized DAE enzymes for scalable commercial D-allulose production, three core-shell structured organic-inorganic composite silica-based carriers were designed for efficient covalent immobilization of DAE. Natural inorganic diatomite was used as the core, while 3-aminopropyltriethoxysilane (APTES), polyethyleneimine (PEI), and chitosan organic layers were coated as the shells, respectively. These tailored carriers successfully formed robust covalent bonds with DAE enzyme conjugates, cross-linked via glutaraldehyde, and demonstrated enzyme activities of 372 U/g, 1198 U/g, and 381 U/g, respectively. These immobilized enzymes exhibited an expanded pH tolerance and improved thermal stability compared to free DAE. Particularly, the modified diatomite with PEI exhibited a higher density of binding sites than the other carriers and the PEI-coated immobilized DAE enzyme retained 70.4 % of its relative enzyme activity after ten cycles of reuse. This study provides a promising method for DAE immobilization, underscoring the potential of using biosilica-based organic-inorganic composite carriers for the development of robust enzyme systems, thereby advancing the production of value-added food ingredients like D-allulose.
Collapse
Affiliation(s)
- Ziqun Xiao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zishen Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Li J, Shi X, Qin X, Liu M, Wang Q, Zhong J. Improved lipase performance by covalent immobilization of Candida antarctica lipase B on amino acid modified microcrystalline cellulose as green renewable support. Colloids Surf B Biointerfaces 2024; 235:113764. [PMID: 38301428 DOI: 10.1016/j.colsurfb.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Development of immobilized lipase with excellent catalytic performance and low cost is the major challenge for large-scale industrial applications. In this study, green renewable microcrystalline cellulose (MCC) that was hydrophobically modified with D-alanine (Ala) or L-lysine (Lys) was used for immobilizing Candida antarctica lipase B (CALB). The improved catalytic properties were investigated by experimental and computational methods. CALB immobilized on MCC-Ala with higher hydrophobicity showed better catalytic activity than CALB@MCC-Lys because the increased flexibility of the lid region of CALB@MCC-Ala favored the formation of open conformation. Additionally, the low root mean square deviation and the high β-sheet and α-helix contents of CALB@MCC-Ala indicated that the structure became more stable, leading to a significantly enhanced stability (54.80% and 90.90% relative activity at 70 °C and pH 9.0, respectively) and good reusability (48.92% activity after 5 cycles). This study provides a promising avenue to develop immobilized lipase with high catalytic properties for industry applications.
Collapse
Affiliation(s)
- Jingwen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xue Shi
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
9
|
Melo RLF, Sales MB, de Castro Bizerra V, de Sousa Junior PG, Cavalcante ALG, Freire TM, Neto FS, Bilal M, Jesionowski T, Soares JM, Fechine PBA, Dos Santos JCS. Recent applications and future prospects of magnetic biocatalysts. Int J Biol Macromol 2023; 253:126709. [PMID: 37696372 DOI: 10.1016/j.ijbiomac.2023.126709] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil
| | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil.
| |
Collapse
|
10
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
11
|
Zhang W, Zhang Z, Ji L, Lu Z, Liu R, Nian B, Hu Y. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects. Bioprocess Biosyst Eng 2023; 46:1513-1531. [PMID: 37458833 DOI: 10.1007/s00449-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 11/01/2023]
Abstract
The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liran Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
12
|
Bio-inspired functional photocatalyst: Lipase enzyme functionalized TiO2 with excellent photocatalytic, enzymatic, and antimicrobial performance. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Shi X, Qin X, Dai Y, Liu X, Wang W, Zhong J. Improved catalytic properties of Candida antarctica lipase B immobilized on cetyl chloroformate-modified cellulose nanocrystals. Int J Biol Macromol 2022; 220:1231-1240. [PMID: 36049567 DOI: 10.1016/j.ijbiomac.2022.08.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
The catalytic activity of Candida antarctica lipase B (CALB) immobilized on modified cellulose nanocrystals (CNC) with different hydrophobicity was investigated using experimental and theoretical approaches. Firstly, the modified CNC were characterized by multi-spectroscopic methods, water contact angle, scanning electron microscopy and thermogravimetric analysis. Moderately hydrophobic CNC were found to be an optimal support for CALB immobilization. Secondly, model systems contained a CALB molecule and different numbers of modified CNC molecules (CALB@3CNC-C16, CALB@10CNC-C16 and CALB@15CNC-C16) were prepared for molecular dynamics (MD) simulation. Root-mean-square fluctuation values (0.61-2.61 Å) of lid region were relatively high in CALB@10CNC-C16, indicating that modified CNC with moderate hydrophobicity favored forming a lid-open conformation of CALB. Finally, the esterification of oleic acid catalyzed by the immobilized CALB showed higher conversion (54.68 %) than free CALB (12.98 %). Insights into modified CNC with tunable properties provided by this study may be a potential support for improving the catalytic performance of lipases.
Collapse
Affiliation(s)
- Xue Shi
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yunxiang Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Weifei Wang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|