1
|
Sun J, Zhang Y, Liu R, Du J, Liu Q, Wang T, Wang Y, Wang H. Intelligent double-layer pads containing blueberry anthocyanins/citric acid/tricolor lake for chilled pork real-time freshness monitoring. Food Chem 2025; 476:143372. [PMID: 39986065 DOI: 10.1016/j.foodchem.2025.143372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/12/2024] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
In this paper, an intelligent pH-sensitive pad was well designed using blueberry anthocyanin (BA) mixed with citric acid (CA) and yellow lake (Y), as composite indicator with significant color change (ΔE) from pink to yellow to green at pH 6.0-7.0 under tricolor principle. The double-layer poly(vinyl alcohol)/glycerol/gelatin (PGG)-CA/PGG-CA-BA-Y pad exhibited an excellent colorimetric pH/NH3-response, water-absorption ability, mechanical properties and preservation performance. Applied into the freshness monitor of chilled pork, the pad color change was detected from red (fresh) to orange (semi-fresh) and then to green (spoiled) by both naked eye visually and mobile APP rapidly, as the correlation coefficients (R2) of ΔE and SRGB significantly correlated with pH (0.99 and 0.98) and TVB-N (0.96 and 0.96), respectively. In summary, intelligent pH-sensitive double-layer hydrogel pads could preciously monitor food freshness and prevent the spoilage, by improving anthocyanin stability and increase the sensitivity of color in response to a narrow pH range.
Collapse
Affiliation(s)
- Junna Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jian Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Qingdai Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Yuan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
2
|
Farhan A, Fazial FF, Azfaralariff A, Costa MJ, Cerqueira MA. Production of polysaccharide and protein edible films: Challenges and strategies to scale-up. Int J Biol Macromol 2025; 307:141909. [PMID: 40068748 DOI: 10.1016/j.ijbiomac.2025.141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Polymeric films are among the main packaging materials used by food industry, and they can be produced using petrochemical-based polymers and biopolymers. Although the use of petrochemical-based polymers for food packaging is associated with a harmful impact on the environment, and human health through direct contact with food, the food industry cannot avoid their use due to the lack of fully viable alternatives. Therefore, there is an imperative need for potential food packaging alternatives made from natural, bio-based polymers that should be safe and biodegradable. In this group, edible polysaccharides and proteins present several advantages, making them green and safe alternatives. Therefore, several pilot and semi-commercial attempts have been made to commercialize the production of edible packaging materials. However, their industrial-scale production still presents big challenges. These challenges are related to the properties of edible biopolymers, such as low elasticity and high hygroscopicity, and, others are associated with the commercial-scale manufacturing technologies, which causes a slower implementation of edible films at the industrial level. This study aims to discuss edible films' main properties and limitations and propose possibilities for their industrial-scale production, focusing on maintaining their natural and ecofriendly food packaging with evolved functionalities.
Collapse
Affiliation(s)
- Abdulaal Farhan
- Food Science Department, College of Agriculture, Wasit University, Main Campus, Rabee District, University City, Al Kut, Wasit, Iraq.
| | - Farah Faiqah Fazial
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Uniciti Alam Campus, Sg Chuchuh, 02100 Padang Besar, Perlis, Malaysia
| | - Ahmad Azfaralariff
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Maria J Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
3
|
Wu Z, Wang L, Chen X, Bu N, Duan J, Liu W, Ma C, Pang J. Enhancing Waterproof Food Packaging with Janus Structure: Lotus Leaf Biomimicry and Polyphenol Particle Technology for Vegetable Preservation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8248-8261. [PMID: 39846723 DOI: 10.1021/acsami.4c17004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
With the increasing demand for improved food preservation, conventional waterproof food packaging has proven inadequate because of its limited functionality. Although incorporating features such as antibacterial and antioxidant properties into packaging enhances protection, it can compromise the hydrophobicity of the involved material, thereby increasing the risk of contamination from external sources. To address this challenge, a robust and reliable barrier capable of simultaneously integrating multiple protective functions is required. This research synthesizes polyphenol particles via metal ion coordination and multiple hydrogen bondings to enhance antioxidant and antimicrobial properties. In addition, inspired by the asymmetric wettability of Janus-structured lotus leaves, this study develops biomimetic multifunctional Janus electrospun fibers via electrostatic spinning. These fibers exhibit exceptional properties, including superhydrophobic, antifouling, ultraviolet-blocking, pH sensitivity, antioxidation, antimicrobial, and freshness retention properties. Experiments and mesoscopic capillary flow simulations elucidate the waterproofing ability and underlying mechanisms of the Janus electrospun fibers, demonstrating their function as hydrophobic shields for preventing water penetration. Overall, this study provides a reference for high-performance waterproof food packaging to enhance vegetable preservation.
