1
|
Jin G, Zhang M, Wang X, Zhang Y, Jiang G, Mei L. Characteristics of exopolysaccharides - egg white protein composite gel and its application in low - fat sausage. Food Chem X 2025; 26:102290. [PMID: 40104620 PMCID: PMC11914278 DOI: 10.1016/j.fochx.2025.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
A composite gel was developed by integrating antioxidant extracellular polysaccharides (EPS) derived from Pediococcus acidilactici S1 with egg white protein (EWP), aiming to evaluate its potential as a viable alternative to animal fat in pork sausages. The results indicated that the EPS - EWP gel exhibited a lower free water content, an enhanced water - holding capacity, a higher apparent viscosity, and increased storage and loss modulus. Molecular interactions were strengthened, resulting in a more stable structure characterized by the transition of secondary structure from random coils to ordered β - sheets. Molecular docking (MD) analysis revealed favorable binding conformations and strong binding energies between ovalbumin (OVA) and EPS, particularly through the formation of specific pockets involving interactions with residues such as Lysine (Lys) and Aspartic acid (Asp). Hydrophobic and electrostatic forces were identified as the primary driving forces for this energetic combination. Additionally, low - fat sausages showed a significant 32.87 % improvement in inhibiting fat oxidation.
Collapse
Affiliation(s)
- Guoguo Jin
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Man Zhang
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xinran Wang
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Yifan Zhang
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Guohua Jiang
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Lin Mei
- College of Food and Nutrition, Anhui Agricultural University,130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| |
Collapse
|
2
|
Deng B, Wang Z, Xiao N, Guo S, Chen L, Mou X, Ai M. Storage deterioration and detection of egg multi-scale structure: A review. Food Chem 2025; 464:141550. [PMID: 39413602 DOI: 10.1016/j.foodchem.2024.141550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
This review summarized the processes and mechanisms of deterioration in different components of eggs during storage. The mechanisms linked to reduced glycosylation, structural decay, and ovomucin degradation during egg-white thinning were elucidated, along with the weakening of lysozyme-ovomucin interactions. The degradation and S-conformation transformation of ovalbumin were studied, and the potential application of solubility-viscosity theory in egg-white thinning was discussed. Furthermore, the metabolic pathways of glycerophospholipids and glycerolipids during lipid hydrolysis in egg yolk were scrutinized, and the mechanism of fatty acid auto-oxidation was concluded. The review also delineated the mechanism of cuticle thinning and the impact of preservation strategies on cuticle quality. The reproductive and adaptive strategies of dominant bacteria during egg spoilage were addressed, summarizing the microbial perspective. Lastly, methods for assessing egg freshness were reviewed, encompassing both traditional destructive testing methods and advanced photoelectric nondestructive testing techniques.
Collapse
Affiliation(s)
- Bowen Deng
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Lintao Chen
- Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541004, China
| | - Xiangwei Mou
- Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541004, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Xiang X, Dong S, Chen L, Liu Y, Wu Y, Yu M, Hu G, Li S, Ye L. The improvement of gel properties and volatiles for frozen egg white melted assisted with ultrasound. Food Res Int 2024; 197:115152. [PMID: 39593364 DOI: 10.1016/j.foodres.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
The variation in thawing time, deterioration behavior, secondary structure, surface hydrophobicity, and average particle size of frozen egg whites (EW) thawed with or without ultrasound were characterized to evaluate the effect of ultrasound on the gel properties and volatiles of egg white thermogel (EWG). The texture, water holding capacity, etc., gel properties and microstructure were well maintained in frozen EW thawed by ultrasound (UEW) resulted from the mitigation of deterioration behavior due to shorter melting time (reduced 91.3 %). Moreover, the deterioration of VOCs in fresh EWG due to freeze-thawing could be mitigated when thawed using ultrasound. Meanwhile, the formation of pleasant VOCs and reduction in unpleasant VOCs in EWG were also promoted by ultrasound-assisted thawing. The improvement mechanism of gel properties and volatiles for (frozen) egg white melted assisted with ultrasound were systematically elucidated and this study provided a new insight into improvement of VOCs in frozen food.