Collapse
Affiliation(s)
- Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Special Administrative Region, Hong Kong 999077, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
5
|
Yang J, Shen L, Zhao Y, Zhou X, Liu Y. Antioxidant and antibacterial coconut mesocarp polyphenol hydrogel dressing based on PVA/quaternary chitosan/sodium alginate with β-glycerophosphate. Int J Biol Macromol 2025; 291:138923. [PMID: 39708860 DOI: 10.1016/j.ijbiomac.2024.138923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This study developed PQSp wound dressing hydrogels (S0-S6) using polyvinyl alcohol (PVA), quaternary chitosan (QCS), and sodium alginate (SA) as the matrix, with the addition of coconut mesocarp polyphenol (P-CTP, 0.1 %, 0.5 %, and 1.0 %) and β-glycerophosphate disodium (GP, 1.0 %) through a freeze-thaw method. Compared to hydrogels without P-CTP and GP (S0), the tensile strength of S1-S6 increased from 0.08 MPa to 0.45 MPa, elongation at break improved from 200 % to 320 %, and the swelling ratio decreased from 186 % to 82 % due to the effects of P-CTP and GP, while maintaining water content above 80 %, ensuring a moist environment for wound healing. Their thermal stability was also improved. SEM, FTIR, and XPS results confirmed enhanced crosslinking within the multi-network of the hydrogels, attributed to the increased hydrogen bonding from GP and P-CTP, independent of chemical crosslinking. However, antioxidant and antibacterial activities were dose-dependent only on P-CTP, with S3 and S6 showing the best effects. CAM and chicken embryo assays confirmed the hydrogels' non-toxicity and biocompatibility. These findings suggest that PQSp hydrogels, with their excellent mechanical properties, bioactivity, and safety, hold great potential for advanced wound dressing applications and provide a reference for expanding the application range of P-CTP.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China; Shanxi Jingxi Biotechnology Co. Ltd, Taiyuan, Shanxi 030051, China.
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| | - Yiqing Zhao
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| | - Xingyu Zhou
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
6
|
Zhao M, Han P, Mu H, Sun S, Dong J, Sun J, Lu S, Wang Q, Ji H. Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chem X 2025; 25:102174. [PMID: 39897972 PMCID: PMC11786921 DOI: 10.1016/j.fochx.2025.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/09/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
The development of innovative, biodegradable food packaging materials to combat plastic pollution has garnered significant attention from scholars and government agencies worldwide. Natural polysaccharides and proteins exhibit excellent modifiability, biodegradability, high ductility, and compatibility with food products, making them ideal candidates for constructing hydrogels. Hydrogel films based on these biopolymers have opened new research horizons in food packaging applications. This review examines natural polysaccharides and proteins commonly used in hydrogel film preparation and explores strategies to improve their packaging performance, including the use of binary mixtures and exogenous additives. To optimize functionality, the cross-linking mechanisms between materials and film-forming methods are summarized. Additionally, recent applications of hydrogel films in food packaging in are discussed, showcasing their ability to extend or monitor food freshness. Despite existing challenges, the current advancements present a promising and sustainable alternative to conventional plastic materials paving the way for innovative packaging solutions.
Collapse
Affiliation(s)
- Mou Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ping Han
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
7
|
Fan S, Yang Q, Zhu C, Li X, Richel A, Fauconnier ML, Fang F, Zhang D, Hou C. Zein/chitosan Janus film incorporated with tannic acid and cinnamon essential oil co-loaded Pickering emulsion for sustained controlled release and pork preservation. Int J Biol Macromol 2025; 286:138429. [PMID: 39645130 DOI: 10.1016/j.ijbiomac.2024.138429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The development of active packaging offers a promising approach to reducing food waste. However, challenges remain, particularly in achieving efficient release dynamics of active compounds and balancing the barrier properties. Herein, a Janus structure zein/chitosan film is custom designed by layer-by-layer casting method to achieve sustainable and unidirectional release performance of antimicrobial agent, which comprises an inner loading layer of tannic acid (TA) and cinnamon essential oil (CEO) co-loaded Pickering emulsion incorporated with chitosan and an outer barrier layer of zein. The good interfacial compatibility between the entities of Pickering emulsion/chitosan loading layer and zein barrier layer had be confirmed via physicochemical structure characterization. The lower swelling rate of Pickering emulsion/chitosan film (47.61 %-51.71 %) indicated the sustained and stable release rate of substances from the inner loading layer, while the zein barrier layer restricted the diffusion of active molecules due to the high swelling rate (162.52 %). In addition, the films showed excellent antimicrobial activity (>99 % against key foodborne pathogens) and radical scavenging activity (2.5-fold enhancement). Moreover, the film loading layer showed predominantly controlled by a quasi-Fickian diffusion, and prolonged the shelf life of pork by 6 days under the unidirectional sustained release. Our work presents a promising fabrication strategy of antimicrobial packaging film with sustainable release performance for food preservation.
Collapse
Affiliation(s)
- Simin Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux 5030, Belgium; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux 5030, Belgium
| | - Qingfeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chaoqiao Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux 5030, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux 5030, Belgium
| | - Fei Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
8
|
Liu X, Xu F, Yong H, Chen D, Tang C, Kan J, Liu J. Recent advances in chitosan-based active and intelligent packaging films incorporated with flavonoids. Food Chem X 2025; 25:102200. [PMID: 39974528 PMCID: PMC11838128 DOI: 10.1016/j.fochx.2025.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Biopolymer-based films are promising packaging materials to maintain food quality, reduce food waste and ensure food safety. Chitosan, a biopolymer with excellent film-forming ability, can act as the carrier for plant-derived bioactive compounds. In the past decade, several studies have reported chitosan-based films incorporated with different classes of flavonoids, including flavones, flavanones, isoflavones, flavonols, flavanols and anthocyanidins. These films, based on their functionality, can be divided into chitosan/flavonoid active packaging films and chitosan/anthocyanin (the glycosylated anthocyanidin) intelligent packaging films. This paper presents a comprehensive review on active and intelligent packaging films prepared from chitosan and different classes of flavonoids, with special attention being paid to the preparation, physical and functional properties, stabilization, and application of the films. Factors affecting the physical and functional properties of the films are summarized. In addition, the challenges for the commercial production and application of the films in active and intelligent packaging fields are discussed.
Collapse
Affiliation(s)
- Xuanzhuo Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou 225127, China
| |
Collapse
|
9
|
Ran C, Li Q, Zhao M, Cui H, Yang Y, Diao K, Liu Y, Lu S, Dong J, Wang Q. Gelatin/polyvinyl alcohol films loaded with doubly stabilized clove essential oil chitosomes: Preparation, characterization, and application in packing marinated steaks. Food Chem 2024; 460:140673. [PMID: 39089012 DOI: 10.1016/j.foodchem.2024.140673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
In this study, a promising active food-packaging film of Gelatin/polyvinyl alcohol (GEL/PVA) integrated with doubly stabilized clove essential oil chitosome nanoparticles (CNP) was developed to maintain the freshness of marinated steaks. Results from the XRD and SEM experiments indicated excellent compatibility between the CNP and GEL/PVA matrix. Additionally, CNP was found to introduce more free hydroxyl groups, enhance the water retention and surface wettability of the CNP-GEL/PVA (C-G/P) film, and significantly reduce the swelling index from 963.78% to 495.11% (p < 0.05). Notably, the highest tensile strength and elongation at break (53.745 MPa and 46.536%, respectively) were achieved with the addition of 30% (v/v, based on the volume of gelatin) CNP; UVC was fully absorbed with 40% CNP; and films containing 60% CNP showed optimal inhibition of both Staphylococcus aureus and Escherichia coil, extending the shelf life of marinated steak from 3 to 7 days.