Collapse
Affiliation(s)
- Xiaole Xiang
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Shiqin Dong
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Le Chen
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Yongle Liu
- College of Food and Biological Engineering, Changsha University of Science and Technology, Changsha 410000, China
| | - Yingqun Wu
- School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China.
| | - Meijuan Yu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Gan Hu
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Lin Ye
- College of Food Science and Engineering, Tarim University, Alar, Xinjiang 843300, China.
| |
Collapse
|
4
|
Liu X, Zhang Z, Chen Y, Zhong M, Lei Y, Huo J, Ma L, Li S. Chain reactions of temperature-induced egg white protein amorphous aggregates: Formation, structure and material composition of thermal gels. Food Chem 2024; 460:140785. [PMID: 39121770 DOI: 10.1016/j.foodchem.2024.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Egg white protein is widely used in food, chemical, medical and other fields due to its excellent thermal gel properties. However, the regularity of egg white thermal gel (EWTG) by temperature influence is still unknown. In this study, we investigated the potential mechanism of temperature (75-95 °C, 15 min) gradient changes inducing thermal aggregation and gel formation of EWTG. The results showed that changes in textural characteristics and water holding capacity (WHC) of EWTGs depended on switching in protein aggregation morphology (spherical shape - chain shape - regiment shape) and gel network structure differences ("irregular bead-like" - "regular lamellar structure"). In addition, proteomics indicated that the generation of amorphous protein aggregates at 95 °C might be related to Mucin 5B as the aggregation core. The research revealed the EWTG formation from "whole egg white protein" to "single molecules", aiming to provide a reference for quality control in gel food processing.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ziwei Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yujie Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Mengzhen Zhong
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yuqing Lei
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jiaying Huo
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shugang Li
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province/ Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
5
|
Yao X, Ma J, Lv X, Liu X, Chen R, Shan Y, Zeng Q, Jin Y, Hu G. Structural and functional optimization of egg white protein hydrogels by succinylation: Gel properties and mineral enrichment. Int J Biol Macromol 2024; 282:137585. [PMID: 39542299 DOI: 10.1016/j.ijbiomac.2024.137585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The development of novel gel-mineral supplements is important for improving the health of patients with dysphagia. In this study, we used natural egg white protein (NEWP) and phosphorylated egg white protein (STEWP) as controls. We modified NEWP with succinic anhydride to produce varying degrees of succinylated egg white protein (SAEWP). The addition of 20 % (w/v) succinic anhydride increased the β-sheet content of SAEWP from 11.97 % to 50.60 %, which stabilized the gel structure and formed a uniformly ordered three-dimensional network, resulting in the average pore size of SAEWP could reach >80 μm. Compared to NEWP, SAEWP hydrogel with 20 % succinic anhydride showed a 22.27 % increase in water holding capacity, a 56.13 % increase in hardness, and a 173.01 % increase in elasticity. Immersion in a calcium chloride solution resulted in a 220 % increase in calcium content. This study provides new insights into the development of innovative gel mineral supplements.
Collapse
Affiliation(s)
- Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Rong Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
6
|
Zhang Z, Zhao Y, Han Y, Teng H, Xu Q. Crucial effect of ovomucin on alkali-induced egg white gel formation: Properties, structure and facilitation mechanism. Int J Biol Macromol 2024; 277:134507. [PMID: 39111502 DOI: 10.1016/j.ijbiomac.2024.134507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Alkali-induced preserved egg gel formation is a dynamic process that involves complex protein changes. Ovomucin (OVM) is closely associated with the gel properties of egg white. In this study, the effect of OVM in alkali-induced egg white gel (AEWG) formation was investigated. The results suggested that OVM reduced the gel formation time by 15 %. The mechanical properties of the fully formed gel were also improved by OVM. Specifically, OVM increased the storage modulus (G') of the gel by 1.5-fold, while the hardness significantly increased from 78.90 ± 4.24 g to 99.80 ± 9.23 g. Low-field nuclear magnetic resonance (LF-NMR) demonstrated that OVM significantly shortened T23 relaxation time and reduced the water mobility, thus increasing the water holding capacity (WHC). Meanwhile, the presence of OVM resulted in a more homogeneous and denser microscopic morphology of the gel. Selective solubility experiments revealed that disulfide bonds are the primary force in gel formation. OVM promoted the formation of more disulfide bonds, which increased the strength and stability of the gel network. Overall, this research proved OVM plays a critical role in the performance improvement of AEWG, which provides a new insight into the quality control of preserved egg and protein gel foods.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Institute of advanced cross-field science, College of Life Science, Qingdao University, Qingdao, Shandong province 266800, People's Republic of China
| | - Yuhan Zhao
- Institute of advanced cross-field science, College of Life Science, Qingdao University, Qingdao, Shandong province 266800, People's Republic of China
| | - Yumeng Han
- Institute of advanced cross-field science, College of Life Science, Qingdao University, Qingdao, Shandong province 266800, People's Republic of China
| | - Haoye Teng
- Institute of advanced cross-field science, College of Life Science, Qingdao University, Qingdao, Shandong province 266800, People's Republic of China
| | - Qi Xu
- Institute of advanced cross-field science, College of Life Science, Qingdao University, Qingdao, Shandong province 266800, People's Republic of China.