Collapse
Affiliation(s)
- Cenchen Ran
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingqing Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mou Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Haotian Cui
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yi Yang
- Silk Road camel Bell trading Co., LTD, Tumushuk, Xinjiang, China
| | - Kui Diao
- Silk Road camel Bell trading Co., LTD, Tumushuk, Xinjiang, China
| | - Yazhi Liu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Dong
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
10
|
Qin Y, Wang Y, Tang Z, Chen K, Wang Z, Cheng G, Chi H, Soteyome T. A pH-sensitive film based on chitosan/gelatin and anthocyanin from Zingiber striolatum Diels for monitoring fish freshness. Food Chem X 2024; 23:101639. [PMID: 39113745 PMCID: PMC11304880 DOI: 10.1016/j.fochx.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
As a new type of packaging method, the anthocyanin-based pH-sensitive indicator film has gained much attention owing to low cost, small size, and visually informative property. In this study, an intelligent film based on chitosan/gelatin (CG) matrix with Zingiber striolatum Diels (ZSD) anthocyanin for fish freshness monitoring was developed. The film properties, including thickness, moisture content, color, mechanical properties, UV-vis light barrier property, as well as pH and ammonia sensitivity, were evaluated. The CG-ZSD films exhibited a more compact structure when compared with the CG film. The CG-ZSD20 film showed the highest elongation at break (6.33 ± 0.62%) and lowest tensile strength (20.0 ± 0.58 MPa). FTIR spectra revealed the strong hydrogen bond interactions between ZSD and polymer matrix. Film incorporated with 15% anthocyanin extract has increased melting temperature at 118.9 °C, and a lower weight loss (13.8%) at melting temperature. In pH 1-14 buffer, the color of CG-ZSD films underwent a significant change from red to yellow-green. The CG-ZSD15 film was utilized for monitoring fish freshness and showed visible color changes from deep purple to brown. The total volatile basic nitrogen content and pH value changes of fish were closely related to the visual color changes in film. This demonstrated that the film was a highly pH-sensitive film for quantifying fish freshness in real-time.
Collapse
Affiliation(s)
- Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhenya Tang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650550, China
| | - Kejun Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Wan Yusof WR, Sabar S, Zailani MA. Starch-chitosan blends: A comprehensive review on the preparation, physicochemical properties and applications. Biopolymers 2024; 115:e23602. [PMID: 38816949 DOI: 10.1002/bip.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Starch and chitosan, polysaccharides derived from natural sources, have significant potential across various domains. Starch is extracted from starch-bearing plants, such as potatoes, whereas chitosan is obtained from the exoskeletons of marine animals, fungi and insects. However, the original forms of starch and chitosan have several limitations, such as low solubility and weak mechanical strength. Interestingly, the combined effects of starch and chitosan resulted in the development of starch-chitosan blends with markedly improved functional properties. These blends demonstrated high tensile strength, improved hydrophilicity and increased adsorption capacity. Furthermore, modification of starch-chitosan blends by techniques such as crosslinking and incorporation of other functional materials contributes to diverse characteristics and functionalities. This review addresses a crucial gap in the literature by providing an overview and up-to-date analysis of starch-chitosan blends. The preparation methods and functional properties of these blends in various forms, such as films, beads and hydrogels, have been extensively discussed. Emphasis is placed on the versatile applications of these blends in research, development and industries such as pharmaceuticals, wastewater treatment, agriculture and food technology. This review aims to provide an insightful overview of starch-chitosan blends and stimulate broader interdisciplinary research interests. By providing concluding insights and prospects, this review highlights the potential for further exploration of the impact of starch-chitosan blends on consumers and the environment.
Collapse
Affiliation(s)
- Wan Roslina Wan Yusof
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Sumiyyah Sabar
- Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd Alhafiizh Zailani
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
12
|
Pei J, Palanisamy CP, Srinivasan GP, Panagal M, Kumar SSD, Mironescu M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int J Biol Macromol 2024; 274:133332. [PMID: 38914408 DOI: 10.1016/j.ijbiomac.2024.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania.
| |
Collapse
|
13
|
Xiong X, Liu Z, Che X, Zhang X, Li X, Gao W. Chemical composition, pharmacological activity and development strategies of Rubus chingii: A review. CHINESE HERBAL MEDICINES 2024; 16:313-326. [PMID: 39072206 PMCID: PMC11283228 DOI: 10.1016/j.chmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Raspberries are used for both food and medicine, but it has not yet attracted widespread attention. In this paper, the chemical constituen of the original plant raspberry. R. chingii is one of the new "Zhe Bawei" medicinal materials selected in 2017. "Zhe Bawei" refers to eight kinds of genuine medicinal materials in Zhejiang Province. The chemical constituents, pharmacological effects, processing, and application of Rubus chingii Hu were reviewed to provide a reference for its further development. Relevant literature in recent years was collected in databases such as China Knowledge Network, Web of Science, Elsevier, PubMed, and X-Mol, using "raspberry", "Rubus chingii", "traditional use", "chemical composition", "pharmacology", etc. as keywords individually or in combination. The summary of pharmacological activities shows that the relationship between the pharmacological activities of raspberry is still not deep enough. More in-depth research should be carried out in this direction to explore the mechanism of action of its active ingredients and provide effective reference for the further development of the raspberry industry. In the future, with the participation of more researchers, it is expected to develop innovative drugs based on raspberry for the treatment of diseases.
Collapse
Affiliation(s)
- Xiangmei Xiong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Zheng Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Xiance Che
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xuemin Zhang
- Key Laboratory of Advanced Chinese Medicine Resources Research Enterprises, Tianjin 300402, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| | - Wenyuan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300110, China
| |
Collapse
|
14
|
Huang K, Wang L, Deng Y, Zheng H, Wu S, Li Z, Lei H, Yu Q, Guo Z. Development of amine-sensitive intelligent film with MIL-100(Fe) as function filler based on anthocyanins/pectin for monitoring chilled meat freshness. Int J Biol Macromol 2024; 270:132463. [PMID: 38772460 DOI: 10.1016/j.ijbiomac.2024.132463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
To enhance the amine-sensitivity of intelligent films for accurate monitoring of chilled meat freshness, different additions (0, 1, 2, 3 wt%) of MIL-100(Fe) were incorporated into the matrix composed of anthocyanins (ANs) and pectin (P). Results indicated that the tensile strength, thermal stability, barrier performance and absorption capacity of the films with MIL-100(Fe) were improved significantly (p < 0.05). Especially, the film with 2 % MIL-100(Fe) exhibited the best performance due to its compact structure and the highest crystallinity. Additionally, adsorption isotherms of the films with MIL-100(Fe) were fitted on the Langmuir and the Freundlich isotherm, and adsorption kinetics were fitted on the pseudo-second-order model and Elovich model, respectively (R2 > 0.96), suggesting a combined mechanism of chemisorption and intraparticle diffusion. Besides, when the films were exposed in ammonia environment, they changed color from purple to blue-violet, finally to green. Ultimately, film with 2 % MIL-100(Fe) was used to monitor the chilled meat freshness, as expected, similar color variation was observed at three stages of meat freshness (fresh, sub-fresh, and spoiled), which enabled the accurate differentiation of meat freshness. Thus, films with MIL-100(Fe) demonstrated the potential to be amine-sensitive intelligent packaging for monitoring chilled meat freshness in real time.
Collapse
Affiliation(s)
- Kaiwen Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Sichuan 610041, China
| | - Yiheng Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Hua Zheng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Shaozong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonglin Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China; College of Food Science, China, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Gong D, Zhang X, Li J, Li Y, Guo J, Zhang X, Zhang W. Carbon dot/g-C 3N 4-mediated self-activated antimicrobial nanocomposite films for active packaging applications. Food Chem 2024; 438:137939. [PMID: 38006697 DOI: 10.1016/j.foodchem.2023.137939] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023]
Abstract
A novel carbon dot/g-C3N4 nanocomposite (CCN) exhibiting enhanced photocatalytic activity was developed and used as a photoactive nanofiller to construct corn starch/carboxymethyl cellulose (CS/CMC)-based functional films. The morphologies and structures of the CCN-CS/CMC composite films were investigated with scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of the CCN on the physicochemical properties and antibacterial activities of the films were analyzed. The properties of the films were optimized with the addition of CCN (0.20 mg/mL), and the tensile strength of the film was increased to 11.9 MPa and the water contact angle was increased to 103.39°. The optimal active film showed > 99.9 % antibacterial efficiencies against Escherichia coli and Staphylococcus aureus under visible light and prolonged the shelf lives of bananas for more than four days compared to the 4-day shelf life of the control. This work provides a novel route for developing antimicrobial active packaging.
Collapse
Affiliation(s)
- Dezhuang Gong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaxu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jialiang Guo
- College of Life Sciences, Changchun Normal University, Changchun, Jilin 130032, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
16
|
Yang J, Duan A, Shen L, Liu Q, Wang F, Liu Y. Preparation and application of curcumin loaded with citric acid crosslinked chitosan-gelatin hydrogels. Int J Biol Macromol 2024; 264:130801. [PMID: 38548500 DOI: 10.1016/j.ijbiomac.2024.130801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
While oral administration offers safety benefits, its therapeutic efficacy is hindered by various physiological factors within the body. In this study, a novel approach was explored using a matrix consisting of 2 % chitosan and 2 % gelatin, with citric acid (CA) serving as a green cross-linking agent (ranging from 0.4 % to 1.0 %), and curcumin (Cur) as the model drug to formulate hydrogel carriers. The results showed that a 0.4 % CA concentration, the hydrogel (CGA0.4) reached swelling equilibrium in deionized water within 40 min, exhibiting a maximum swelling index was 539 g/g. The addition of Cur to the CGA hydrogel (CGACur) notably enhanced release efficiency, particularly in simulated intestinal fluid, where Cur release rates exceeded 40 % within 100 min compared to below 8 % in other solutions. Among these hydrogels, CGA0.4Cur exhibited the fastest degradation rate in the combined solution, reaching >90 % degradation after 7 days. Additionally, Cur and CA demonstrated positive effects on the tensile strength, antioxidant activity and antibacterial activity of hydrogels. Compare to the bioaccessibility of CGC (27 %), those of CGACur had increased to over 34 %. These findings offer provide theoretical support for CA-crosslinked chitosan/gelatin gels in delivering hydrophobic bioactive molecules and their application in intestinal drug delivery system.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China; Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, 253034, China.