| |
Collapse
|
7
|
Chen J, Zhang Z, Li H, Sun M, Tang H. Preparation, structural characterization, and functional attributes of zein-lysozyme-κ-carrageenan ternary nanocomposites for curcumin encapsulation. Int J Biol Macromol 2024; 270:132264. [PMID: 38734340 DOI: 10.1016/j.ijbiomac.2024.132264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The low water solubility and inadequate bioavailability of curcumin significantly hinder its broad biological applications in the realms of food and medicine. There is limited information currently available regarding the particle characteristics and functional capabilities of zein-lysozyme-based nanomaterials. Thereby, the primary goal of the current work is to effectively develop innovative zein-lysozyme-κ-carrageenan complex nanocomposites (ZLKC) as a reliable carrier for curcumin encapsulation. As a result, ZLKC nanoparticles showed a smooth spherical nanostructure with improved encapsulation efficiency. Fourier-transform infrared, fluorescence spectroscopy, dissociation assay, and circular dichroism analysis revealed that hydrophobic and electrostatic interactions and hydrogen bonding were pivotal in the construction and durability of these composites. X-ray diffraction examination affirmed the lack of crystallinity in curcumin encapsulated within nanoparticles. The incorporation of κ-carrageenan significantly improved the physicochemical stability of ZLKC nanoparticles in diverse environmental settings. Additionally, ZLKC nanocomposites demonstrated enhanced antioxidant and antimicrobial properties, as well as sustained release characteristics. Therefore, these findings demonstrate the potential application of ZLKC nanocomposites as delivery materials for encapsulating bioactive substances.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Mengchu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
8
|
Li J, Wang Z, Xiao N, Guo S, Ai M. Endogenous reactive oxygen species (ROS)-driven protein oxidation regulates emulsifying and foaming properties of liquid egg white. Int J Biol Macromol 2024; 268:131843. [PMID: 38663701 DOI: 10.1016/j.ijbiomac.2024.131843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/30/2024]
Abstract
Highly oxidative reactive oxygen species (ROS) attack protein structure and regulate its functional properties. The molecular structures and functional characteristics of egg white (EW) protein (EWP) during 28 d of aerobic or anaerobic storage were explored to investigate the "self-driven" oxidation mechanism of liquid EW mediated by endogenous ROS signaling. Results revealed a significant increase in turbidity during the storage process, accompanied by protein crosslinking aggregation. The ROS yield initially increased and then decreased, leading to a substantial increase in carbonyl groups and tyrosine content. The free sulfhydryl groups and molecular flexibility in EWP exhibited synchronicity with ROS production, reflecting the self-repairing ability of cysteine residues in EWP. Fourier-transform infrared spectroscopy indicated stable crosslinking between EWP molecules in the early oxidation stage. However, continuous ROS attacks accelerated EWP degradation. Compared with the control group, the aerobic-stimulated EWP showed a significant decrease in foaming capacity from 30.5 % to 9.6 %, whereas the anaerobic-stimulated EWP maintained normal levels. The emulsification performance exhibited an increasing-then-decreasing trend. In conclusion, ROS acted as the predominant factor causing deterioration of liquid EW, triggering moderate oxidation that enhanced the superior foaming and emulsifying properties of EWP, and excessive oxidation diminished the functional characteristics by affecting the molecular structure.
Collapse
Affiliation(s)
- Jiayi Li
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Xia M, Cui Z, Zeng T, Lu L, Sheng L, Cai Z. pH-responsive multi-network composite cellulose-based hydrogels for stable delivery of oral IgY-Fab fragments. Food Chem 2024; 435:137567. [PMID: 37778256 DOI: 10.1016/j.foodchem.2023.137567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Yolk immunoglobulin (IgY) is perfect supplement to mammalian immunoglobulin G in passive immune protection but with poor delivery stability. This work succeeded in pH-responsive oral delivery of IgY-Fab fragments with cellulose based multi-network composite hydrogels. Data displayed that the hydrogel 2 showed superior mechanical properties and load performance (encapsulation efficiency of 99.25% and loading capacity of 45.11 mg/100 mg). The stability of the released Fab was confirmed by HPLC with Fab purity up to 79.65% at the end of digestion. The FTIR spectra revealed the potential interactions between Fab and the hydrogel matrix of the formation of hydrogen bonds or electrostatic interactions between the groups of -OH, -CH2, and -COO-. The excellent rehydration of the hydrogels wouldn't be impacted by low-temperature freeze drying. In sum, this work is of great significance to the development of Fab-themed health-care food, intensive processing of poultry eggs and the economic construction of related industries.
Collapse
Affiliation(s)
- Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhaoyu Cui
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China
| | - LiZhi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, China.