| | - Anbang Duan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Liping Shen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Fei Wang
- The hospitial of North University of China,Taiyuan, Shanxi 030051, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
17
|
Taheri-Yeganeh A, Ahari H, Mashak Z, Jafari SM. Monitor the freshness of shrimp by smart halochromic films based on gelatin/pectin loaded with pistachio peel anthocyanin nanoemulsion. Food Chem X 2024; 21:101217. [PMID: 38426072 PMCID: PMC10901912 DOI: 10.1016/j.fochx.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
This paper focuses on the combination of gelatin (Gel), pectin (Pec), and Pistachio peel anthocyanins (PSAs) to develop a halochromic film for food applications (shrimp). The results of spectroscopic properties showed that the film components had proper interaction and compatibility. Furthermore, the addition of PSAs and Pec improved the thermal stability of films. The addition of Pec and PSAs significantly improved the physical properties and mechanical resistance of the films. So that, the permeability to water vapor and oxygen reduced from 2.81 to 2.74 (g‧s-1‧Pa-1‧m-1) and 5.25 to 4.70 (meq/kgO2), respectively. In addition, the strength and flexibility of halochromic film reached 0.7 MPa and 56 % compared to Gel film (0.62 MPa, and 46.96 %). Most importantly, the color changes of the smart film from cherry/pink to yellow/brown, which were proportional to the color changes of the anthocyanin solution at different pHs, were able to monitor the shrimp freshness and spoilage at room (20 °C) and refrigerated (4 °C) temperature for 14 days.
Collapse
Affiliation(s)
- Alireza Taheri-Yeganeh
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mashak
- Department of Food Hygiene, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
18
|
Yue S, Zhang T, Wang S, Han D, Huang S, Xiao M, Meng Y. Recent Progress of Biodegradable Polymer Package Materials: Nanotechnology Improving Both Oxygen and Water Vapor Barrier Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:338. [PMID: 38392711 PMCID: PMC10892516 DOI: 10.3390/nano14040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials, which currently account for more than 50% of plastic products. However, various challenges remain for biodegradable polymers for practical packaging applications. Particularly pertaining to the poor oxygen/moisture barrier issues, which greatly limit the application of current biodegradable polymers in food packaging. In this review, various strategies for barrier property improvement are summarized, such as chain architecture and crystallinity tailoring, melt blending, multi-layer co-extrusion, surface coating, and nanotechnology. These strategies have also been considered effective ways for overcoming the poor oxygen or water vapor barrier properties of representative biodegradable polymers in mainstream research.
Collapse
Affiliation(s)
- Shuangshuang Yue
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Tianwei Zhang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- China Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
| |
Collapse
|
19
|
Yang D, Liu Q, Zeng X, Chen X, Li M, Wu X, Liu Y, Zheng Y, Xiang J, Wang C, Weng W, Zhang Y. Novel pH-responsive indicator films based on bromothymol blue-anchored chitin for shrimp freshness monitoring. Int J Biol Macromol 2023; 253:127052. [PMID: 37748590 DOI: 10.1016/j.ijbiomac.2023.127052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The cellulose nanofibers (CNFs) based pH-sensitive indicator films were developed by mixing guar gum (GG) with bromothymol blue-anchored chitin (BTB-Chitin) as an indicator to monitor shrimp freshness. The BTB-Chitin was prepared by grafting hydroxypropyltriethylamine groups (HPTA) to chitin first, then anchoring bromothymol blue (BTB) to prepare intelligent pH response BTB-Chitin. The 0.08 BTB-Chitin films had a good tensile strength of 11.76 MPa and the water contact angle values were 125°, which displayed obvious color response to pH buffers and acid base volatile gas. Besides, the homogeneous and flexible composite films showed good color stability and reversibility. The released amount of BTB was very low from the BTB-Chitin films in heptane and corn oil. The composite films had been degraded completely in 15 days in soil. The pH and volatile base nitrogen were measured to determine the degree decay of shrimp (Litopenaeus vannamei), and the prepared pH-sensitive films changed from yellow (fresh) to cyan (spoiled) with the freshness of shrimp decreased, indicating the BTB-Chitin films could detect the shrimp freshness in real-time and high visibility.
Collapse
Affiliation(s)
- Danmin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Xu Zeng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoting Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fisheries Research Institute of Fujian, Xiamen 361021, China
| | - Meng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xialing Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yue Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jionghua Xiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chunchun Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
20
|
Zhang W, Azizi-Lalabadi M, Jafarzadeh S, Jafari SM. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging. Carbohydr Polym 2023; 320:121266. [PMID: 37659804 DOI: 10.1016/j.carbpol.2023.121266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 09/04/2023]
Abstract
Packaging plays a vital role in safeguarding food from environmental factors and contamination. However, the overuse and improper disposal of non-biodegradable plastic packaging materials have led to environmental concerns and health risks. To address these challenges, the development of degradable food packaging films is crucial. Biodegradable polymers, including natural biopolymers like starch (ST) and gelatin (GE), have emerged as promising alternatives to traditional plastics. This review focuses on the utilization of ST-GE blends as key components in composite films for food packaging applications. We discuss the limitations of pure ST-GE films and explore methods to enhance their properties through the addition of plasticizers, cross-linkers, and nanoparticles. The blending of ST-GE, facilitated by their good miscibility and cross-linking potential, is highlighted as a means to improve film performance. The review also examines the impact of various additives on the properties of ST-GE blend films and summarizes their application in food preservation. By providing a comprehensive overview of ST-GE hybrid systems, this study aims to contribute to the advancement of sustainable and effective food packaging solutions.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
21
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The highly stable indicator film incorporating roselle anthocyanin co-pigmented with oxalic acid: Preparation, characterization and freshness monitoring application. Food Res Int 2023; 173:113416. [PMID: 37803754 DOI: 10.1016/j.foodres.2023.113416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
A novel stable PVA/HPMC/roselle anthocyanin (RAE) indicator film co-pigmented with oxalic acid (OA) was prepared, its properties, application effects and stability enhancement mechanism were investigated correspondingly. The structural characterization revealed that more stable network was formed due to the co-pigmentation facilitated generation of molecular interactions. Meanwhile, the co-pigmentation improved film mechanical and hydrophobic properties compared to both PVA/HPMC/RAE newly prepared (PHRN) or stored (PHRS) film, expressing as higher tensile strength values (12.25% and 14.44% higher than PHRN and PHRS), lower water solubility (7.22% and 10.09% lower than PHRN and PHRS) and water vapor permeability values (33.20% and 21.05% lower than PHRN and PHRS) of PVA/HPMC/RAE/OA newly prepared (PHON) or stored (PHOS) film. Compared with the PHRS film, the PHOS film still presented more distinguishable color variations when being applied to monitor shrimp freshness, owing to the stabilization behaviors of co-pigmentation in anthocyanin conformation. Hence, the co-pigmentation was an effective strategy to enhance film stability, physical and pH-responsive properties after long term storage, leading to better film monitoring effects when applied in real-time freshness monitoring.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
22
|
Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int 2023; 171:113070. [PMID: 37330831 DOI: 10.1016/j.foodres.2023.113070] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Currently, curcumin-based co-delivery systems are receiving widespread attention. However, a systematic summary of the possibility of curcumin-based co-delivery systems used for the food industry from multiple directions based on the functional characteristics of curcumin is lacking. This review details the different forms of curcumin-based co-delivery systems including the single system of nanoparticle, liposome, double emulsion, and multiple systems composed of different hydrocolloids. The structural composition, stability, encapsulation efficiency, and protective effects of these forms are discussed comprehensively. The functional characteristics of curcumin-based co-delivery systems are summarized, involving biological activity (antimicrobial and antioxidant), pH-responsive discoloration, and bioaccessibility/bioavailability. Correspondingly, potential applications for food preservation, freshness detection, and functional foods are introduced. In the future, more novel co-delivery systems for active ingredients and food matrices should be developed. Besides, the synergistic mechanisms between active ingredients, delivery carrier/active ingredient, and external physical condition/active ingredient should be explored. In conclusion, curcumin-based co-delivery systems have the potential to be widely used in the food industry.