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
10
|
Chen J, Zhang Z, Li R, Li H, Tang H. Investigating the interaction mechanism between gliadin and lysozyme through multispectroscopic analysis and molecular dynamic simulations. Food Res Int 2024; 180:114081. [PMID: 38395578 DOI: 10.1016/j.foodres.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The development of stable nanocomplexes based on gliadin and other biopolymers shows potential applications as delivery vehicles in the food industry. However, there is limited study specifically targeting the gliadin-lysozyme system, and their underlying interaction mechanism remains poorly understood. Therefore, the objective of this study was to investigate the binding mechanism between gliadin and lysozyme using a combination of multispectroscopic methods and molecular dynamic simulations. Stable gliadin-lysozyme complex nanoparticles were prepared using an anti-solvent precipitation method with a gliadin-to-lysozyme mass ratio of 2:1 and pH 4.0. The characteristic changes in the UV-visible spectrum of gliadin induced by lysozyme confirmed the complex formation. The analyses of fluorescence, FT-IR spectra, and dissociation tests demonstrated the indispensability of hydrophobic, electrostatic, and hydrogen bonding interactions in the preparation of the composites. Scanning electron microscopy revealed that the surface morphology of the nanoparticles changed from smooth and spherical to rough and irregular with the addition of lysozyme. Furthermore, molecular dynamic simulations suggested that lysozyme bound to the hydrophobic region of gliadin and hydrogen bonding was crucial for the stability of the complex. These findings contribute to the advancement of gliadin-lysozyme complex nanoparticles as an efficient delivery system for encapsulating bioactive compounds in food industry.
Collapse
Affiliation(s)
- Jin Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Renjie Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Huihui Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Hongjin Tang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
11
|
Zhao B, Pu J, Hu G, Liu X, Li S, Wang J, Geng F. Chicken egg white precipitates induced by water dilution. Int J Biol Macromol 2024; 254:128084. [PMID: 37967608 DOI: 10.1016/j.ijbiomac.2023.128084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Chicken egg whites (whole egg white, EW; thick egg white, TKEW; thin egg white, TNEW) become turbid and are accompanied by the formation of precipitates after being diluted with an equal mass of deionized water. The precipitates of TKEW induced by water dilution (Thick Egg White Precipitates, TKEWP) account for 14.47 % of TKEW total dry matter, much higher than that of thin egg white precipitates (TNEWP) (1.51 %) and whole egg white precipitates (EWP) (5.53 %). Quantitative proteomic analysis identified 27 differentially abundant proteins (p < 0.05) among EW, EWP, TNEWP, and TKEWP. Lysozyme was found to be a key protein in the formation of EW precipitates induced by water dilution, as its abundance was significantly higher in TNEWP and TKEWP. Mucin-5B (α-ovomucin) had the highest abundance in TKEWP, suggesting that its insolubility is one of the important factors contributing to the large formation of TKEWP. This paper systematically studies the formation, characteristics, and composition of egg white precipitation caused by water dilution, and puts forward a new understanding of the processing characteristics of egg white liquid, thus laying a theoretical foundation for further research methods to reduce egg white precipitation by water dilution.
Collapse
Affiliation(s)
- Bingye Zhao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jing Pu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| | - Xin Liu
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
12
|
Jiang Y, Lu J, Guo L. Fabrication of highly carboxylated thermoplastic nanofibrous membranes for efficient absorption and separation of protein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Yao X, Xu J, Xun Y, Du T, Huang M, Guo J. High gelatinous salted duck egg white protein powder gel: Physicochemical, microstructure and techno-functional properties. Front Nutr 2023; 10:1110786. [PMID: 36819671 PMCID: PMC9935615 DOI: 10.3389/fnut.2023.1110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Salted duck egg is one of the most popular products, and China is one of the major countries consuming salted duck egg products. However, due to the high salt content of salted egg white and low physical and chemical properties such as gel, many factories generally only use salted egg yolk and discard salted duck egg white (SDEW) as a waste liquid when processing. This is not only a waste of resources, but also a pollution to the environment. In this paper, protein powder was prepared from salted egg white. Then xanthan gum (XG) was added to make it co-gel with ovalbumin to achieve the purpose of preparing high gelatinous salted egg white protein powder. The results showed that the optimum conditions of SDEW-XG composite gel were as follows: the xanthan gum content was 0.08% (w/w), the reaction pH was 6.5, and the heating temperature was 100°C. Under these conditions, the gel strength reaches the maximum value. Meanwhile, compared with the protein powder without xanthan gum, the addition of xanthan gum significantly affected the secondary structure of the protein powder of SDEW and improved the water holding capacity of the gel. In conclusion, the addition of xanthan gum can significantly improve the gel quality of SDEW protein powder, which provides a theoretical basis for the quality improvement of salted egg white.
Collapse
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China,*Correspondence: Jicheng Xu, ✉
| | - Yu Xun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Mengqi Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biology and Food Science, Suzhou University, Suzhou, China,Jun Guo, ✉
| |
Collapse
|