Collapse
Affiliation(s)
- Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
23
|
Zhao Y, Gao L, Wang J, Xue Z, Zhang M, Ma X, Wang G, Lv S. Preparation and Application of pH-Sensitive Film Containing Anthocyanins Extracted from Lycium ruthenicum Murr. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103828. [PMID: 37241455 DOI: 10.3390/ma16103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
A new pH-sensitive film was developed using Artemisia sphaerocephala Krasch. gum (ASKG), soybean protein isolate (SPI), and natural anthocyanin extracted from Lycium ruthenicum Murr. The film was prepared by adsorbing anthocyanins dissolved in an acidified alcohol solution on a solid matrix. ASKG and SPI were used as the solid matrix for the immobilization of the Lycium ruthenicum Murr. anthocyanin extract, which was absorbed into the film as a natural dye using the facile-dip method. Regarding the mechanical properties of the pH-sensitive film, the tensile strength (TS) values increased approximately 2-5-fold, but the elongation at break (EB) values decreased significantly by about 60% to 95%. With the increase in anthocyanin concentration, the oxygen permeability (OP) values first decreased by about 85%, and then increased by about 364%. The water vapor permeability (WVP) values increased by about 63%, and then decreased by about 20%. Colorimetric analysis of the films revealed variations in color at different pH values (pH 2.0-10.0). Fourier-transform infrared (FT-IR) spectra and XRD patterns indicated compatibility among ASKG, SPI, and anthocyanin extracts. In addition, an application test was conducted to establish a correlation between film color change and carp meat spoilage. At storage temperatures of 25 °C and 4 °C, when the meat was totally spoiled, the TVB-N values reached 99.80 ± 2.53 mg/100 g and 58.75 ± 1.49 mg/100 g, and the film's color changed from red to light brown and from red to yellowish green, respectively. Therefore, this pH-sensitive film could be used as an indicator to monitor the freshness of meat during storage.
Collapse
Affiliation(s)
- Yucong Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Le Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ziyan Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengyao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xueli Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guohua Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
24
|
Jamróz E, Janik M, Marangoni L, Vieira RP, Tkaczewska J, Kawecka A, Szuwarzyński M, Mazur T, Jasińska JM, Krzyściak P, Juszczak L. Double-Layered Films Based on Furcellaran, Chitosan, and Gelatin Hydrolysates Enriched with AgNPs in Yerba Mate Extract, Montmorillonite, and Curcumin with Rosemary Essential Oil. Polymers (Basel) 2022; 14:4283. [PMID: 36297858 PMCID: PMC9612216 DOI: 10.3390/polym14204283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Double-layered active films based on furcellaran (1st layer-FUR), chitosan, and gelatin hydrolysates (2nd layer-CHIT+HGEL) were successfully prepared. Bioactive ingredients were added to the 1st film layer: AgNPs, which were synthesized in situ with yerba mate extract; montmorillonite clay (MMT); and different loads of ethanolic curcumin (CUR) extract enriched with rosemary essential oil (REO). SEM images confirmed the presence of AgNPs with a size distribution of 94.96 ± 3.33 nm throughout the films, and AFM and SEM photos indicated that the higher substance concentrations had rougher and more porous film microstructures. However, the water vapor transmission rate was reduced only at the lowest load of this ingredient. Despite the tensile strength of the films having decreased, the incorporation of the compounds showed a tendency towards reducing the modulus of elasticity, resulting in a lower stiffness of the composites. The addition of CUR and AgNPs improved the UV light barrier properties of the materials. The presented films showed quick reactions to changes in the pH value (from orange to red along with an increase in pH from 2 to 10), which indicates their potential use as indicators for monitoring the freshness of food products. Composite No. 2 showed the highest antimicrobial potential, while none of the presented films showed an antifungal effect. Finally, the antioxidant activities of the films increased dramatically at higher AgNP and CUR loads, suggesting an outstanding potential for active food packaging applications.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Luís Marangoni
- Packaging Technology Center, Institute of Food Technology, Campinas 13083-862, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas, Campinas 13083-862, Brazil
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, ul. Rakowicka 27, PL-31-510 Kraków, Poland
| | - Michał Szuwarzyński
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Tomasz Mazur
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, PL-30-059 Kraków, Poland
| | - Joanna Maria Jasińska
- Department of Chemistry, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, PL-31-121 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, PL-42-200 Częstochowa, Poland
| |
Collapse
|